Daniel Schneditz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overestimation of Hemodialysis Dose Depends on Dialysis Efficiency by Regional Blood Flow but not by Conventional Two Pool Urea Kinetic Analysis. ASAIO Journal, 1995, 41, M719-M724.	1.6	242
2	Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrology Dialysis Transplantation, 2020, 35, 737-741.	0.7	215
3	Cardiopulmonary recirculation during hemodialysis. Kidney International, 1992, 42, 1450-1456.	5.2	154
4	In vivo quantification of liver dialysis: Comparison of albumin dialysis and fractionated plasma separation. Journal of Hepatology, 2005, 43, 451-457.	3.7	146
5	Nature and rate of vascular refilling during hemodialysis and ultrafiltration. Kidney International, 1992, 42, 1425-1433.	5.2	129
6	Characteristics of hypotension-prone haemodialysis patients: is there a critical relative blood volume?. Nephrology Dialysis Transplantation, 2003, 18, 1353-1360.	0.7	113
7	Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis. Journal of Applied Physiology, 1998, 85, 497-504.	2.5	98
8	Retarded functional differential equations: basic theory. Applied Mathematical Sciences (Switzerland), 1977, , 36-56.	0.8	94
9	Validation of Changes in Extracellular Volume Measured During Hemodialysis Using a Segmental Bioimpedance Technique. ASAIO Journal, 1998, 44, M541-M545.	1.6	92
10	A Regional Blood Circulation Alternative to In-series Two Compartment Urea Kinetic Modeling. ASAIO Journal, 1993, 39, M573-M577.	1.6	89
11	Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-11.	1.3	88
12	Lowâ€potassium and glucoseâ€free dialysis maintains urea but enhances potassium removal. Nephrology Dialysis Transplantation, 2001, 16, 78-84.	0.7	78
13	Compartment Effects in Hemodialysis. Seminars in Dialysis, 2001, 14, 271-277.	1.3	77
14	A blood protein monitor for the continuous measurement of blood volume changes during hemodialysis. Kidney International, 1990, 38, 342-346.	5.2	76
15	Estimating phosphate removal in haemodialysis: an additional tool to quantify dialysis dose. Nephrology Dialysis Transplantation, 2002, 17, 1037-1044.	0.7	76
16	Validation of haemodialysis recirculation and access blood flow measured by thermodilution. Nephrology Dialysis Transplantation, 1999, 14, 376-383.	0.7	74
17	Isothermic hemodialysis and ultrafiltration. American Journal of Kidney Diseases, 2000, 36, 353-361.	1.9	69
18	Sum of segmental bioimpedance analysis during ultrafiltration and hemodialysis reduces sensitivity to changes in body position. Kidney International, 1999, 56, 692-699.	5.2	66

#	Article	IF	CITATIONS
19	Evaluation of an ultrasonic blood volume monitor. Nephrology Dialysis Transplantation, 1998, 13, 2098-2103.	0.7	56
20	High-flux or low-flux dialysis: a position statement following publication of the Membrane Permeability Outcome study. Nephrology Dialysis Transplantation, 2010, 25, 1230-1232.	0.7	56
21	A diffusion-adjusted regional blood flow model to predict solute kinetics during haemodialysis. Nephrology Dialysis Transplantation, 2009, 24, 2218-2224.	0.7	55
22	Increasing blood flow increases Kt/Vurea and potassium removal but fails to improve phosphate removal. Clinical Nephrology, 2003, 59, 130-136.	0.7	53
23	Removal of Bile Acids by Two Different Extracorporeal Liver Support Systems in Acute-on-Chronic Liver Failure. ASAIO Journal, 2007, 53, 187-193.	1.6	50
24	Formal Analytical Solution to a Regional Blood Flow and Diffusion Based Urea Kinetic Model. ASAIO Journal, 1994, 40, M667-M673.	1.6	48
25	Predictive Value of Access Blood Flow in Detecting Access Thrombosis. ASAIO Journal, 1998, 44, M555-M558.	1.6	47
26	A soundâ€speed sensor for the measurement of total protein concentration in disposable, bloodâ€perfused tubes. Journal of the Acoustical Society of America, 1989, 86, 2073-2080.	1.1	45
27	Temperature and Thermal Balance in Hemodialysis. Seminars in Dialysis, 2001, 14, 357-364.	1.3	45
28	Protein-Bound Uremic Toxin Profiling as a Tool to Optimize Hemodialysis. PLoS ONE, 2016, 11, e0147159.	2.5	45
29	Cardiopulmonary Recirculation in Dialysis An Underrecognized Phenomenon. ASAIO Journal, 1992, 38, M194-M196.	1.6	42
30	Ethanol Causes Protein Precipitation—New Safety Issues for Catheter Locking Techniques. PLoS ONE, 2013, 8, e84869.	2.5	40
31	Estimation of body fluid changes during peritoneal dialysis by segmental bioimpedance analysis. Kidney International, 2000, 57, 299-306.	5.2	39
32	A Simple and Feasible Method to Determine Absolute Blood Volume in Hemodialysis Patients in Clinical Practice. Blood Purification, 2014, 38, 180-187.	1.8	39
33	Sudden cardiac death in dialysis patients: different causes and management strategies. Nephrology Dialysis Transplantation, 2021, 36, 396-405.	0.7	39
34	Effect of Ultrafiltration on Thermal Variables, Skin Temperature, Skin Blood Flow, and Energy Expenditure during Ultrapure Hemodialysis. Journal of the American Society of Nephrology: JASN, 2005, 16, 1824-1831.	6.1	38
35	Stability of access resistance during haemodialysis. Nephrology Dialysis Transplantation, 1998, 13, 739-744.	0.7	37
36	A Regional Blood Circulation Alternative to In-series Two Compartment Urea Kinetic Modeling. ASAIO Journal, 1993, 39, M573-M577.	1.6	36

