Nigel Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2451839/publications.pdf Version: 2024-02-01

NICEL TUDNED

#	Article	IF	CITATIONS
1	Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell, 2013, 155, 1624-1638.	28.9	1,134
2	The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.	16.2	768
3	Excess Lipid Availability Increases Mitochondrial Fatty Acid Oxidative Capacity in Muscle. Diabetes, 2007, 56, 2085-2092.	0.6	472
4	Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I. Diabetes, 2008, 57, 1414-1418.	0.6	470
5	Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17787-17792.	7.1	449
6	Mitochondrial dysfunction and insulin resistance: an update. Endocrine Connections, 2015, 4, R1-R15.	1.9	393
7	Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia, 2013, 56, 1638-1648.	6.3	339
8	Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell, 2018, 173, 74-89.e20.	28.9	333
9	Antidiabetic Activities of Triterpenoids Isolated from Bitter Melon Associated with Activation of the AMPK Pathway. Chemistry and Biology, 2008, 15, 263-273.	6.0	327
10	Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia, 2013, 56, 1129-1139.	6.3	327
11	Dietary fats and membrane function: implications for metabolism and disease. Biological Reviews, 2005, 80, 155-169.	10.4	300
12	Overexpression of Carnitine Palmitoyltransferase-1 in Skeletal Muscle Is Sufficient to Enhance Fatty Acid Oxidation and Improve High-Fat Diet–Induced Insulin Resistance. Diabetes, 2009, 58, 550-558.	0.6	295
13	IRS1-Independent Defects Define Major Nodes of Insulin Resistance. Cell Metabolism, 2008, 7, 421-433.	16.2	266
14	An Actn3 knockout mouse provides mechanistic insights into the association between Â-actinin-3 deficiency and human athletic performance. Human Molecular Genetics, 2008, 17, 1076-1086.	2.9	266
15	NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell Reports, 2020, 30, 1670-1681.e7.	6.4	169
16	Markers of Mitochondrial Biogenesis and Metabolism Are Lower in Overweight and Obese Insulin-Resistant Subjects. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1467-1473.	3.6	156
17	Is mitochondrial dysfunction a cause of insulin resistance?. Trends in Endocrinology and Metabolism, 2008, 19, 324-330.	7.1	155
18	Fatty acid metabolism, energy expenditure and insulin resistance in muscle. Journal of Endocrinology, 2014, 220, T61-T79.	2.6	155

#	Article	IF	CITATIONS
19	The role of mitochondrial sirtuins in health and disease. Free Radical Biology and Medicine, 2016, 100, 164-174.	2.9	137
20	Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochemical Journal, 2003, 376, 741-748.	3.7	134
21	Cholesterol Effect on the Dipole Potential of Lipid Membranes. Biophysical Journal, 2006, 90, 4060-4070.	0.5	134
22	Acute or Chronic Upregulation of Mitochondrial Fatty Acid Oxidation Has No Net Effect on Whole-Body Energy Expenditure or Adiposity. Cell Metabolism, 2010, 11, 70-76.	16.2	133
23	Activation of Thermogenesis in Brown Adipose Tissue and Dysregulated Lipid Metabolism Associated with Cancer Cachexia in Mice. Cancer Research, 2012, 72, 4372-4382.	0.9	133
24	Enhancement of Muscle Mitochondrial Oxidative Capacity and Alterations in Insulin Action Are Lipid Species Dependent. Diabetes, 2009, 58, 2547-2554.	0.6	132
25	Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism. Die Naturwissenschaften, 2003, 90, 521-523.	1.6	127
26	ACTN3 genotype influences muscle performance through the regulation of calcineurin signaling. Journal of Clinical Investigation, 2013, 123, 4255-4263.	8.2	113
27	The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. , 1998, 60, 419-424.		109
28	TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. Journal of Cell Biology, 2021, 220, .	5.2	100
29	Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity. Molecular Metabolism, 2014, 3, 465-473.	6.5	96
30	Effects of vitamin <scp>D</scp> in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clinical Endocrinology, 2014, 80, 169-181.	2.4	96
31	Calorie Restriction in Mice: Effects on Body Composition, Daily Activity, Metabolic Rate, Mitochondrial Reactive Oxygen Species Production, and Membrane Fatty Acid Composition. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 781-794.	3.6	95
32	Contrasting metabolic effects of medium- versus long-chain fatty acids in skeletal muscle. Journal of Lipid Research, 2013, 54, 3322-3333.	4.2	93
33	A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nature Communications, 2018, 9, 3165.	12.8	93
34	The transition from fetal growth restriction to accelerated postnatal growth: a potential role for insulin signalling in skeletal muscle. Journal of Physiology, 2009, 587, 4199-4211.	2.9	90
35	Differing Endoplasmic Reticulum Stress Response to Excess Lipogenesis versus Lipid Oversupply in Relation to Hepatic Steatosis and Insulin Resistance. PLoS ONE, 2012, 7, e30816.	2.5	88
36	Genetic inhibition of hepatic acetyl-CoA carboxylase activity increases liver fat and alters global protein acetylation. Molecular Metabolism, 2014, 3, 419-431.	6.5	87

