Mitsuharu Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452475/publications.pdf

Version: 2024-02-01

430874 330143 1,546 75 18 37 citations h-index g-index papers 79 79 79 2560 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 2014, 136, 8863-8866.	13.7	369
2	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2016, 138, 8352-8355.	13.7	186
3	Rewritable Multilevel Memory Performance of a Tetraazatetracene Donor–Acceptor Derivative with Good Endurance. Chemistry - an Asian Journal, 2015, 10, 116-119.	3.3	65
4	Synthesis and photoreactivity of \hat{l}_{\pm} -diketone-type precursors of acenes and their use in organic-device fabrication. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 18, 50-70.	11.6	62
5	An Azuleneâ€Fused Tetracene Diimide with a Small HOMO–LUMO Gap. ChemPlusChem, 2017, 82, 1010-1014.	2.8	45
6	Directing the Crystallization of Dehydro [24] annulenes into Supramolecular Nanotubular Scaffolds. Journal of the American Chemical Society, 2016, 138, 5939-5956.	13.7	37
7	Complexes of Gold(I), Silver(I), and Copper(I) with Pentaaryl[60]fullerides. Journal of the American Chemical Society, 2011, 133, 6841-6851.	13.7	36
8	Nanochannel Array within a Multilayered Network of a Planarized Dehydro [24] annulene. Organic Letters, 2010, 12, 2346-2349.	4.6	34
9	High-fidelity self-assembly pathways for hydrogen-bonding molecular semiconductors. Scientific Reports, 2017, 7, 43098.	3.3	34
10	Synthesis and electropolymerization of fullerene–terthiophene dyads. Organic and Biomolecular Chemistry, 2003, 1, 2624-2625.	2.8	33
11	Direct comparison of a covalently-linked dyad and a 1 : 1 mixture of tetrabenzoporphyrin and fullerene as organic photovoltaic materials. Chemical Communications, 2014, 50, 10379.	4.1	33
12	Side-chain engineering in a thermal precursor approach for efficient photocurrent generation. Journal of Materials Chemistry A, 2017, 5, 14003-14011.	10.3	29
13	Tetrabenzoperipentacene: Stable Fiveâ€Electron Donating Ability and a Discrete Tripleâ€Layered βâ€Graphite Form in the Solid State. Angewandte Chemie - International Edition, 2015, 54, 8175-8178.	13.8	28
14	An Anomalous Antiaromaticity That Arises from the Cycloheptatrienyl Anion Equivalent. European Journal of Organic Chemistry, 2018, 2018, 4508-4511.	2.4	28
15	Structure of the Hydration Product of the C60-Di(2-pyridyl)-1,2,4,5-tetrazine Adduct. Bulletin of the Chemical Society of Japan, 2003, 76, 1669-1672.	3.2	27
16	An Optically and Thermally Switchable Electronic Structure Based on an Anthracene–BODIPY Conjugate. Chemistry - A European Journal, 2015, 21, 4966-4974.	3.3	26
17	Synthesis and Morphological Control of Organic Semiconducting Materials Using the Precursor Approach. Bulletin of the Chemical Society of Japan, 2020, 93, 1234-1267.	3.2	26
18	Photoprecursor approach as an effective means for preparing multilayer organic semiconducting thin films by solution processes. Scientific Reports, 2014, 4, 7151.	3.3	25