#	Article	IF	CITATIONS
37	Measurement of Access Flow During Hemodialysis Using the Constant Infusion Approach. ASAIO Journal, 1998, 44, 74-81.	1.6	35
38	Reactive hyperemia in the human liver. American Journal of Physiology - Renal Physiology, 2008, 295, G332-G337.	3.4	34
39	Correction of Plasma Concentrations for Effects of Hemoconcentration or Hemodilution. ASAIO Journal, 2012, 58, 160-162.	1.6	34
40	Kinetics of Plasma Refilling During Hemodialysis Sessions with Different Initial Fluid Status. ASAIO Journal, 2015, 61, 350-356.	1.6	33
41	Determination of the critical absolute blood volume for intradialytic morbid events. Hemodialysis International, 2016, 20, 321-326.	0.9	33
42	Should a fistula first policy be revisited in elderly haemodialysis patients?. Nephrology Dialysis Transplantation, 2019, 34, 1636-1643.	0.7	32
43	The cardiovascular response to lower body negative pressure in humans depends on seal location. Physiological Research, 2009, 58, 311-318.	0.9	31
44	Cardiac output and urea kinetics in dialysis patients: Evidence supporting the regional blood flow model. Kidney International, 1996, 50, 1273-1277.	5.2	30
45	Online monitoring of cerebral hemodynamics during hemodialysis. American Journal of Kidney Diseases, 2002, 40, 996-1004.	1.9	30
46	Relative Underestimation of Fluid Removal During Hemodialysis Hypotension Measured by Whole Body Bioimpedance. ASAIO Journal, 1998, 44, 823-827.	1.6	29
47	RENAL RESEARCH INSTITUTE SYMPOSIUM: Temperature Control by the Blood Temperature Monitor. Seminars in Dialysis, 2003, 16, 477-482.	1.3	29
48	What can the dialysis physician learn from kinetic modelling beyond Kt/Vurea?. Nephrology Dialysis Transplantation, 2012, 27, 4021-4029.	0.7	28
49	Vascular refilling is independent of volume overload in hemodialysis with moderate ultrafiltration requirements. Hemodialysis International, 2016, 20, 484-491.	0.9	27
50	216 Mars versus prometheus: Comparison of reduction ratios (RR) as a measure of treatment dose in two different liver detoxification devices. Journal of Hepatology, 2004, 40, 69-70.	3.7	26
51	On-Line Dialysate Infusion to Estimate Absolute Blood Volume in Dialysis Patients. ASAIO Journal, 2014, 60, 436-442.	1.6	26
52	Measurement of hemodialysis vascular access flow using extracorporeal temperature gradients. Kidney International, 2007, 72, 736-741.	5.2	25
53	Heart rate and stroke volume response patterns to augmented orthostatic stress. Clinical Autonomic Research, 2009, 19, 157-165.	2.5	25
54	Infrared spectroscopy in hemodialysis: reagent-free monitoring of patient detoxification by infrared spectroscopy. Analytical and Bioanalytical Chemistry, 2012, 403, 391-399.	3.7	25