#	Article	IF	CITATIONS
37	Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular Metabolism, 2014, 3, 124-134.	6.5	84
38	How might you compare mitochondria from different tissues and different species?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 93-105.	1.5	80
39	ORP5 localizes to ER–lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. Journal of Cell Biology, 2020, 219, .	5.2	75
40	Mitochondrial uncoupler BAM15 reverses diet-induced obesity and insulin resistance in mice. Nature Communications, 2020, 11, 2397.	12.8	74
41	Lipid and insulin infusion-induced skeletal muscle insulin resistance is likely due to metabolic feedback and not changes in IRS-1, Akt, or AS160 phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E67-E75.	3.5	73
42	α-Actinin-3 deficiency results in reduced glycogen phosphorylase activity and altered calcium handling in skeletal muscle. Human Molecular Genetics, 2010, 19, 1335-1346.	2.9	73
43	Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma. Cancer & Metabolism, 2016, 4, 19.	5.0	72
44	Overfeeding Reduces Insulin Sensitivity and Increases Oxidative Stress, without Altering Markers of Mitochondrial Content and Function in Humans. PLoS ONE, 2012, 7, e36320.	2.5	72
45	Modulation of Na,K-ATPase by Phospholipids and Cholesterol. II. Steady-State and Presteady-State Kineticsâ€. Biochemistry, 2003, 42, 8541-8549.	2.5	69
46	Overexpression of manganese superoxide dismutase ameliorates high-fat diet-induced insulin resistance in rat skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E798-E805.	3.5	69
47	Insulin resistance and fuel homeostasis: the role of AMPâ€activated protein kinase. Acta Physiologica, 2009, 196, 129-145.	3.8	68
48	Mitochondrial Stress Signaling Promotes Cellular Adaptations. International Journal of Cell Biology, 2014, 2014, 1-12.	2.5	68
49	Loss of ceramide synthase 2 activity, necessary for myelin biosynthesis, precedes tau pathology in the cortical pathogenesis of Alzheimer's disease. Neurobiology of Aging, 2016, 43, 89-100.	3.1	68
50	Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1828-1839.	2.4	66
51	Respiration rate of hepatocytes varies with body mass in birds. Journal of Experimental Biology, 2004, 207, 2305-2311.	1.7	65
52	Peripheral neuropeptide Y Y1 receptors regulate lipid oxidation and fat accretion. International Journal of Obesity, 2010, 34, 357-373.	3.4	65
53	Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nature Communications, 2017, 8, 14689.	12.8	65
54	Altered feeding differentially regulates circadian rhythms and energy metabolism in liver and muscle of rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 228-238.	3.8	64

