Michel Loreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2453090/publications.pdf

Version: 2024-02-01

237 papers

33,982 citations

76 h-index 4338 173 g-index

246 all docs

246 docs citations

times ranked

246

27490 citing authors

#	Article	IF	CITATIONS
1	Expert perspectives on global biodiversity loss and its drivers and impacts on people. Frontiers in Ecology and the Environment, 2023, 21, 94-103.	1.9	49
2	A graphical causal model for resolving species identity effects and biodiversity–ecosystem function correlations: comment. Ecology, 2022, 103, e03378.	1.5	3
3	Phytoplankton diversity affects biomass and energy production differently during community development. Functional Ecology, 2022, 36, 446-457.	1.7	9
4	Nutrient cycling and selfâ€regulation determine food web stability. Functional Ecology, 2022, 36, 202-213.	1.7	2
5	Habitat percolation transition undermines sustainability in socialâ€ecological agricultural systems. Ecology Letters, 2022, 25, 163-176.	3.0	4
6	The hidden role of multiâ€trophic interactions in driving diversity–productivity relationships. Ecology Letters, 2022, 25, 405-415.	3.0	16
7	Human–nature connectedness as a pathway to sustainability: A global metaâ€analysis. Conservation Letters, 2022, 15, e12852.	2.8	59
8	Do not downplay biodiversity loss. Nature, 2022, 601, E27-E28.	13.7	17
9	Multispecies forest plantations outyield monocultures across a broad range of conditions. Science, 2022, 376, 865-868.	6.0	107
10	Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Global Change Biology, 2021, 27, 257-269.	4.2	21
11	Context-dependency of tree species diversity, trait composition and stand structural attributes regulate temperate forest multifunctionality. Science of the Total Environment, 2021, 757, 143724.	3.9	19
12	Can biomass distribution across trophic levels predict trophic cascades?. Ecology Letters, 2021, 24, 464-476.	3.0	9
13	Unequal access to resources undermines global sustainability. Science of the Total Environment, 2021, 763, 142981.	3.9	6
14	Scaling up biodiversity–ecosystem functioning relationships: the role of environmental heterogeneity in space and time. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202779.	1.2	24
15	A macroâ€ecological approach to predation densityâ€dependence. Oikos, 2021, 130, 553-570.	1.2	7
16	Divergent above―and belowâ€ground biodiversity pathways mediate disturbance impacts on temperate forest multifunctionality. Global Change Biology, 2021, 27, 2883-2894.	4.2	30
17	Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony. Ecology, 2021, 102, e03332.	1.5	74
18	Consistently positive effect of species diversity on ecosystem, but not population, temporal stability. Ecology Letters, 2021, 24, 2256-2266.	3.0	56

#	Article	IF	CITATIONS
19	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
20	General statistical scaling laws for stability in ecological systems. Ecology Letters, 2021, 24, 1474-1486.	3.0	32
21	How complementarity and selection affect the relationship between ecosystem functioning and stability. Ecology, 2021, 102, e03347.	1.5	38
22	Synchrony and Perturbation Transmission in Trophic Metacommunities. American Naturalist, 2021, 197, E188-E203.	1.0	8
23	Biodiversity as insurance: from concept to measurement and application. Biological Reviews, 2021, 96, 2333-2354.	4.7	101
24	Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11, 543-550.	8.1	77
25	Scaleâ€dependent shifts in functional and phylogenetic structure of Mediterranean island plant communities over two centuries. Journal of Ecology, 2021, 109, 3513.	1.9	5
26	Consistent functional clusters explain the effects of biodiversity on ecosystem productivity in a longâ€ŧerm experiment. Ecology, 2021, 102, e03441.	1.5	6
27	Tree species diversity enhances plant-soil interactions in a temperate forest in northeast China. Forest Ecology and Management, 2021, 491, 119160.	1.4	10
28	Habitat fragmentation and food security in crop pollination systems. Journal of Ecology, 2021, 109, 2991-3006.	1.9	9
29	Universal scaling of robustness of ecosystem services to species loss. Nature Communications, 2021, 12, 5167.	5.8	19
30	Metapopulation capacity determines food chain length in fragmented landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
31	Predator avoidance and foraging for food shape synchrony and response to perturbations in trophic metacommunities. Journal of Theoretical Biology, 2021, 528, 110836.	0.8	8
32	Fingerprints of High-Dimensional Coexistence in Complex Ecosystems. Physical Review X, 2021, 11, .	2.8	18
33	Grand challenges in biodiversity–ecosystem functioning research in the era of science–policy platforms require explicit consideration of feedbacks. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210783.	1.2	8
34	Towards an integrative understanding of soil biodiversity. Biological Reviews, 2020, 95, 350-364.	4.7	97
35	Reconciling biodiversity conservation, food production and farmers' demand in agricultural landscapes. Ecological Modelling, 2020, 416, 108889.	1.2	31
36	Agricultural land use and the sustainability of social-ecological systems. Ecological Modelling, 2020, 437, 109312.	1.2	25