#	Article	IF	CITATIONS
55	Development of a framework for minimum and optimal safety and quality standards for hemodialysis and peritoneal dialysis. Kidney International Supplements, 2020, 10, e55-e62.	14.2	24
56	Sensitivity and Specificity of the Thermodilution Technique in Detection of Access Recirculation. Nephron, 2000, 85, 134-141.	1.8	23
57	Heat accumulation with relative blood volume decrease. American Journal of Kidney Diseases, 2002, 40, 777-782.	1.9	23
58	Pros and cons of antithrombotic therapy in end-stage kidney disease: a 2019 update. Nephrology Dialysis Transplantation, 2019, 34, 923-933.	0.7	23
59	Considerations on equity in management of end-stage kidney disease in low- and middle-income countries. Kidney International Supplements, 2020, 10, e63-e71.	14.2	23
60	Continuous veno-venous hemofiltration to adjust fluid volume excess in septic shock patients reduces intra-abdominal pressure. Clinical Nephrology, 2014, 82, 41-50.	0.7	23
61	Effect of access recirculation on the modeled urea distribution volume. American Journal of Kidney Diseases, 1996, 27, 512-518.	1.9	22
62	Rate of creatinine equilibration in whole blood. Hemodialysis International, 2009, 13, 215-221.	0.9	22
63	Increased Hepato-Splanchnic Vasoconstriction in Diabetics during Regular Hemodialysis. PLoS ONE, 2015, 10, e0145411.	2.5	22
64	Concordance of absolute and relative plasma volume changes and stability of <scp><i>F</i></scp> _{cells} in routine hemodialysis. Hemodialysis International, 2016, 20, 120-128.	0.9	21
65	Recirculation, a seemingly simple concept. Nephrology Dialysis Transplantation, 1998, 13, 2191-2193.	0.7	20
66	RENAL RESEARCH INSTITUTE SYMPOSIUM: Surveillance of Access Function by the Blood Temperature Monitor. Seminars in Dialysis, 2003, 16, 483-487.	1.3	20
67	Keep your temper: how to avoid heat accumulation in haemodialysis. Nephrology Dialysis Transplantation, 2001, 16, 7-9.	0.7	19
68	Adjustment of target weight based on absolute blood volume reduces the frequency of intradialytic morbid events. Hemodialysis International, 2018, 22, 254-260.	0.9	19
69	Bioimpedance-based volume at clinical target weight is contracted in hemodialysis patients with a high body mass index. Clinical Nephrology, 2012, 77, 376-382.	0.7	19
70	Measurement of intraperitoneal volume by segmental bioimpedance analysis during peritoneal dialysis. American Journal of Kidney Diseases, 2003, 42, 167-172.	1.9	17
71	Surveillance of Fistula Function by Frequent Recirculation Measurements During High Efficiency Dialysis. ASAIO Journal, 2002, 48, 394-397.	1.6	16
72	1,3-ß-d-Glucan testing is highly specific in patients undergoing dialysis treatment. Journal of Infection, 2017, 74, 72-80.	3.3	16