#	Article	IF	CITATIONS
19	Semiconducting Ï€â€Extended Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 2018, 24, 18601-18612.	3.3	19
20	Aromaticity Relocation in Perylene Derivatives upon Twoâ€Electron Oxidation To Form Anthracene and Phenanthrene. Chemistry - A European Journal, 2016, 22, 14462-14466.	3.3	18
21	Solution-processed anthradithiophene–PCBM p–n junction photovoltaic cells fabricated by using the photoprecursor method. Chemical Communications, 2013, 49, 11638.	4.1	17
22	Synthesis and Electrochemical Properties of Porphycene–Diketopyrrolopyrrole Conjugates. Organic Letters, 2014, 16, 3508-3511.	4.6	17
23	A laterally Ï∈-expanded fluorone dye as an efficient near infrared fluorophore. Chemical Communications, 2016, 52, 4872-4875.	4.1	17
24	Torsional chirality generation based on cyclic oligomers constructed from an odd number of pyrenes. Chemical Communications, 2019, 55, 9618-9621.	4.1	17
25	9,9′-Anthryl-anthroxyl radicals: strategic stabilization of highly reactive phenoxyl radicals. Chemical Communications, 2015, 51, 6734-6737.	4.1	16
26	Engineering Thin Films of a Tetrabenzoporphyrin toward Efficient Charge-Carrier Transport: Selective Formation of a Brickwork Motif. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8211-8218.	8.0	16
27	A kinetically protected pyrene: molecular design, bright blue emission in the crystalline state and aromaticity relocation in its dicationic species. Chemical Communications, 2014, 50, 10956-10958.	4.1	15
28	Evaluation of semiconducting molecular thin films solution-processed via the photoprecursor approach: the case of hexyl-substituted thienoanthracenes. Journal of Materials Chemistry C, 2015, 3, 5995-6005.	5.5	15
29	Fullerene-linked tetrabenzoporphyrins for solution-processed organic photovoltaics: flexible vs. rigid linkers. Journal of Materials Chemistry A, 2016, 4, 15333-15342.	10.3	15
30	A photochemical layer-by-layer solution process for preparing organic semiconducting thin films having the right material at the right place. Chemical Science, 2018, 9, 6614-6621.	7.4	14
31	Tetrabenzoperipentacene: Stable Fiveâ€Electron Donating Ability and a Discrete Tripleâ€Layered βâ€Graphite Form in the Solid State. Angewandte Chemie, 2015, 127, 8293-8296.	2.0	13
32	Effect of alkyl substituents: 5,15-bis(trimethylsilylethynyl)- <i>vs</i> . 5,15-bis(triisopropylsilylethynyl)-tetrabenzoporphyrins and their metal complexes. Journal of Porphyrins and Phthalocyanines, 2015, 19, 465-478.	0.8	12
33	Self-Assembled Dehydro[24]annulene Monolayers at the Liquid/Solid Interface: Toward On-Surface Synthesis of Tubular π-Conjugated Nanowires. Langmuir, 2016, 32, 5532-5541.	3.5	12
34	Studies on Pyrene and Perylene Derivatives upon Oxidation and Application to a Higher Analogue. Bulletin of the Chemical Society of Japan, 2017, 90, 667-677.	3.2	12
35	A remarkably strained cyclopyrenylene trimer that undergoes metal-free direct oxygen insertion into the biaryl CဓC σ-bond. Chemical Science, 2019, 10, 6785-6790.	7.4	12
36	Bisanthra-thianthrene: synthesis, structure and oxidation properties. RSC Advances, 2016, 6, 70700-70703.	3.6	11

#	Article	IF	Citations
37	Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor. ACS Applied Materials & Diterfaces, 2016, 8, 8644-8651.	8.0	11
38	Fullerene-Based n-Type Materials That Can Be Processed by a Photoprecursor Approach for Photovoltaic Applications. ECS Journal of Solid State Science and Technology, 2017, 6, M3068-M3074.	1.8	10
39	Orbital-Energy Modulation of Tetrabenzoporphyrin-Derived Non-Fullerene Acceptors for Improved Open-Circuit Voltage in Organic Solar Cells. Journal of Organic Chemistry, 2020, 85, 168-178.	3.2	10
40	Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four Galn probes. Applied Physics Letters, $2017, 111, \ldots$	3.3	9
41	Response to "The Seven-Membered Ring in Bis-Azuleno-Naphthalene is Non-Aromatic― European Journal of Organic Chemistry, 2019, 2019, 860-861.	2.4	9
42	Evaluation of the charge transfer efficiency of organic thin-film photovoltaic devices fabricated using a photoprecursor approach. Photochemical and Photobiological Sciences, 2015, 14, 883-890.	2.9	8
43	Dinaphthotetrathiafulvalene Bisimides: A New Member of the Family of Ï€â€Extended TTF Stable p‶ype Semiconductors. Chemistry - A European Journal, 2017, 23, 15002-15007.	3.3	8
44	Open-circuit-voltage shift of over 0.5 V in organic photovoltaic cells induced by a minor structural difference in alkyl substituents. Chemical Science, 2020, 11, 1825-1831.	7.4	8
45	Impact of substituents on the performance of small-molecule semiconductors in organic photovoltaic devices <i>via</i> regulating morphology. Journal of Materials Chemistry C, 2022, 10, 1162-1195.	5.5	8
46	Transient Photocurrent Elucidating Carrier Dynamics and Potential of Bulk Heterojunction Solar Cells Fabricated by Thermal Precursor Approach. Solar Rrl, 2018, 2, 1700234.	5.8	7
47	Indolizino[5,6-b]quinoxaline Derivatives: Intramolecular Charge Transfer Characters and NIR Fluorescence. Chemistry - an Asian Journal, 2015, 10, 2337-2341.	3.3	6
48	1,3-Phenylene-bridged naphthalene wheels synthesized by one-pot Suzuki–Miyaura coupling and the complex of the hexamer with C ₆₀ . RSC Advances, 2018, 8, 20872-20876.	3.6	6
49	Synthesis of Anthracene Derivatives with Azaaceneâ€Containing Iptycene Wings and the Utilization as a Dopant for Solutionâ€Processed Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 15565-15571.	3.3	6
50	Synthesis and Characterization of Dinaphtho $[2,1-\langle i\rangle a\langle i\rangle :2,3-\langle i\rangle f\langle i\rangle]$ pentalene: A Stable Antiaromatic/Quinoidal Hydrocarbon Showing Appropriate Carrier Mobility in the Amorphous Layer. Chemistry Letters, 2022, 51, 325-329.	1,3	6
51	An Ethynyleneâ€Bridged Pentacene Dimer: Twoâ€Step Synthesis and Chargeâ€Transport Properties. Chemistry - A European Journal, 2018, 24, 14916-14920.	3.3	5
52	High Vertical Carrier Mobilities of Organic Semiconductors Due to a Deposited Laid-Down Herringbone Structure Induced by a Reduced Graphene Oxide Template. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9489-9497.	8.0	5
53	Exploration of Alkyl Group Effects on the Molecular Packing of 5,15-Disubstituted Tetrabenzoporphyrins toward Efficient Charge-Carrier Transport. ACS Applied Materials & Camp; Interfaces, 2022, 14, 32319-32329.	8.0	4
54	Porphycene dimer-based non-fullerene acceptor for organic solar cell. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1350-1360.	0.8	3