#	Article	IF	Citations
37	General destabilizing effects of eutrophication on grassland productivity at multiple spatial scales. Nature Communications, 2020, 11, 5375.	5.8	7 5
38	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
39	How community adaptation affects biodiversity–ecosystem functioning relationships. Ecology Letters, 2020, 23, 1263-1275.	3.0	25
40	Above―and belowâ€ground biodiversity jointly regulate temperate forest multifunctionality along a localâ€scale environmental gradient. Journal of Ecology, 2020, 108, 2012-2024.	1.9	74
41	Community efficiency during succession: a test of MacArthur's minimization principle in phytoplankton communities. Ecology, 2020, 101, e03015.	1.5	4
42	Scalingâ€up biodiversityâ€ecosystem functioning research. Ecology Letters, 2020, 23, 757-776.	3.0	270
43	Disentangling local, metapopulation, and crossâ€community sources of stabilization and asynchrony in metacommunities. Ecosphere, 2020, 11, e03078.	1.0	23
44	Why do forests respond differently to nitrogen deposition? A modelling approach. Ecological Modelling, 2020, 425, 109034.	1.2	6
45	Ecotone formation through ecological niche construction: the role of biodiversity and species interactions. Ecography, 2020, 43, 714-723.	2.1	15
46	How to estimate complementarity and selection effects from an incomplete sample of species. Methods in Ecology and Evolution, 2019, 10, 2141-2152.	2.2	20
47	The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecology Letters, 2019, 22, 1557-1567.	3.0	57
48	Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nature Communications, 2019, 10, 3207.	5.8	59
49	Nutrient-induced shifts of dominant species reduce ecosystem stability via increases in species synchrony and population variability. Science of the Total Environment, 2019, 692, 441-449.	3.9	32
50	Measuring resilience is essential to understand it. Nature Sustainability, 2019, 2, 895-897.	11.5	76
51	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
52	Temporal stability of aboveground biomass is governed by species asynchrony in temperate forests. Ecological Indicators, 2019, 107, 105661.	2.6	23
53	Linking scaling laws across eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21616-21622.	3.3	95
54	Superorganisms or loose collections of species? A unifying theory of community patterns along environmental gradients. Ecology Letters, 2019, 22, 1243-1252.	3.0	52