5

#	Article	IF	CITATIONS
73	Solute Disequilibrium and Multicompartment Modeling. Advances in Chronic Kidney Disease, 1995, 2, 319-329.	2.1	15
74	Hemodialysis Ultrafiltration Rate Targets Should Be Scaled to Body Surface Area Rather than to Body Weight. Seminars in Dialysis, 2017, 30, 15-19.	1.3	15
75	Exercise and Extracorporeal Blood Cooling During Hemodialysis. ASAIO Journal, 1998, 44, M574-M578.	1.6	14
76	Effect of ultrafiltration on peripheral urea sequestration in haemodialysis patients. Nephrology Dialysis Transplantation, 2001, 16, 994-998.	0.7	14
77	The arrow of bioimpedance. Kidney International, 2006, 69, 1492-1493.	5.2	14
78	Prevalence of Detectable Venous Pressure Drops Expected with Venous Needle Dislodgement. Seminars in Dialysis, 2014, 27, 507-511.	1.3	14
79	Feedback Control in Hemodialysis—Much Ado about Nothing?. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1730-1732.	4.5	14
80	The reasons for a clinical trial on incremental haemodialysis. Nephrology Dialysis Transplantation, 2020, 35, 2015-2019.	0.7	14
81	Effect of changes in the intravascular volume during hemodialysis on blood viscoelasticity. Indian Journal of Nephrology, 2011, 21, 95.	0.5	14
82	Nonâ€invasive Blood Volume Monitoring During Hemodialysis: Technical and Physiological Aspects. Seminars in Dialysis, 1997, 10, 166-169.	1.3	13
83	Absolute Blood Volume and Hepatosplanchnic Blood Flow Measured by Indocyanine Green Kinetics During Hemodialysis. ASAIO Journal, 2014, 60, 452-458.	1.6	13
84	Intra-Abdominal Pressure Correlates with Extracellular Water Content. PLoS ONE, 2015, 10, e0122193.	2.5	13
85	Intracorporeal Glucose Disposal During Hemodialysis After a Standardized Glucose Load. ASAIO Journal, 2010, 56, 204-209.	1.6	12
86	Internal Filtration in a High-Flux Dialyzer Quantified by Mean Transit Time of an Albumin-Bound Indicator. ASAIO Journal, 2013, 59, 505-511.	1.6	12
87	Sound Speed, Density and Total Protein Concentration of Blood. Clinical Chemistry and Laboratory Medicine, 1989, 27, 803-6.	2.3	11
88	Bilirubin Kinetic Modeling for Quantification of Extracorporeal Liver Support. Blood Purification, 2006, 24, 413-422.	1.8	11
89	Bridging different perspectives of the physiological and mathematical disciplines. American Journal of Physiology - Advances in Physiology Education, 2012, 36, 265-274.	1.6	11
90	Anything Goes? High Time for Smart Blood Volume Monitors. ASAIO Journal, 2018, 64, 697-700.	1.6	11

#	Article	IF	CITATIONS
91	Incremental haemodialysis and residual kidney function: more and more observations but no trials. Nephrology Dialysis Transplantation, 2019, 34, 1806-1811.	0.7	11
92	Loss of antimicrobial effect of trisodium citrate due to 'lock' spillage from haemodialysis catheters. Nephrology Dialysis Transplantation, 2014, 29, 914-919.	0.7	10
93	Ultrasonic evaluation of renal cortex arterial area enables differentiation between hypertensive and glomerulonephritis-related chronic kidney disease. International Urology and Nephrology, 2017, 49, 1627-1635.	1.4	10
94	Vascular Refilling Is Not Reduced in Dialysis Sessions with Morbid Events. Blood Purification, 2017, 43, 309-314.	1.8	10
95	Variable-Volume Kinetic Model to Estimate Absolute Blood Volume in Patients on Dialysis Using Dialysate Dilution. ASAIO Journal, 2018, 64, 77-85.	1.6	10
96	Feedback control of absolute blood volume: A new technical approach in hemodialysis. Hemodialysis International, 2020, 24, 344-350.	0.9	10
97	Viscoelastic properties of whole blood. Influence of fast sedimenting red blood cell aggregates. Biorheology, 1987, 24, 13-22.	0.4	9
98	Quick measurement of hematocrit and erythrocyte sedimentation-rate by means of a density tracking method. Blut, 1987, 55, 153-163.	1.2	9
99	Access recirculation in a native fistula in spite of a seemingly adequate access flow. American Journal of Kidney Diseases, 2000, 35, 529-532.	1.9	9
100	Stability of access resistance during haemodialysis. Nephrology Dialysis Transplantation, 2002, 17, 1539-1539.	0.7	9
101	Arteriovenous Vascular Access Flow Measurement: Accuracy and Clinical Implications. , 2003, 142, 269-284.		9
102	Prediction of time-averaged concentration of haemoglobin in haemodialysis patients. Nephrology Dialysis Transplantation, 2003, 18, 2082-2087.	0.7	8
103	Measurement of Indocyanine Green Dye Concentration in the Extracorporeal Circulation. ASAIO Journal, 2005, 51, 376-378.	1.6	8
104	More may be less: increasing extracorporeal blood flow in an axillary arterio-arterial access decreases effective clearance. Nephrology Dialysis Transplantation, 2011, 26, 2401-2403.	0.7	8
105	Selective Transport of Protein-Bound Uremic Toxins in Erythrocytes. Toxins, 2019, 11, 385.	3.4	8
106	Quantifying the Effect of Plasma Viscosity on In Vivo Dialyzer Performance. ASAIO Journal, 2020, 66, 834-840.	1.6	8
107	Vascular Access Recirculation: Measurement and Clinical Implications. , 2003, 142, 254-268.		7
108	Timing and Reproducibility of Access Flow Measurements Using Extracorporeal Temperature Gradients. ASAIO Journal, 2007, 53, 469-473.	1.6	7

