Tomohiro Umezu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453759/publications.pdf Version: 2024-02-01

Τομομιρο Πμεζιι

#	Article	IF	CITATIONS
1	Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 2014, 124, 3748-3757.	1.4	497
2	Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene, 2013, 32, 2747-2755.	5.9	403
3	Exosomes Derived from Hypoxic Leukemia Cells Enhance Tube Formation in Endothelial Cells. Journal of Biological Chemistry, 2013, 288, 34343-34351.	3.4	307
4	Clinical Impact of Down-Regulated Plasma miR-92a Levels in Non-Hodgkin's Lymphoma. PLoS ONE, 2011, 6, e16408.	2.5	86
5	Replenishing exosomes from older bone marrow stromal cells with miR-340 inhibits myeloma-related angiogenesis. Blood Advances, 2017, 1, 812-823.	5.2	75
6	Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer Journal, 2012, 2, e53-e53.	6.2	66
7	Exosomes promote bone marrow angiogenesis in hematologic neoplasia. Current Opinion in Hematology, 2016, 23, 268-273.	2.5	60
8	Impact on cell to plasma ratio of miR-92a in patients with acute leukemia: in vivo assessment of cell to plasma ratio of miR-92a. BMC Research Notes, 2010, 3, 347.	1.4	55
9	Clinical relevance of plasma miR-106b levels in patients with chronic obstructive pulmonary disease. International Journal of Molecular Medicine, 2013, 31, 533-539.	4.0	51
10	Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Molecular Therapy - Methods and Clinical Development, 2021, 21, 199-208.	4.1	46
11	Reconstruction of Oviduct and Demonstration of Epithelial Fate Determination in Mice1. Biology of Reproduction, 2010, 82, 528-533.	2.7	41
12	Lineage-specific RUNX2 super-enhancer activates MYC and promotes the development of blastic plasmacytoid dendritic cell neoplasm. Nature Communications, 2019, 10, 1653.	12.8	34
13	Downregulation of Plasma miR-215 in Chronic Myeloid Leukemia Patients with Successful Discontinuation of Imatinib. International Journal of Molecular Sciences, 2016, 17, 570.	4.1	31
14	Extracellular vesicle-mediated cell–cell communication in haematological neoplasms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160484.	4.0	30
15	Follistatin-like-1, a diffusible mesenchymal factor determines the fate of epithelium. Proceedings of the United States of America, 2010, 107, 4601-4606.	7.1	28
16	Reduced fertility with impairment of early-stage embryos observed in mice lacking Lgr4 in epithelial tissues. Fertility and Sterility, 2010, 94, 2878-2881.	1.0	27
17	Induction of multiple myeloma bone marrow stromal cell apoptosis by inhibiting extracellular vesicle miR-10a secretion. Blood Advances, 2019, 3, 3228-3240.	5.2	27
18	Constitutive activation of the ATM/BRCA1 pathway prevents DNA damage-induced apoptosis in 5-azacytidine-resistant cell lines. Biochemical Pharmacology, 2014, 89, 361-369.	4.4	22

#	Article	IF	CITATIONS
19	Downregulated microRNA-148b in circulating PBMCs in chronic myeloid leukemia patients with undetectable minimal residual disease: a possible biomarker to discontinue imatinib safely. Drug Design, Development and Therapy, 2014, 8, 1151.	4.3	17
20	Up-regulated exosomal miRNA-140-3p in CML patients with musculoskeletal pain associated with discontinuation of tyrosine kinase inhibitors. International Journal of Hematology, 2017, 105, 419-422.	1.6	17
21	Exosomal miRNA Signatures for Late-Onset Acute Graft-Versus-Host Disease in Allogenic Hematopoietic Stem Cell Transplantation. International Journal of Molecular Sciences, 2018, 19, 2493.	4.1	17
22	Characterization of newly established clonal oviductal cell lines and differential hormonal reculation of gene expression. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 146-156.	1.5	15
23	The <i><scp>BCL</scp>2L11</i> (<i><scp>BIM</scp></i>) deletion polymorphism is a possible criterion for discontinuation of imatinib in chronic myeloid leukaemia patients. British Journal of Haematology, 2013, 160, 269-271.	2.5	15
24	The C allele of JAK2 rs4495487 is an additional candidate locus that contributes to myeloproliferative neoplasm predisposition in the Japanese population. BMC Medical Genetics, 2012, 13, 6.	2.1	14
25	Detection method for quantifying global DNA methylation by fluorescence correlation spectroscopy. Analytical Biochemistry, 2011, 415, 145-150.	2.4	12
26	Comprehensive analysis of liver and blood miRNA in precancerous conditions. Scientific Reports, 2020, 10, 21766.	3.3	11
27	Genetic variations of bone marrow mesenchymal stromal cells derived from acute leukemia and myelodysplastic syndrome by targeted deep sequencing. Leukemia Research, 2017, 62, 23-28.	0.8	10
28	Effect of the extracellular component of bone marrow mesenchymal stromal cells from healthy donors on hematologic neoplasms and their angiogenesis. Human Cell, 2020, 33, 599-609.	2.7	10
29	An Evidence of Stromal Cell Populations Functionally Linked with Epithelial Cell Populations in the Mouse Oviduct. Zoological Science, 2004, 21, 319-326.	0.7	9
30	High Frequencies Of Switching To 2nd TKIs and Failure To Maintain Standard Imatinib Dose In Japanese CML Patients With BIM Genetic Variants. Blood, 2013, 122, 4021-4021.	1.4	9
31	Stratification of mouse vaginal epithelium. 1. Development of 3 dimensional models in vitro with clonal cell linesâ€. Biology of Reproduction, 2018, 99, 718-726.	2.7	8
32	Teriflunomide restores 5-azacytidine sensitivity via activation of pyrimidine salvage in 5-azacytidine-resistant leukemia cells. Oncotarget, 2017, 8, 69906-69915.	1.8	8
33	Predisposed genomic instability in pre-treatment bone marrow evolves to therapy-related myeloid neoplasms in malignant lymphoma. Haematologica, 2020, 105, e337-e339.	3.5	7
34	Comprehensive Gene Analysis of IgG4-Related Ophthalmic Disease Using RNA Sequencing. Journal of Clinical Medicine, 2020, 9, 3458.	2.4	6
35	Downregulation of extracellular vesicle microRNA‑101 derived from bone marrow mesenchymal stromal cells in myelodysplastic syndrome with disease progression. Oncology Letters, 2020, 19, 2053-2061.	1.8	5
36	Chromatin Regulation by HP1Î ³ Contributes to Survival of 5-Azacytidine-Resistant Cells. Frontiers in Pharmacology, 2018, 9, 1166.	3.5	4

