Eve Seuntjens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2455022/publications.pdf

Version: 2024-02-01

37	2,132 citations	19	36
papers		h-index	g-index
51	51	51	4160 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Optimization of Whole Mount RNA Multiplexed in situ Hybridization Chain Reaction With Immunohistochemistry, Clearing and Imaging to Visualize Octopus Embryonic Neurogenesis. Frontiers in Physiology, 2022, 13, .	2.8	6
2	Modeling Neuroregeneration and Neurorepair in an Aging Context: The Power of a Teleost Model. Frontiers in Cell and Developmental Biology, 2021, 9, 619197.	3.7	13
3	Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. ELife, 2021, 10, .	6.0	29
4	Aging impairs the essential contributions of nonâ€glial progenitors to neurorepair in the dorsal telencephalon of the Killifish <i>Nothobranchius furzeri</i>). Aging Cell, 2021, 20, e13464.	6.7	22
5	The killifish visual system as an in vivo model to study brain aging and rejuvenation. Npj Aging and Mechanisms of Disease, 2021, 7, 22.	4.5	20
6	Novel Perspectives on the Development of the Amygdala in Rodents. Frontiers in Neuroanatomy, 2021, 15, 786679.	1.7	11
7	Protocadherins at the Crossroad of Signaling Pathways. Frontiers in Molecular Neuroscience, 2020, 13, 117.	2.9	76
8	A practical staging atlas to study embryonic development of Octopus vulgaris under controlled laboratory conditions. BMC Developmental Biology, 2020, 20, 7.	2.1	27
9	Multifaceted actions of Zeb2 in postnatal neurogenesis from the ventricular-subventricular zone to the olfactory bulb. Development (Cambridge), 2020, 147, .	2.5	8
10	Subtle Roles of Down Syndrome Cell Adhesion Molecules in Embryonic Forebrain Development and Neuronal Migration. Frontiers in Cell and Developmental Biology, 2020, 8, 624181.	3.7	8
11	Mechanical characterization of squid giant axon membrane sheath and influence of the collagenous endoneurium on its properties. Scientific Reports, 2019, 9, 8969.	3.3	4
12	Defective DNA Polymerase α-Primase Leads to X-Linked Intellectual Disability Associated with Severe Growth Retardation, Microcephaly, and Hypogonadism. American Journal of Human Genetics, 2019, 104, 957-967.	6.2	32
13	The survey and reference assisted assembly of the Octopus vulgaris genome. Scientific Data, 2019, 6, 13.	5.3	60
14	The Cephalopod Large Brain Enigma: Are Conserved Mechanisms of Stem Cell Expansion the Key?. Frontiers in Physiology, 2018, 9, 1160.	2.8	8
15	In silico Identification and Expression of Protocadherin Gene Family in Octopus vulgaris. Frontiers in Physiology, 2018, 9, 1905.	2.8	14
16	miR-200 family controls late steps of postnatal forebrain neurogenesis via Zeb2 inhibition. Scientific Reports, 2016, 6, 35729.	3.3	31
17	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Experimental Medicine, 2015, 212, 2015-2025.	8.5	151
18	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8+ effector and memory T cell populations during infection. Journal of Experimental Medicine, 2015, 212, 2027-2039.	8.5	206

#	Article	IF	CITATIONS
19	Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection. Journal of Cell Biology, 2015, 211, 2113OIA260.		O
20	Transcriptional repressor ZEB2 promotes terminal differentiation of CD8 ⁺ effector and memory T cell populations during infection. Journal of Cell Biology, 2015, 211, 2113OIA259.		0
21	How Cell-Autonomous Is Neuronal Migration in the Forebrain? Molecular Cross-Talk at the Cell Membrane. Neuroscientist, 2014, 20, 571-575.	3.5	2
22	A complex Xp11.22 deletion in a patient with syndromic autism: Exploration of <i>FAM120C</i> as a positional candidate gene for autism. American Journal of Medical Genetics, Part A, 2014, 164, 3035-3041.	1.2	11
23	Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1. Neuron, 2013, 77, 70-82.	8.1	112
24	Four Amino Acids within a Tandem QxVx Repeat in a Predicted Extended α-Helix of the Smad-Binding Domain of Sip1 Are Necessary for Binding to Activated Smad Proteins. PLoS ONE, 2013, 8, e76733.	2.5	16
25	N-cadherin specifies first asymmetry in developing neurons. EMBO Journal, 2012, 31, 1893-1903.	7.8	95
26	Onecut transcription factors act upstream of $\langle i \rangle ls 1 \langle j \rangle$ to regulate spinal motoneuron diversification. Development (Cambridge), 2012, 139, 3109-3119.	2.5	68
27	Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System. Neuron, 2012, 73, 713-728.	8.1	140
28	Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 2012, 44, 445-449.	21.4	207
29	Bmp7 Regulates the Survival, Proliferation, and Neurogenic Properties of Neural Progenitor Cells during Corticogenesis in the Mouse. PLoS ONE, 2012, 7, e34088.	2.5	73
30	Few Smad proteins and many Smad-interacting proteins yield multiple functions and action modes in TGF \hat{I}^2 /BMP signaling in vivo. Cytokine and Growth Factor Reviews, 2011, 22, 287-300.	7.2	95
31	The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood, 2011, 117, 5620-5630.	1.4	94
32	PPP2R2C, a gene disrupted in autosomal dominant intellectual disability. European Journal of Medical Genetics, 2010, 53, 239-243.	1.3	27
33	Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nature Neuroscience, 2009, 12, 1373-1380.	14.8	193
34	Transforming Growth Factor type \hat{l}^2 and Smad family signaling in stem cell function. Cytokine and Growth Factor Reviews, 2009, 20, 449-458.	7.2	43
35	Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12919-12924.	7.1	89
36	A Role for Brain-Specific Homeobox Factor Bsx in the Control of Hyperphagia and Locomotory Behavior. Cell Metabolism, 2007, 5, 450-463.	16.2	103

#	Article	IF	CITATIONS
37	Targeted Ablation of Gonadotrophs in Transgenic Mice Depresses Prolactin but Not Growth Hormone Gene Expression at Birth as Measured by Quantitative mRNA Detection. Journal of Biomedical Science, 2003, 10, 805-812.	7.0	6