#	Article	IF	CITATIONS
109	Albumin infusion fails to restore circulatory function following paracentesis of tense ascites as assessed by beat-to-beat haemodynamic measurements. International Journal of Clinical Practice, 2008, 62, 1851-1857.	1.7	7
110	Effect of Hemolysis and Free Hemoglobin on Optical Hematocrit Measurements in the Extracorporeal Circulation. ASAIO Journal, 2008, 54, 181-184.	1.6	7
111	Insulinogenic index in non-diabetics during haemodialysis. Nephrology Dialysis Transplantation, 2010, 25, 3365-3372.	0.7	7
112	TMP revisited: the importance of plasma colloid osmotic pressure in high-flux dialysers. Nephrology Dialysis Transplantation, 2011, 26, 411-413.	0.7	7
113	Internal filtration, filtration fraction, and blood flow resistance in high- and low-flux dialyzers. Clinical Hemorheology and Microcirculation, 2014, 58, 455-469.	1.7	7
114	Methods in clinical hemorheology: The continuous measurement of arterial blood density and blood sound speed in man. Biorheology, 1990, 27, 895-902.	0.4	6
115	Glucose-added dialysis fluid prevents asymptomatic hypoglycaemia in regular haemodialysis. Nephrology Dialysis Transplantation, 2007, 23, 1066-1067.	0.7	6
116	Quantifying the discontinuity of haemodialysis dose with time-averaged concentration (TAC) and time-averaged deviation (TAD). Nephrology Dialysis Transplantation, 2010, 25, 1011-1012.	0.7	6
117	Clearance, Distribution Volume, and Dialyzer Mass Area Transport Coefficient of Glucose in Whole Blood. ASAIO Journal, 2012, 58, 137-142.	1.6	6
118	Haemodialysis adequacy monitoring for phosphate: an old problem with new solutions?. Nephrology Dialysis Transplantation, 2015, 30, 9-11.	0.7	6
119	Comparison of Binding by Concentrated Peritoneal Dialysate and Serum. ASAIO Journal, 1993, 39, M569-M572.	1.6	5
120	The (wind) chill factor controlled. American Journal of Kidney Diseases, 2002, 40, 426-428.	1.9	5
121	Merits and limitations of continuous blood volume monitoring during haemodialysis: Summary of the EDTNA ERCA Journal Club discussion: winter 2005. Journal of Renal Care, 2006, 32, 108-116.	0.2	5
122	Blunted Insulinemia Using High Dialysate Glucose Concentration During Hemodialysis. ASAIO Journal, 2011, 57, 444-450.	1.6	5
123	Relationship between kinetics of albumin-bound bilirubin and water-soluble urea in extracorporeal blood purification. Nephrology Dialysis Transplantation, 2012, 27, 1200-1206.	0.7	5
124	A Regional Blood Flow Model for Glucose and Insulin Kinetics During Hemodialysis. ASAIO Journal, 2013, 59, 627-635.	1.6	5
125	Sensitivity of Hematocrit to Osmotic Effects Induced by Changes in Dialysate Conductivity. ASAIO Journal, 2015, 61, 583-588.	1.6	5
126	Comparison of intradialytic changes in weight and fluid status. Nephrology, 2016, 21, 632-632.	1.6	5