Томоніго Имези

#	Article	IF	CITATIONS
37	Stratification of mouse vaginal epithelium 2. Identification of factors inducing stratificationâ€. Biology of Reproduction, 2018, 99, 727-734.	2.7	4
38	Lineage-Specific RUNX2 Super-Enhancer Activates MYC Via Translocation (6;8) to Promote the Development of Blastic Plasmacytoid Dendritic Cell Neoplasm. Blood, 2018, 132, 761-761.	1.4	4
39	Non-random chromosomal deletion clustering at 20q in Waldenström macroglobulinemia. Hematology, 2011, 16, 139-142.	1.5	3
40	Maintenance 5-azacytidine therapy by MRD monitoring after allogeneic HSCT in myeloid/lymphoid neoplasms with FGFR1 rearrangement. Bone Marrow Transplantation, 2019, 54, 1148-1150.	2.4	3
41	<p>A novel non-invasive monitoring assay of 5-azacitidine efficacy using global DNA methylation of peripheral blood in myelodysplastic syndrome</p> . Drug Design, Development and Therapy, 2019, Volume 13, 1821-1833.	4.3	3
42	BIM deletion polymorphism accounts for lack of favorable outcome in Japanese females with follicular lymphoma. Leukemia and Lymphoma, 2019, 60, 1283-1288.	1.3	3
43	BCL2L11 (BIM) Deletion Polymorphism Is Associated with Molecular Relapse after ABL Tyrosine Kinase Inhibitor Discontinuation in Patients with Chronic Myeloid Leukemia with Complete Molecular Response. Blood, 2014, 124, 1797-1797.	1.4	3
44	CHARACTERIZATION OF NEWLY ESTABLISHED CLONAL OVIDUCTAL CELL LINES AND DIFFERENTIAL HORMONAL REGULATION OF GENE EXPRESSION. In Vitro Cellular and Developmental Biology - Animal, 2003, 39, 146.	1.5	2
45	Hidden <i>FLT3</i> -D835Y clone in <i>FLT3</i> -ITD-positive acute myeloid leukemia that evolved into very late relapse with T-lymphoblastic leukemia. Leukemia and Lymphoma, 2018, 59, 1490-1493.	1.3	2
46	Plasma Mir-92a Levels in Multiple Myeloma Correlate with T-Cell-Derived Mir-92a and Restored in Bortezomib Responder. Blood, 2011, 118, 2871-2871.	1.4	1
47	Lower Plasma Mir-92a Levels Predict Shorter Progression-Free Survival In Newly Diagnosed Symptomatic Multiple Myeloma Patients. Blood, 2013, 122, 1879-1879.	1.4	1
48	Therapeutic Potential Of Targeting Sphingosine-1-Phosuphate and Sphingosine Kinases In Multiple Myeloma. Blood, 2013, 122, 1894-1894.	1.4	1
49	Clonal Evolution of Therapy-Related Myeloid Neoplasm Analyzed Sequentially By Targeted Deep Sequencing Using Bone Marrow Cells. Blood, 2018, 132, 5525-5525.	1.4	0