#	Article	IF	CITATIONS
55	Photoconversion of 6,13-î±-diketopentacene single crystals exhibiting light intensity-dependent morphological change. Physical Chemistry Chemical Physics, 2019, 21, 6348-6353.	2.8	3
56	Facilitated Interfacial Electronic Processes by the π–π Stacked Edge-on Tetrabenzoporphyrin/Graphene Layer Enables Broadband Ultrasensitive Photodetecting with Prompt Response. ACS Applied Electronic Materials, 2020, 2, 3459-3467.	4.3	3
57	Dynamic behavior of photogenerated charge carriers in diketopyrrolopyrrole-linked tetrabenzoporphyrin-based bulk heterojunction thin films probed with time-resolved terahertz spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112693.	3.9	3
58	Effect of the MIS structure with MgF ₂ on CELIV measurements. Japanese Journal of Applied Physics, 2020, 59, SDDB01.	1.5	3
59	Cross-conjugated isothianaphthene quinoids: a versatile strategy for controlling electronic structures. Journal of Materials Chemistry C, 2022, 10, 4424-4433.	5.5	3
60	Performance Improvement with an Ultrathin p-Type Interfacial Layer in n-Type Vertical Organic Field-Effect Transistors Based on Reduced Graphene Oxide Electrode. ACS Omega, 2022, 7, 24468-24474.	3 . 5	3
61	Improvement in interlayer structure of p–i–n-type organic solar cells with the use of fullerene-linked tetrabenzoporphyrin as additive. RSC Advances, 2018, 8, 35237-35245.	3.6	2
62	Robust Unipolar Electron Conduction Using an Ambipolar Polymer Semiconductor with Solution-Processable Blends. Chemistry of Materials, 2020, 32, 6831-6837.	6.7	2
63	Dinaphthotetrathiafulvalene Bisimides: A New Member of the Family of π-Extended TTF Stable p-Type Semiconductors. Chemistry - A European Journal, 2017, 23, 14979-14979.	3.3	1
64	Retro-Diels–Alder Reaction on Surface: Generating Energy-Prohibited Structures in Bulk Film Condition through Surface-Adsorbing Neutralization Effect. Journal of Physical Chemistry C, 2020, 124, 5723-5733.	3.1	1
65	Nature of Local Charge Carrier Motions in Porphyrin-based Bulk Heterojunction Films Revealed by Time-resolved Optical Pump-terahertz Probe Spectroscopy. Chemistry Letters, 2021, 50, 1859-1862.	1.3	1
66	A Windmill-Shaped Molecule with Anthryl Blades to Form Smooth Hole-Transport Layers via a Photoprecursor Approach. Materials, 2020, 13, 2316.	2.9	1
67	Frontispiece: An Optically and Thermally Switchable Electronic Structure Based on an Anthracene-BODIPY Conjugate. Chemistry - A European Journal, 2015, 21, n/a-n/a.	3.3	0
68	Frontispiece: Aromaticity Relocation in Perylene Derivatives upon Twoâ€Electron Oxidation To Form Anthracene and Phenanthrene. Chemistry - A European Journal, 2016, 22, .	3.3	0
69	Charge Carrier Dynamics in Bulk Heterojunction Organic Semiconductor by Optical-Pump Terahertz-Probe Spectroscopy. , 2018, , .		0
70	Ultrafast Charge Carrier Dynamics in Diketopyrrolopyrrole-Linked Tetrabenzoporphyrin Films Studied by Time-Resolved Terahertz Spectroscopy. , 2018, , .		0
71	Frontispiece: Semiconducting Ï€â€Extended Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 2018, 24, .	3.3	0
72	Development and Application of Extended π-Conjugated Functional Materials for Solution-Processed Organic Devices. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 1232-1244.	0.1	0

#	Article	IF	CITATIONS
73	â;-2. Status of fisheries resources in Miyagi prefecture after the Great East Japan Earthquake. Nippon Suisan Gakkaishi, 2018, 84, 1111-1111.	0.1	O
74	â¡-1. Off the Pacific coast of northern Honshu. Nippon Suisan Gakkaishi, 2019, 85, 83-83.	0.1	0
75	Alkyl Substituent Engineering for Efficient Photoconversion Efficiency in Small Molecular Organic Photovoltaics. , 2021, , .		O