#	Article	IF	CITATIONS
127	Glucose tolerance in patients with and without type 2 diabetes mellitus during hemodialysis. Diabetes Research and Clinical Practice, 2021, 173, 108694.	2.8	5
128	Modeling of insulin secretion and insulin mass balance during hemodialysis in patients with and without type 2 diabetes. Biocybernetics and Biomedical Engineering, 2021, 41, 391-401.	5.9	5
129	Access Flow Measurement by Indicator Dilution without Indicator Injection: Effect of Switch Location. International Journal of Artificial Organs, 2007, 30, 980-986.	1.4	4
130	Paradoxical clearance of hyaluronan fragments during haemodialysis and haemodiafiltration. Nephrology Dialysis Transplantation, 2012, 27, 4420-4422.	0.7	4
131	Volume excess in chronic haemodialysis patients—effects of treatment frequency and treatment spacing. Nephrology Dialysis Transplantation, 2013, 28, 170-175.	0.7	4
132	Osmotic and Hemodynamic Effects of Hypertonic Glucose During Hemodialysis. ASAIO Journal, 2017, 63, 824-831.	1.6	4
133	Announcing Publons to Enhance Reviewer Experience. ASAIO Journal, 2017, 63, 235-235.	1.6	4
134	The Influence of Colloid Osmotic Pressure on Hydrostatic Pressures in High―and Lowâ€Flux Hemodialyzers. Artificial Organs, 2018, 42, 525-532.	1.9	4
135	Online monitoring and feedback-control. , 2004, , 555-584.		4
136	The Measurement of Blood Density to Investigate Protein Deposition at the blood/hollow Fiber Membrane Interface during Ultrafiltration. International Journal of Artificial Organs, 1991, 14, 424-429.	1.4	3
137	Estimation of trunk extracellular volume by bioimpedance. , 0, , .		3
138	Characteristics of hypotension-prone haemodialysis patients: is there a critical relative blood volume?. Nephrology Dialysis Transplantation, 2004, 19, 1010-1011.	0.7	3
139	Evolution of volume sensitivity during hemodialysis and ultrafiltration. Clinical Autonomic Research, 2011, 21, 353-360.	2.5	3
140	Doppler tissue perfusion measurement is a sensitive and specific tool for a differentiation between malignant and inflammatory pancreatic tumors. PLoS ONE, 2019, 14, e0215944.	2.5	3
141	Amniodrainage-Induced Circulatory Dysfunction in Women Treated for Twin-To-Twin Transfusion Syndrome. Journal of Clinical Medicine, 2020, 9, 2085.	2.4	3
142	An improved method to estimate absolute blood volume based on dialysate dilution. Artificial Organs, 2021, 45, E359-E363.	1.9	3
143	Double Pool Urea Kinetic Modeling. Studies in Computational Intelligence, 2013, , 627-687.	0.9	3
144	Feasibility of Dialysate Bolus-Based Absolute Blood Volume Estimation in Maintenance Hemodialysis Patients. Frontiers in Medicine, 2022, 9, 801089.	2.6	3

#	Article	IF	CITATIONS
145	The blood to extracellular volume relationship is stable and in the physiologic range in chronic haemodialysis patients. Nephrology Dialysis Transplantation, 2022, 37, 2034-2036.	0.7	3
146	Influence of tonicity on the viscoelastic properties of blood during isovolemic dilution. Basic Research in Cardiology, 1987, 82, 388-395.	5.9	2
147	Noninvasive Assessment of Vascular Function. , 2005, 149, 306-314.		2
148	The Convertibility of Online Clearance Measurements. American Journal of Kidney Diseases, 2008, 52, 7-9.	1.9	2
149	Increase of HCV RNA concentration during hemodialysis treatment in patients with chronic hepatitis C. Journal of Clinical Virology, 2012, 54, 110-114.	3.1	2
150	Bile acid kinetic modeling in end-stage liver support patients. Biocybernetics and Biomedical Engineering, 2020, 40, 764-773.	5.9	2
151	Dynamics of vascular refilling in extended nocturnal hemodialysis. Hemodialysis International, 0, , .	0.9	2
152	Introduction: Issues in Cardiovascular Respiratory and Metabolic Control Modeling. Cardiovascular Engineering (Dordrecht, Netherlands), 2004, 4, 1-3.	1.0	1
153	On-Line Identification of Hemodynamic Variables by Dilution of Ultrapure Dialysate During Hemodialysis. Cardiovascular Engineering (Dordrecht, Netherlands), 2004, 4, 39-46.	1.0	1
154	Modeling Indicator Dispersion in Extracorporeal Blood Lines. International Journal of Artificial Organs, 2005, 28, 638-647.	1.4	1
155	Device and Technique for Extracorporeal Blood Volume Sequestration During Hemodialysis. ASAIO Journal, 2006, 52, 662-669.	1.6	1
156	SP492HEPATIC AND SYSTEMIC PERFUSION DURING PERITONEAL DIALYSIS. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	1
157	Supine equilibration of extracellular fluid in peritoneal dialysis varies with intra-abdominal pressure. Peritoneal Dialysis International, 2020, 40, 477-486.	2.3	1
158	ESTIMATION OF DRY BODY WEIGHT BY SEGMENTAL BIOIMPEDANCE ANALYSIS DURING HEMODIALYSIS. ASAIO Journal, 2000, 46, 221.	1.6	1
159	Power Spectra of Heart Rate Related to Hemodynamic Changes during Hemodialysis. Contributions To Nephrology, 1994, 106, 129-134.	1.1	0
160	On-line Measurement Of Blood Water Concentration In The Extracorporeal Circulation Of Hemodialysis Patients. , 0, , .		0
161	Dynamics Of Plasma Volume During Ultrafiltration Treatment. , 0, , .		0
162	Continuous measurement of segmental and whole body bio-impedance. , 0, , .		0

