Hiromasa Saitoh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2454290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effector-Mediated Suppression of Chitin-Triggered Immunity by <i>Magnaporthe oryzae</i> Is Necessary for Rice Blast Disease Â. Plant Cell, 2012, 24, 322-335.	6.6	493
2	Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen <i>Magnaporthe oryzae</i> Â Â. Plant Cell, 2009, 21, 1573-1591.	6.6	410
3	A multifaceted genomics approach allows the isolation of the rice <i>Pia</i> â€blast resistance gene consisting of two adjacent NBSâ€LRR protein genes. Plant Journal, 2011, 66, 467-479.	5.7	287
4	Gene expression analysis of plant host-pathogen interactions by SuperSAGE. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15718-15723.	7.1	273
5	Arms race coâ€evolution of <i>Magnaporthe oryzae AVRâ€Pik</i> and rice <i>Pik</i> genes driven by their physical interactions. Plant Journal, 2012, 72, 894-907.	5.7	249
6	<scp>M</scp> ut <scp>M</scp> apâ€ <scp>G</scp> ap: wholeâ€genome resequencing of mutant <scp>F</scp> 2 progeny bulk combined with <i>de novo</i> assembly of gap regions identifies the rice blast resistance gene <scp><i>Pii</i></scp> . New Phytologist, 2013, 200, 276-283.	7.3	196
7	Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics, 2016, 17, 370.	2.8	157
8	Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 496-505.	7.1	155
9	Large-Scale Gene Disruption in Magnaporthe oryzae Identifies MC69, a Secreted Protein Required for Infection by Monocot and Dicot Fungal Pathogens. PLoS Pathogens, 2012, 8, e1002711.	4.7	150
10	Rice Exo70 interacts with a fungal effector <i>, </i> <scp>AVR</scp> â€Pii, and is required for <scp>AVR</scp> â€Piiâ€ŧriggered immunity. Plant Journal, 2015, 83, 875-887.	5.7	128
11	Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nature Plants, 2018, 4, 576-585.	9.3	127
12	Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular Plant-Microbe Interactions, 2018, 31, 34-45.	2.6	109
13	Bacterial Diversity Associated With the Rhizosphere and Endosphere of Two Halophytes: Claux maritima and Salicornia europaea. Frontiers in Microbiology, 2018, 9, 2878.	3.5	73
14	Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. Journal of Biological Chemistry, 2021, 296, 100371.	3.4	57
15	The rice NLR pair Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation. PLoS ONE, 2020, 15, e0238616.	2.5	31
16	Characterization of endo-1,3–1,4-β-glucanases in GH family 12 from Magnaporthe oryzae. Applied Microbiology and Biotechnology, 2010, 88, 1113-1123.	3.6	29
17	Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistance. Journal of Biological Chemistry, 2019, 294, 13006-13016.	3.4	29
18	Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews. BMC Genomics, 2017, 18, 897.	2.8	27

HIROMASA SAITOH

#	Article	IF	CITATIONS
19	RNAâ€Seq of <i>in planta</i> â€expressed <i>Magnaporthe oryzae</i> genes identifies <i>MoSVP</i> as a highly expressed gene required for pathogenicity at the initial stage of infection. Molecular Plant Pathology, 2019, 20, 1682-1695.	4.2	20
20	A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	19
21	Comparative Analysis of Bacterial Diversity and Community Structure in the Rhizosphere and Root Endosphere of Two Halophytes, <i>Salicornia europaea</i> and <i>Glaux maritima</i> , Collected from Two Brackish Lakes in Japan. Microbes and Environments, 2020, 35, n/a.	1.6	11
22	Using genomics tools to understand plant resistance against pathogens: A case study of Magnaporthe-rice interactions. , 2020, , 181-188.		2