Kristen W Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2452260/publications.pdf Version: 2024-02-01

KDISTEN WIVNCH

#	Article	IF	CITATIONS
1	A compendium of RNA-binding motifs for decoding gene regulation. Nature, 2013, 499, 172-177.	27.8	1,281
2	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
3	A new view of transcriptome complexity and regulation through the lens of local splicing variations. ELife, 2016, 5, e11752.	6.0	385
4	An optogenetic gene expression system with rapid activation and deactivation kinetics. Nature Chemical Biology, 2014, 10, 196-202.	8.0	317
5	Consequences of regulated pre-mRNA splicing in the immune system. Nature Reviews Immunology, 2004, 4, 931-940.	22.7	228
6	Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunological Reviews, 2013, 253, 216-236.	6.0	158
7	Global analysis of alternative splicing during T-cell activation. Rna, 2007, 13, 563-572.	3.5	147
8	Regulation of Alternative Splicing: More than Just the ABCs. Journal of Biological Chemistry, 2008, 283, 1217-1221.	3.4	129
9	A Model System for Activation-Induced Alternative Splicing of CD45 Pre-mRNA in T Cells Implicates Protein Kinase C and Ras. Molecular and Cellular Biology, 2000, 20, 70-80.	2.3	125
10	HnRNP L represses exon splicing via a regulated exonic splicing silencer. EMBO Journal, 2005, 24, 2792-2802.	7.8	125
11	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	123
12	Phosphorylation-Dependent Regulation of PSF byÂGSK3 Controls CD45 Alternative Splicing. Molecular Cell, 2010, 40, 126-137.	9.7	105
13	Stem-Loop Recognition by DDX17 Facilitates miRNA Processing and Antiviral Defense. Cell, 2014, 158, 764-777.	28.9	103
14	A CD45 Polymorphism Associated with Multiple Sclerosis Disrupts an Exonic Splicing Silencer. Journal of Biological Chemistry, 2001, 276, 24341-24347.	3.4	101
15	Alternative splicing networks regulated by signaling in human T cells. Rna, 2012, 18, 1029-1040.	3.5	90
16	A cell-based screen for splicing regulators identifies hnRNP LL as a distinct signal-induced repressor of <i>CD45</i> variable exon 4. Rna, 2008, 14, 2038-2049.	3.5	87
17	Context-Dependent Regulatory Mechanism of the Splicing Factor hnRNP L. Molecular Cell, 2010, 37, 223-234.	9.7	84
18	Cellular RNA Binding Proteins NS1-BP and hnRNP K Regulate Influenza A Virus RNA Splicing. PLoS Pathogens, 2013, 9, e1003460.	4.7	78

KRISTEN W LYNCH

#	Article	IF	CITATIONS
19	Influenza virus mRNA trafficking through host nuclear speckles. Nature Microbiology, 2016, 1, 16069.	13.3	78
20	A Conserved Signal-Responsive Sequence Mediates Activation-Induced Alternative Splicing of CD45. Molecular Cell, 2003, 12, 1317-1324.	9.7	75
21	DEGRADE, MOVE, REGROUP: signaling control of splicing proteins. Trends in Biochemical Sciences, 2011, 36, 397-404.	7.5	72
22	<scp>PSF</scp> : nuclear busyâ€body or nuclear facilitator?. Wiley Interdisciplinary Reviews RNA, 2015, 6, 351-367.	6.4	69
23	Regulation of Alternative Splicing by Signal Transduction Pathways. Advances in Experimental Medicine and Biology, 2007, 623, 161-174.	1.6	69
24	Combinatorial Control of Signal-Induced Exon Repression by hnRNP L and PSF. Molecular and Cellular Biology, 2007, 27, 6972-6984.	2.3	65
25	hnRNP U Enhances Caspase-9 Splicing and Is Modulated by AKT-dependent Phosphorylation of hnRNP L. Journal of Biological Chemistry, 2013, 288, 8575-8584.	3.4	65
26	Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes and Development, 2015, 29, 2054-2066.	5.9	65
27	Alternative splicing and cancer: insights, opportunities, and challenges from an expanding view of the transcriptome. Genes and Development, 2020, 34, 1005-1016.	5.9	61
28	Co-regulatory activity of hnRNP K and NS1-BP in influenza and human mRNA splicing. Nature Communications, 2018, 9, 2407.	12.8	60
29	Transcriptome-Wide RNA Interaction Profiling Reveals Physical and Functional Targets of hnRNP L in Human T Cells. Molecular and Cellular Biology, 2014, 34, 71-83.	2.3	58
30	Differential Expression of CD45 Isoforms Is Controlled by the Combined Activity of Basal and Inducible Splicing-regulatory Elements in Each of the Variable Exons*. Journal of Biological Chemistry, 2005, 280, 38297-38304.	3.4	55
31	Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing. Journal of Biological Chemistry, 2017, 292, 18240-18255.	3.4	52
32	Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2139-48.	7.1	51
33	Signal- and Development-Dependent Alternative Splicing of LEF1 in T Cells Is Controlled by CELF2. Molecular and Cellular Biology, 2011, 31, 2184-2195.	2.3	48
34	Viral-induced alternative splicing of host genes promotes influenza replication. ELife, 2020, 9, .	6.0	46
35	Position-dependent activity of CELF2 in the regulation of splicing and implications for signal-responsive regulation in T cells. RNA Biology, 2016, 13, 569-581.	3.1	45
36	Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes. Genome Research, 2017, 27, 1360-1370.	5.5	42