10

#	Article	IF	CITATIONS
163	EXERCISE AND EXTRACORPOREAL BLOOD COOLING DURING HEMODIALYSIS. ASAIO Journal, 1998, 44, 73A.	1.6	Ο
164	Estimation of volume of fluid in the peritoneal cavity by bioimpedance analysis. , 0, , .		0
165	Comparison of numerical methods applied to field stimulated cardiomyocytes. , 2005, 2005, 3889-90.		Ο
166	Extracorporeal Sensing Techniques. , 2005, 149, 35-41.		0
167	[Bookshelf]. IEEE Control Systems, 2009, 29, 129-131.	0.8	Ο
168	Access Flow Monitoring Methods. Studies in Computational Intelligence, 2013, , 305-345.	0.9	0
169	FP491DETERMINATION OF VASCULAR REFILLING VOLUME IN HAEMODIALYSIS. Nephrology Dialysis Transplantation, 2015, 30, iii235-iii236.	0.7	Ο
170	FP546WHICH IS THE CRITICAL ABSOLUTE BLOOD VOLUME FOR INTRADIALYTIC MORBID EVENTS?. Nephrology Dialysis Transplantation, 2015, 30, iii255-iii255.	0.7	0
171	The significance of blood- and plasma-density in hemorheology; its special implication in investigations with the OCR-D (Oscillating Capillary Rheometer and Densitymeter). Clinical Hemorheology and Microcirculation, 2016, 9, 319-322.	1.7	0
172	SP423INTRADIALYTIC MORBID EVENTS ARE NOT CAUSED BY REDUCED REFILLING. Nephrology Dialysis Transplantation, 2016, 31, i232-i232.	0.7	0
173	MP468IS THERE A DIFFERENT VOLUME DISTRIBUTION IN DIABETIC HAEMODIALYSIS PATIENTS?. Nephrology Dialysis Transplantation, 2016, 31, i497-i497.	0.7	0
174	TO002ADJUSTMENT OF DRY WEIGHT BASED ON ABSOLUTE BLOOD VOLUME REDUCES THE FREQUENCY OF INTRADIALYTIC MORBID EVENTS. Nephrology Dialysis Transplantation, 2017, 32, iii78-iii78.	0.7	0
175	SaO043FROM DRY WEIGHT TO TARGET BLOOD VOLUME: A NEW APPROACH TO AUTOMATED VOLUME MANAGEMENT IN HAEMODIALYSIS. Nephrology Dialysis Transplantation, 2018, 33, i333-i333.	0.7	0
176	SP564Double product in relation to body mass index, insulin resistance and hemodynamic response after intravenous glucose injection in patients with different glucose tolerance during hemodialysis. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
177	SuO015REDUCING INTRADIALYTIC COMPLICATIONS WITH AUTOMATED TARGET BLOOD VOLUME CONTROL. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
178	FP594DOES PERITONEAL DIALYSIS AFFECT BIOIMPEDANCE-BASED VOLUME ESTIMATION?. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
179	P1090DETERMINATION OF ABSOLUTE BLOOD VOLUME USING ONLINE DIALYSATE DILUTION: WHEN SHOULD BE MEASURED?. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0
180	P1091DYNAMICS OF VASCULAR REFILLING IN EXTENDED NOCTURNAL HAEMODIALYSIS. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0

0

#	Article	IF	CITATIONS
181	MO747AN ASSESSMENT OF COMPLEXITY OF CARDIOVASCULAR SIGNALS USING ENTROPY IN HEMODIALYSIS SESSION AND GLUCOSE INJECTION DURING HEMODIALYSIS IN END STAGE RENAL DISEASE PATIENTS WITH AND WITHOUT DIABETES MELLITUS TYPE 2. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0

182 10. Dialysetechnik. , 2014, , 243-288.