#	Article	IF	Citations
55	Not even wrong: Comment by Loreau and Hector. Ecology, 2019, 100, e02794.	1.5	13
56	Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography, 2019, 42, 1200-1211.	2.1	89
57	An ecological theory of changing human population dynamics. People and Nature, 2019, 1, 31-43.	1.7	25
58	Seasonal patterns in species diversity across biomes. Ecology, 2019, 100, e02627.	1.5	21
59	Broadly inflicted stressors can cause ecosystem thinning. Theoretical Ecology, 2019, 12, 207-223.	0.4	2
60	Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests. Ecology, 2019, 100, e02650.	1.5	66
61	Tradeâ€offs in the provisioning and stability of ecosystem services in agroecosystems. Ecological Applications, 2019, 29, e01853.	1.8	38
62	Spatial evolutionary dynamics produce a negative cooperation–population size relationship. Theoretical Population Biology, 2019, 125, 94-101.	0.5	7
63	Pyramids and cascades: a synthesis of food chain functioning and stability. Ecology Letters, 2019, 22, 405-419.	3.0	68
64	The three regimes of spatial recovery. Ecology, 2019, 100, e02586.	1.5	31
65	Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology Letters, 2019, 22, 563-571.	3.0	75
66	The mechanics of predator–prey interactions: First principles of physics predict predator–prey size ratios. Functional Ecology, 2019, 33, 323-334.	1.7	52
67	Ecological autocatalysis: a central principle in ecosystem organization?. Ecological Monographs, 2018, 88, 304-319.	2.4	32
68	Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecology Letters, 2018, 21, 763-778.	3.0	157
69	Abiotic and biotic determinants of coarse woody productivity in temperate mixed forests. Science of the Total Environment, 2018, 630, 422-431.	3.9	49
70	Do we have to choose between feeding the human population and conserving nature? Modelling the global dependence of people on ecosystem services. Science of the Total Environment, 2018, 634, 1463-1474.	3.9	48
71	Generic assembly patterns in complex ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2156-2161.	3.3	141
72	Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biological Conservation, 2018, 219, 175-183.	1.9	127

#	Article	IF	CITATIONS
73	The relationship between the spatial scaling of biodiversity and ecosystem stability. Global Ecology and Biogeography, 2018, 27, 439-449.	2.7	30
74	An a posteriori species clustering for quantifying the effects of species interactions on ecosystem functioning. Methods in Ecology and Evolution, 2018, 9, 704-715.	2.2	12
75	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	4.7	203
76	Scale dependence of the diversity–stability relationship in a temperate grassland. Journal of Ecology, 2018, 106, 1277-1285.	1.9	33
77	Stability trophic cascades in food chains. Royal Society Open Science, 2018, 5, 180995.	1.1	22
78	Habitat choice meets thermal specialization: Competition with specialists may drive suboptimal habitat preferences in generalists. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11988-11993.	3.3	50
79	The Impact of Spatial and Temporal Dimensions of Disturbances on Ecosystem Stability. Frontiers in Ecology and Evolution, 2018, 6, 224.	1.1	38
80	Species dispersal and biodiversity in human-dominated metacommunities. Journal of Theoretical Biology, 2018, 457, 199-210.	0.8	10
81	Testing MacArthur's minimisation principle: do communities minimise energy wastage during succession?. Ecology Letters, 2018, 21, 1182-1190.	3.0	8
82	Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances. Annals of Forest Science, 2018, 75, 1.	0.8	72
83	Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 2018, 188, 183-192.	0.9	74
84	A combinatorial analysis using observational data identifies species that govern ecosystem functioning. PLoS ONE, 2018, 13, e0201135.	1.1	6
85	How ecological feedbacks between human population and land cover influence sustainability. PLoS Computational Biology, 2018, 14, e1006389.	1.5	22
86	The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180038.	1.2	82
87	Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology, 2017, 98, 971-981.	1.5	43
88	Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 2017, 31, 1637-1646.	1.7	71
89	Diversity spurs diversification in ecological communities. Nature Communications, 2017, 8, 15810.	5.8	133
90	An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nature Communications, 2017, 8, 15211.	5.8	61