#	Article	IF	CITATIONS
55	Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition. Cancer Research, 2021, 81, 3461-3479.	0.9	62
56	Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R663-R670.	1.8	61
57	Exercise alters the profile of phospholipid molecular species in rat skeletal muscle. Journal of Applied Physiology, 2004, 97, 1823-1829.	2.5	60
58	Identification of BMP and Activin Membrane-Bound Inhibitor (BAMBI) as a Potent Negative Regulator of Adipogenesis and Modulator of Autocrine/Paracrine Adipogenic Factors. Diabetes, 2012, 61, 124-136.	0.6	59
59	Overexpression of the Adiponectin Receptor AdipoR1 in Rat Skeletal Muscle Amplifies Local Insulin Sensitivity. Endocrinology, 2012, 153, 5231-5246.	2.8	59
60	Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1231-E1237.	3.5	58
61	Dynamic Metabolomics Reveals that Insulin Primes the Adipocyte for Glucose Metabolism. Cell Reports, 2017, 21, 3536-3547.	6.4	55
62	High Passage MIN6 Cells Have Impaired Insulin Secretion with Impaired Glucose and Lipid Oxidation. PLoS ONE, 2012, 7, e40868.	2.5	54
63	Rosiglitazone Enhances Glucose Tolerance by Mechanisms Other than Reduction of Fatty Acid Accumulation within Skeletal Muscle. Endocrinology, 2004, 145, 5665-5670.	2.8	53
64	Muscle insulin resistance: A case of fat overconsumption, not mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7627-7628.	7.1	53
65	The Evolution of Endothermy: Role for Membranes and Molecular Activity. Physiological and Biochemical Zoology, 2004, 77, 950-958.	1.5	52
66	Amelioration of lipid-induced insulin resistance in rat skeletal muscle by overexpression of Pgc-1β involves reductions in long-chain acyl-CoA levels and oxidative stress. Diabetologia, 2011, 54, 1417-1426.	6.3	52
67	Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia, 2011, 54, 1447-1456.	6.3	51
68	Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer & Metabolism, 2017, 5, 2.	5.0	51
69	Activation of AMPK by Bitter Melon Triterpenoids Involves CaMKKÎ ² . PLoS ONE, 2013, 8, e62309.	2.5	49
70	High-Throughput Assay for Modulators of Mitochondrial Membrane Potential Identifies a Novel Compound With Beneficial Effects on <i>db/db</i> Mice. Diabetes, 2010, 59, 256-265.	0.6	48
71	The effect of α-actinin-3 deficiency on muscle aging. Experimental Gerontology, 2011, 46, 292-302.	2.8	47
72	Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in ocytes play a role?. Molecular Human Reproduction, 2015, 21, 23-30.	2.8	47

#	Article	IF	CITATIONS
73	Modeling insulin resistance in rodents by alterations in diet: what have high-fat and high-calorie diets revealed?. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E251-E265.	3.5	47
74	Genetic Ablation of the c-Cbl Ubiquitin Ligase Domain Results in Increased Energy Expenditure and Improved Insulin Action. Diabetes, 2006, 55, 3411-3417.	0.6	45
75	Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism?. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1295-1302.	2.4	43
76	Benzylserine inhibits breast cancer cell growth by disrupting intracellular amino acid homeostasis and triggering amino acid response pathways. BMC Cancer, 2018, 18, 689.	2.6	43
77	Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1358-E1364.	3.5	42
78	Casitas b-Lineage Lymphoma-Deficient Mice Are Protected Against High-Fat Diet-Induced Obesity and Insulin Resistance. Diabetes, 2006, 55, 708-715.	0.6	41
79	Loss of Krüppel-Like Factor 3 (KLF3/BKLF) Leads to Upregulation of the Insulin-Sensitizing Factor Adipolin (FAM132A/CTRP12/C1qdc2). Diabetes, 2013, 62, 2728-2737.	0.6	41
80	NF1 is a critical regulator of muscle development and metabolism. Human Molecular Genetics, 2014, 23, 1250-1259.	2.9	40
81	Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget, 2018, 9, 22001-22022.	1.8	40
82	Repurposing Drugs to Target the Diabetes Epidemic. Trends in Pharmacological Sciences, 2016, 37, 379-389.	8.7	38
83	The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. Journal of Endocrinology, 2011, 210, 81-92.	2.6	36
84	NAD ⁺ : A key metabolic regulator with great therapeutic potential. Journal of Neuroendocrinology, 2017, 29, e12508.	2.6	36
85	Regulation of mitochondrial metabolism in murine skeletal muscle by the mediumâ€chain fatty acid receptor Gpr84. FASEB Journal, 2019, 33, 12264-12276.	0.5	36
86	Overexpression of the orphan receptor Nur77 alters glucose metabolism in rat muscle cells and rat muscle in vivo. Diabetologia, 2010, 53, 1174-1183.	6.3	35
87	Disparate metabolic response to fructose feeding between different mouse strains. Scientific Reports, 2016, 5, 18474.	3.3	35
88	Relationship between body size, Na+-K+-ATPase activity, and membrane lipid composition in mammal and bird kidney. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R301-R310.	1.8	34
89	Effect of hydration on thermostability. Biotechnology Letters, 1995, 17, 371-376.	2.2	33
90	Greater effect of diet than exercise training on the fatty acid profile of rat skeletal muscle. Journal of Applied Physiology, 2004, 96, 974-980.	2.5	33