KRISTEN W LYNCH

#	Article	IF	CITATIONS
37	Paralogs hnRNP L and hnRNP LL Exhibit Overlapping but Distinct RNA Binding Constraints. PLoS ONE, 2013, 8, e80701.	2.5	36
38	RNA Binding Protein CELF2 Regulates Signal-Induced Alternative Polyadenylation by Competing with Enhancers of the Polyadenylation Machinery. Cell Reports, 2019, 28, 2795-2806.e3.	6.4	31
39	Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discovery, 2022, 3, 103-115.	5.0	31
40	A Disease-associated Polymorphism Alters Splicing of the Human CD45 Phosphatase Gene by Disrupting Combinatorial Repression by Heterogeneous Nuclear Ribonucleoproteins (hnRNPs). Journal of Biological Chemistry, 2011, 286, 20043-20053.	3.4	28
41	Global analysis of physical and functional RNA targets of hnRNP L reveals distinct sequence and epigenetic features of repressed and enhanced exons. Rna, 2015, 21, 2053-2066.	3.5	28
42	HnRNP L represses cryptic exons. Rna, 2018, 24, 761-768.	3.5	28
43	Alternative splicing redefines landscape of commonly mutated genes in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
44	Deep profiling and custom databases improve detection of proteoforms generated by alternative splicing. Genome Research, 2019, 29, 2046-2055.	5.5	23
45	Structural–functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12218-E12227.	7.1	21
46	Meta-analysis of transcriptomic variation in T-cell populations reveals both variable and consistent signatures of gene expression and splicing. Rna, 2020, 26, 1320-1333.	3.5	20
47	The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunological Reviews, 2021, 304, 30-50.	6.0	20
48	Use of transcriptional synergy to augment sensitivity of a splicing reporter assay. Rna, 2006, 12, 925-930.	3.5	18
49	PSF controls expression of histone variants and cellular viability in thymocytes. Biochemical and Biophysical Research Communications, 2011, 414, 743-749.	2.1	17
50	TRAP150 interacts with the RNA-binding domain of PSF and antagonizes splicing of numerous PSF-target genes in T cells. Nucleic Acids Research, 2015, 43, 9006-9016.	14.5	17
51	Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Research, 2020, 48, 5710-5719.	14.5	17
52	In silico to in vivo splicing analysis using splicing code models. Methods, 2014, 67, 3-12.	3.8	14
53	Alternative pre-mRNA splicing switch controls hESC pluripotency and differentiation. Genes and Development, 2018, 32, 1103-1104.	5.9	13
54	MOCCASIN: a method for correcting for known and unknown confounders in RNA splicing analysis. Nature Communications, 2021, 12, 3353.	12.8	12

KRISTEN W LYNCH

#	Article	IF	CITATIONS
55	Thoughts on NGS, alternative splicing and what we still need to know. Rna, 2015, 21, 683-684.	3.5	7
56	Functional and Mechanistic Interplay of Host and Viral Alternative Splicing Regulation during Influenza Infection. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 123-131.	1.1	6
57	PRMT5 Promotes Symmetric Dimethylation of RNA Processing Proteins and Modulates Activated T Cell Alternative Splicing and Ca2+/NFAT Signaling. ImmunoHorizons, 2021, 5, 884-897.	1.8	5
58	Regulation of CD19 Exon 2 Inclusion in B-Lymphoid Cells By Splicing Factors and Epigenetic Marks. Blood, 2015, 126, 2425-2425.	1.4	3
59	Nuclear speckle integrity and function require TAO2 kinase. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2