#	Article	IF	CITATIONS
91	Linking the influence and dependence of people on biodiversity across scales. Nature, 2017, 546, 65-72.	13.7	474
92	Connecting models, data, and concepts to understand fragmentation's ecosystemâ€wide effects. Ecography, 2017, 40, 1-8.	2.1	137
93	Breaking Through Ecosystem Boundaries. Bulletin of the Ecological Society of America, 2017, 98, 95-98.	0.2	2
94	Defector clustering is linked to cooperation in a pathogenic bacterium. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172001.	1.2	12
95	Relationships among ecological traits of wild bee communities along gradients of habitat amount and fragmentation. Ecography, 2017, 40, 85-97.	2.1	74
96	Spatial ecological networks: planning for sustainability in the long-term. Current Opinion in Environmental Sustainability, 2017, 29, 187-197.	3.1	46
97	Soil fauna: key to new carbon models. Soil, 2016, 2, 565-582.	2.2	149
98	Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 2016, 22, 1445-1455.	4.2	139
99	Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 2016, 19, 510-518.	3.0	213
100	Understanding the value of plant diversity for ecosystem functioning through niche theory. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160536.	1.2	96
101	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	1.8	169
102	Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia, 2016, 182, 1175-1185.	0.9	48
103	Ecological constraints increase the climatic debt in forests. Nature Communications, 2016, 7, 12643.	5.8	108
104	Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles. Ecological Modelling, 2016, 334, 1-7.	1.2	0
105	Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity. Ecology, 2016, 97, 1949-1960.	1.5	224
106	Size-related effects of physical factors on phytoplankton communities. Ecological Modelling, 2016, 323, 41-50.	1.2	16
107	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	2.8	203
108	REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 2015, 52, 1293-1310.	1.9	237

#	Article	IF	CITATIONS
109	Emergence of nutrient coâ€limitation through movement in stoichiometric metaâ€ecosystems. Ecology Letters, 2015, 18, 1163-1173.	3.0	36
110	Robustness of mutualistic networks under phenological change and habitat destruction. Oikos, 2015, 124, 22-32.	1.2	38
111	Local densities connect spatial ecology to game, multilevel selection and inclusive fitness theories of cooperation. Journal of Theoretical Biology, 2015, 380, 414-425.	0.8	10
112	Patchiness in a microhabitat chip affects evolutionary dynamics of bacterial cooperation. Lab on A Chip, 2015, 15, 3723-3729.	3.1	6
113	Biodiversity, productivity, and the spatial insurance hypothesis revisited. Journal of Theoretical Biology, 2015, 380, 426-435.	0.8	41
114	Modeling the direct and indirect effects of copper on phytoplankton–zooplankton interactions. Aquatic Toxicology, 2015, 162, 73-81.	1.9	27
115	Can Organisms Regulate Global Biogeochemical Cycles?. Ecosystems, 2015, 18, 813-825.	1.6	4
116	Regulation of Redfield ratios in the deep ocean. Global Biogeochemical Cycles, 2015, 29, 254-266.	1.9	14
117	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
118	The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science, 2015, 349, aac6284.	6.0	235
119	A Graphical-Mechanistic Approach to Spatial Resource Competition. American Naturalist, 2015, 185, E1-E13.	1.0	14
120	The biodiversityâ€dependent ecosystem service debt. Ecology Letters, 2015, 18, 119-134.	3.0	146
121	Dispersal and metapopulation stability. PeerJ, 2015, 3, e1295.	0.9	41
122	Meta-ecosystem dynamics and functioning on finite spatial networks. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132094.	1.2	49
123	(A bit) Earlier or later is always better: Phenological shifts in consumer–resource interactions. Theoretical Ecology, 2014, 7, 149-162.	0.4	25
124	General relationships between consumer dispersal, resource dispersal and metacommunity diversity. Ecology Letters, 2014, 17, 175-184.	3.0	52
125	Ecosystem stability in space: \hat{l}_{\pm} , \hat{l}^2 and \hat{l}^3 variability. Ecology Letters, 2014, 17, 891-901.	3.0	200
126	Differential responses of sizeâ€based functional groups to bottom–up and top–down perturbations in pelagic food webs: a metaâ€analysis. Oikos, 2014, 123, 1291-1300.	1.2	34