#	Article	IF	CITATIONS
91	The role of oxysterol-binding protein and its related proteins in cancer. Seminars in Cell and Developmental Biology, 2018, 81, 149-153.	5.0	32
92	Enhanced acyl-CoA:cholesterol acyltransferase activity increases cholesterol levels on the lipid droplet surface and impairs adipocyte function. Journal of Biological Chemistry, 2019, 294, 19306-19321.	3.4	32
93	An allometric comparison of microsomal membrane lipid composition and sodium pump molecular activity in the brain of mammals and birds. Journal of Experimental Biology, 2005, 208, 371-381.	1.7	31
94	Grb10 regulates the development of fiber number in skeletal muscle. FASEB Journal, 2012, 26, 3658-3669.	0.5	31
95	A novel chemical uncoupler ameliorates obesity and related phenotypes in mice with diet-induced obesity by modulating energy expenditure and food intake. Diabetologia, 2013, 56, 2297-2307.	6.3	31
96	Enhanced peroxisomal β-oxidation is associated with prevention of obesity and glucose intolerance by fish oil-enriched diets. Obesity, 2013, 21, 1200-1207.	3.0	30
97	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	3.6	30
98	Diabetes and Its Link with Cancer: Providing the Fuel and Spark to Launch an Aggressive Growth Regime. BioMed Research International, 2015, 2015, 1-11.	1.9	29
99	Scaling of Na+,K+â€ATPase Molecular Activity and Membrane Fatty Acid Composition in Mammalian and Avian Hearts. Physiological and Biochemical Zoology, 2006, 79, 522-533.	1.5	28
100	βIII-Tubulin alters glucose metabolism and stress response signaling to promote cell survival and proliferation in glucose-starved non-small cell lung cancer cells. Carcinogenesis, 2016, 37, 787-798.	2.8	28
101	Effects of feeding time on daily rhythms of neuropeptide and clock gene expression in the rat hypothalamus. Brain Research, 2017, 1671, 93-101.	2.2	28
102	Snail-Overexpression Induces Epithelial-mesenchymal Transition and Metabolic Reprogramming in Human Pancreatic Ductal Adenocarcinoma and Non-tumorigenic Ductal Cells. Journal of Clinical Medicine, 2019, 8, 822.	2.4	28
103	Why are some mitochondria more powerful than others: Insights from comparisons of muscle mitochondria from three terrestrial vertebrates. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 142, 172-180.	1.6	27
104	Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Scientific Reports, 2017, 7, 13914.	3.3	26
105	PPARδagonists have opposing effects on insulin resistance in high fatâ€fed rats and mice due to different metabolic responses in muscle. British Journal of Pharmacology, 2011, 163, 556-566.	5.4	25
106	Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E258-E266.	3.5	25
107	Defining lipid mediators of insulin resistance: controversies and challenges. Journal of Molecular Endocrinology, 2019, 62, R65-R82.	2.5	24
108	The role of mitochondrial glycerol-3-phosphate acyltransferase-1 in regulating lipid and glucose homeostasis in high-fat diet fed mice. Biochemical and Biophysical Research Communications, 2008, 369. 1065-1070.	2.1	23