#	Article	IF	CITATIONS
127	Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology, 2014, 95, 2479-2492.	1.5	178
128	Species Richness and the Temporal Stability of Biomass Production: A New Analysis of Recent Biodiversity Experiments. American Naturalist, 2014, 183, 1-12.	1.0	309
129	Human impacts on minimum subsets of species critical for maintaining ecosystem structure. Basic and Applied Ecology, 2013, 14, 623-629.	1.2	3
130	Beyond shading: Litter production by neighbors contributes to overyielding in tropical trees. Ecology, 2013, 94, 941-952.	1.5	25
131	Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 2013, 16, 106-115.	3.0	780
132	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	3.0	251
133	Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122453.	1.2	59
134	Unifying sources and sinks in ecology andÂ <scp>E</scp> arth sciences. Biological Reviews, 2013, 88, 365-379.	4.7	85
135	Evolution of Dispersal in a Predator-Prey Metacommunity. American Naturalist, 2012, 179, 204-216.	1.0	24
136	Niche and fitness differences relate the maintenance of diversity to ecosystem function: comment. Ecology, 2012, 93, 1482-1487.	1.5	58
137	Biodiversity loss and its impact on humanity. Nature, 2012, 486, 59-67.	13.7	4,969
138	Interactive effects of nutrient enrichment and the manipulation of intermediate hosts by parasites on infection prevalence and food web structure. Ecological Modelling, 2012, 228, 1-7.	1.2	3
139	Dynamics of Reciprocal Pulsed Subsidies in Local and Meta-Ecosystems. Ecosystems, 2012, 15, 48-59.	1.6	69
140	Metacommunity theory explains the emergence of food web complexity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19293-19298.	3.3	149
141	High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477, 199-202.	13.7	1,195
142	Niche construction in the light of niche theory. Ecology Letters, 2011, 14, 82-90.	3.0	97
143	A food web perspective on large herbivore community limitation. Ecography, 2011, 34, 196-202.	2.1	40
144	Emergence and maintenance of biodiversity in an evolutionary food-web model. Theoretical Ecology, 2011, 4, 467-478.	0.4	73

#	Article	IF	CITATIONS
145	A mathematical synthesis of niche and neutral theories in community ecology. Journal of Theoretical Biology, 2011, 269, 150-165.	0.8	87
146	Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. PLoS Biology, 2011, 9, e1000606.	2.6	249
147	Consumerâ€mediated recycling and cascading trophic interactions. Ecology, 2010, 91, 2162-2171.	1.5	42
148	Density-dependent dispersal and relative dispersal affect the stability of predator–prey metacommunities. Journal of Theoretical Biology, 2010, 266, 458-469.	0.8	47
149	A patch-dynamic framework for food web metacommunities. Theoretical Ecology, 2010, 3, 223-237.	0.4	59
150	Nutrient flows between ecosystems can destabilize simple food chains. Journal of Theoretical Biology, 2010, 266, 162-174.	0.8	37
151	Cascading extinctions, functional complementarity, and selection in two-trophic-level model communities: A trait-based mechanistic approach. Journal of Theoretical Biology, 2010, 267, 375-387.	0.8	4
152	Towards a more biologically realistic use of Droop's equations to model growth under multiple nutrient limitation. Oikos, 2010, 119, 897-907.	1.2	31
153	Source and sink dynamics in metaâ€ecosystems. Ecology, 2010, 91, 2172-2184.	1.5	122
154	Patch Dynamics, Persistence, and Species Coexistence in Metaecosystems. American Naturalist, 2010, 176, 289-302.	1.0	66
155	Linking biodiversity and ecosystems: towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 49-60.	1.8	349
156	From Populations to Ecosystems. , 2010, , .		298
157	Disentangling multiple predator effects in biodiversity and ecosystem functioning research. Journal of Animal Ecology, 2009, 78, 695-698.	1.3	6
158	Trivial and nonâ€ŧrivial applications of entropy maximization in ecology: a reply to Shipley. Oikos, 2009, 118, 1270-1278.	1.2	17
159	Dynamics of a three-species food chain model with adaptive traits. Chaos, Solitons and Fractals, 2009, 41, 2812-2819.	2.5	27
160	When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 487-497.	1.2	35
161	Effects of biodiversity on the functioning of ecosystems: a summary of 164 experimental manipulations of species richness. Ecology, 2009, 90, 854-854.	1.5	36
162	The Causes and Consequences of Compensatory Dynamics in Ecological Communities. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 393-414.	3.8	388

#	Article	IF	Citations
163	Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning., 2009,, 134-146.		45
164	Limitations of entropy maximization in ecology. Oikos, 2008, 117, 1700-1710.	1.2	52
165	Light partitioning in experimental grass communities. Oikos, 2008, 117, 1351-1361.	1.2	70
166	Ecological and evolutionary consequences of niche construction for its agent. Ecology Letters, 2008, 11, 1072-1081.	3.0	110
167	Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 2008, 11, 1147-1156.	3.0	235
168	Biodiversity and Ecosystem Functioning: The Mystery of the Deep Sea. Current Biology, 2008, 18, R126-R128.	1.8	45
169	Nontrophic Interactions, Biodiversity, and Ecosystem Functioning: An Interaction Web Model. American Naturalist, 2008, 171, 91-106.	1.0	98
170	Species Synchrony and Its Drivers: Neutral and Nonneutral Community Dynamics in Fluctuating Environments. American Naturalist, 2008, 172, E48-E66.	1.0	488
171	Evolution of Local Facilitation in Arid Ecosystems. American Naturalist, 2008, 172, E1-E17.	1.0	60
172	Biodiversity effects and transgressive overyielding. Journal of Plant Ecology, 2008, 1, 95-102.	1.2	160
173	From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 871-876.	1.2	375
174	Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos, 2007, 116, 163-173.	1.2	85
175	Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18123-18128.	3.3	1,175
176	Local facilitation, bistability and transitions in arid ecosystems. Theoretical Population Biology, 2007, 71, 367-379.	0.5	149
177	Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 2007, 10, 54-62.	3.0	189
178	The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 2007, 10, 522-538.	3.0	808
179	Intra- and interspecific density-dependent dispersal in an aquatic prey?predator system. Journal of Animal Ecology, 2007, 76, 552-558.	1.3	66
180	Nutrient-limited food webs with up to three trophic levels: Feasibility, stability, assembly rules, and effects of nutrient enrichment. Theoretical Population Biology, 2006, 69, 48-66.	0.5	15

#	Article	IF	CITATIONS
181	Evolution of body size in food webs: does the energetic equivalence rule hold?. Ecology Letters, 2006, 9, 171-178.	3.0	67
182	Diversity without representation. Nature, 2006, 442, 245-246.	13.7	139
183	The relationship between biodiversity and ecosystem functioning in food webs. Ecological Research, 2006, 21, 17-25.	0.7	121
184	RECONCILING EMPIRICAL ECOLOGY WITH NEUTRAL COMMUNITY MODELS. Ecology, 2006, 87, 1370-1377.	1.5	87
185	Understanding mutualism when there is adaptation to the partner. Journal of Ecology, 2005, 93, 305-314.	1.9	94
186	Evolutionary emergence of size-structured food webs. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5761-5766.	3.3	297
187	Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLoS Biology, 2005, 4, e1.	2.6	438
188	Biodiversity Science Evolves. Science, 2005, 310, 943-943.	6.0	17
189	Trophic Interactions and the Relationship between Species Diversity and Ecosystem Stability. American Naturalist, 2005, 166, E95-E114.	1.0	154
190	Spatial Flows and the Regulation of Ecosystems. American Naturalist, 2004, 163, 606-615.	1.0	112
191	Does functional redundancy exist?. Oikos, 2004, 104, 606-611.	1.2	340
192	Nutrient enrichment and food chains: can evolution buffer top-down control?. Theoretical Population Biology, 2004, 65, 285-298.	0.5	50
193	Immigration and local competition in herbaceous plant communities: a three-year seed-sowing experiment. Oikos, 2004, 104, 77-90.	1.2	79
194	Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters, 2003, 6, 673-679.	3.0	527
195	Community Patterns in Sourceâ€Sink Metacommunities. American Naturalist, 2003, 162, 544-557.	1.0	827
196	Biodiversity as spatial insurance in heterogeneous landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12765-12770.	3.3	805
197	Food-web constraints on biodiversity-ecosystem functioning relationships. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14949-14954.	3.3	253
198	Foraging activity of the carabid beetle Pterostichus melanarius Ill. in field margin habitats. Agriculture, Ecosystems and Environment, 2002, 89, 253-259.	2.5	24

#	Article	IF	CITATIONS
199	Spatial structure and the survival of an inferior competitor: a theoretical model of neighbourhood competition in plants. Ecological Modelling, 2002, 158, 1-19.	1.2	37
200	Consequences of Plant-Herbivore Coevolution on the Dynamics and Functioning of Ecosystems. Journal of Theoretical Biology, 2002, 217, 369-381.	0.8	42
201	Plant species richness and community productivity: why the mechanism that promotes coexistence matters. Ecology Letters, 2002, 5, 56-65.	3.0	199
202	Overyielding in grassland communities: testing the sampling effect hypothesis with replicated biodiversity experiments. Ecology Letters, 2002, 5, 502-511.	3.0	258
203	Activity and satiation state in Pterostichus melanarius : an experiment in different agricultural habitats. Ecological Entomology, 2001, 26, 235-244.	1.1	22
204	Succession in mixed boreal forest of Russia: Markov models and non-Markov effects. Ecological Modelling, 2001, 142, 25-38.	1.2	34
205	Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation?. Ecology Letters, 2001, 4, 196-206.	3.0	67
206	Interactions between algae and the microbial loop in experimental microcosms. Oikos, 2001, 95, 231-238.	1.2	21
207	Title is missing!. Landscape Ecology, 2001, 16, 17-32.	1.9	77
208	Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412, 72-76.	13.7	2,493
208	Partitioning selection and complementarity in biodiversity experiments. Nature, 2001, 412, 72-76. Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309.	13.7	2,493 170
	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical		
209	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309. ECOLOGICAL STOICHIOMETRY, PRIMARY PRODUCER–DECOMPOSER INTERACTIONS, AND ECOSYSTEM	1.2	170
209	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309. ECOLOGICAL STOICHIOMETRY, PRIMARY PRODUCER–DECOMPOSER INTERACTIONS, AND ECOSYSTEM PERSISTENCE. Ecology, 2001, 82, 3069-3082. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology	1.2	170
209 210 211	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309. ECOLOGICAL STOICHIOMETRY, PRIMARY PRODUCER–DECOMPOSER INTERACTIONS, AND ECOSYSTEM PERSISTENCE. Ecology, 2001, 82, 3069-3082. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology Letters, 2000, 3, 73-76.	1.2 1.5 3.0	170 110 413
209 210 211 212	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309. ECOLOGICAL STOICHIOMETRY, PRIMARY PRODUCER–DECOMPOSER INTERACTIONS, AND ECOSYSTEM PERSISTENCE. Ecology, 2001, 82, 3069-3082. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology Letters, 2000, 3, 73-76. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 2000, 91, 3-17.	1.2 1.5 3.0	170 110 413 767
209 210 211 212 213	Microbial diversity, producer–decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 303-309. ECOLOGICAL STOICHIOMETRY, PRIMARY PRODUCER–DECOMPOSER INTERACTIONS, AND ECOSYSTEM PERSISTENCE. Ecology, 2001, 82, 3069-3082. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology Letters, 2000, 3, 73-76. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, 2000, 91, 3-17. Functional diversity governs ecosystem response to nutrient enrichment. Nature, 2000, 405, 340-344. Community composition and size structure of murid rodents in relation to the biogeography of the	1.2 1.5 3.0 1.2	170 110 413 767 264

#	Article	IF	CITATIONS
217	Incisor size and community structure in rodents: Two tests of the role of competition. Acta Oecologica, 1999, 20, 93-101.	0.5	28
218	Diversitas: an international programme of biodiversity science. Trends in Ecology and Evolution, 1999, 14, 2-3.	4.2	9
219	Phenotypic Diversity and Stability of Ecosystem Processes. Theoretical Population Biology, 1999, 56, 29-47.	0.5	90
220	Transcending boundaries in biodiversity research. Trends in Ecology and Evolution, 1998, 13, 134-135.	4.2	13
221	Separating Sampling and Other Effects in Biodiversity Experiments. Oikos, 1998, 82, 600.	1.2	382
222	Ecosystem development explained by competition within and between material cycles. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 33-38.	1.2	83
223	GRAZING OPTIMIZATION AND NUTRIENT CYCLING: WHEN DO HERBIVORES ENHANCE PLANT PRODUCTION?. Ecology, 1998, 79, 2242-2252.	1.5	246
224	Source–Sink Dynamics and the Coexistence of Species on a Single Resource. Theoretical Population Biology, 1997, 51, 79-93.	0.5	19
225	Relationships beetween the regional distribution of carabid beetles (Coleoptera, Carabidae) and the abundance of their potential prey. Acta Oecologica, 1997, 18, 465-483.	0.5	55
226	Title is missing!. Acta Oecologica, 1997, 18, 715-716.	0.5	0
226	Title is missing!. Acta Oecologica, 1997, 18, 715-716. Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188.	0.5	33
	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community		
227	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188. Consumers as Maximizers of Matter and Energy Flow in Ecosystems. American Naturalist, 1995, 145,	0.9	33
227	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188. Consumers as Maximizers of Matter and Energy Flow in Ecosystems. American Naturalist, 1995, 145, 22-42. Comparison of Iso-enzyme Electrophoresis and Gut Content Examination for Determining the Natural Diet of the Groundbeetle Species Abax ater (Coleoptera: Carabidae). Entomologia Generalis, 1995, 19,	0.9	136
227 228 229	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188. Consumers as Maximizers of Matter and Energy Flow in Ecosystems. American Naturalist, 1995, 145, 22-42. Comparison of Iso-enzyme Electrophoresis and Gut Content Examination for Determining the Natural Diet of the Groundbeetle Species Abax ater (Coleoptera: Carabidae). Entomologia Generalis, 1995, 19, 253-259. Mass and Energy Flow in Closed Ecosystems: Do Ecological or Mathematical Constraints Prevail?.	0.9 1.0 1.1	33 136 17
227 228 229 230	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188. Consumers as Maximizers of Matter and Energy Flow in Ecosystems. American Naturalist, 1995, 145, 22-42. Comparison of Iso-enzyme Electrophoresis and Gut Content Examination for Determining the Natural Diet of the Groundbeetle Species Abax ater (Coleoptera: Carabidae). Entomologia Generalis, 1995, 19, 253-259. Mass and Energy Flow in Closed Ecosystems: Do Ecological or Mathematical Constraints Prevail?. Journal of Theoretical Biology, 1994, 168, 237-243.	0.9 1.0 1.1 0.8	33 136 17 4
227 228 229 230	Coexistence of multiple food chains in a heterogeneous environment: Interactions among community structure, ecosystem functioning, and nutrient dynamics. Mathematical Biosciences, 1996, 134, 153-188. Consumers as Maximizers of Matter and Energy Flow in Ecosystems. American Naturalist, 1995, 145, 22-42. Comparison of Iso-enzyme Electrophoresis and Gut Content Examination for Determining the Natural Diet of the Groundbeetle Species Abax ater (Coleoptera: Carabidae). Entomologia Generalis, 1995, 19, 253-259. Mass and Energy Flow in Closed Ecosystems: Do Ecological or Mathematical Constraints Prevail?. Journal of Theoretical Biology, 1994, 168, 237-243. Material Cycling and the Stability of Ecosystems. American Naturalist, 1994, 143, 508-513. Time scale of resource dynamics and coexistence through time partitioning. Theoretical Population	0.9 1.0 1.1 0.8	33 136 17 4

MICHEL LOREAU

#	Article	IF	CITATIONS
235	GROWTH AND DEMOGRAPHY OF POPULATIONS OF BIOMPHALARIA PFEIFFERI (GASTROPODA, PLANORBIDAE) IN THE LABORATORY. Journal of Molluscan Studies, 1987, 53, 171-177.	0.4	17
236	Annual activity and life cycles of carabid beetles in two forest communities. Ecography, 1985, 8, 228-235.	2.1	25
237	Synchrony and Stability in Trophic Metacommunities: When Top Predators Navigate in a Heterogeneous World. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	4