#	Article	IF	CITATIONS
109	Y2 and Y4 receptor signaling synergistically act on energy expenditure and physical activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R1618-R1628.	1.8	23
110	Adult-onset PYY overexpression in mice reduces food intake and increases lipogenic capacity. Neuropeptides, 2012, 46, 173-182.	2.2	23
111	Grb10 Deletion Enhances Muscle Cell Proliferation, Differentiation and GLUT4 Plasma Membrane Translocation. Journal of Cellular Physiology, 2014, 229, 1753-1764.	4.1	23
112	Niclosamide reduces glucagon sensitivity via hepatic PKA inhibition in obese mice: Implications for glucose metabolism improvements in type 2 diabetes. Scientific Reports, 2017, 7, 40159.	3.3	23
113	UGCG influences glutamine metabolism of breast cancer cells. Scientific Reports, 2019, 9, 15665.	3.3	23
114	Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle. Diabetologia, 2007, 50, 1732-1742.	6.3	22
115	Inhibition of guanosine monophosphate synthetase (<scp>GMPS</scp>) blocks glutamine metabolism and prostate cancer growth. Journal of Pathology, 2021, 254, 135-146.	4.5	19
116	Sodium pump molecular activity and membrane lipid composition in two disparate ectotherms, and comparison with endotherms. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 77-85.	1.5	18
117	Ablation of Grb10 Specifically in Muscle Impacts Muscle Size and Glucose Metabolism in Mice. Endocrinology, 2018, 159, 1339-1351.	2.8	18
118	Overexpression of SIRT1 in Rat Skeletal Muscle Does Not Alter Glucose Induced Insulin Resistance. PLoS ONE, 2015, 10, e0121959.	2.5	17
119	A novel small molecule that kills a subset of MLL-rearranged leukemia cells by inducing mitochondrial dysfunction. Oncogene, 2019, 38, 3824-3842.	5.9	17
120	Drugâ€like sphingolipid SHâ€BCâ€893 opposes ceramideâ€induced mitochondrial fission and corrects dietâ€induced obesity. EMBO Molecular Medicine, 2021, 13, e13086.	6.9	17
121	The liver isoform of carnitine palmitoyltransferase 1 is not targeted to the endoplasmic reticulum. Biochemical Journal, 2003, 370, 223-231.	3.7	16
122	Roles of Fatty Acid Oversupply and Impaired Oxidation in Lipid Accumulation in Tissues of Obese Rats. Journal of Lipids, 2013, 2013, 1-12.	4.8	16
123	The Ski proto-oncogene regulates body composition and suppresses lipogenesis. International Journal of Obesity, 2010, 34, 524-536.	3.4	15
124	The evolution of insulin resistance in muscle of the glucose infused rat. Archives of Biochemistry and Biophysics, 2011, 509, 133-141.	3.0	15
125	PPARα-independent actions of omega-3 PUFAs contribute to their beneficial effects on adiposity and glucose homeostasis. Scientific Reports, 2014, 4, 5538.	3.3	15
126	The MÄori and Pacific specific CREBRF variant and adult height. International Journal of Obesity, 2020, 44, 748-752.	3.4	15

#	Article	IF	CITATIONS
127	Glutamine addiction promotes glucose oxidation in triple-negative breast cancer. Oncogene, 2022, 41, 4066-4078.	5.9	15
128	The Effect of Exercise on the Skeletal Muscle Phospholipidome of Rats Fed a High-Fat Diet. International Journal of Molecular Sciences, 2010, 11, 3954-3964.	4.1	14
129	Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann–Pick C1. Biochemical Journal, 2015, 471, 243-253.	3.7	14
130	Fast exchange fluxes around the pyruvate node: a leaky cell model to explain the gain and loss of unlabelled and labelled metabolites in a tracer experiment. Cancer & Metabolism, 2016, 4, 13.	5.0	14
131	AMP-activated protein kinase and muscle insulin resistance. Frontiers in Bioscience - Landmark, 2009, Volume, 4658.	3.0	12
132	Fructose bisphosphatase 2 overexpression increases glucose uptake in skeletal muscle. Journal of Endocrinology, 2018, 237, 101-111.	2.6	12
133	Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease. Genome Medicine, 2022, 14, .	8.2	12
134	Limits to physical performance and metabolism across species. Current Opinion in Clinical Nutrition and Metabolic Care, 2006, 9, 691-696.	2.5	11
135	Reduced insulin action in muscle of high fat diet rats over the diurnal cycle is not associated with defective insulin signaling. Molecular Metabolism, 2019, 25, 107-118.	6.5	11
136	Minimal impact of age and housing temperature on the metabolic phenotype of Acc2â^'/â^' mice. Journal of Endocrinology, 2016, 228, 127-134.	2.6	9
137	Exploring the relationship between α-actinin-3 deficiency and obesity in mice and humans. International Journal of Obesity, 2017, 41, 1154-1157.	3.4	9
138	Phenotypic screen for oxygen consumption rate identifies an anti-cancer naphthoquinone that induces mitochondrial oxidative stress. Redox Biology, 2020, 28, 101374.	9.0	9
139	FOX01 Is the Headline Akt Regulating Hepatic Glucose Metabolism. Endocrinology, 2017, 158, 2436-2438.	2.8	8
140	Protein hypoacylation induced by Sirt5 overexpression has minimal metabolic effect in mice. Biochemical and Biophysical Research Communications, 2018, 503, 1349-1355.	2.1	8
141	Irradiation impairs mitochondrial function and skeletal muscle oxidative capacity: significance for metabolic complications in cancer survivors. Metabolism: Clinical and Experimental, 2020, 103, 154025.	3.4	8
142	Pharmacological PPARα Activation Markedly Alters Plasma Turnover of the Amino Acids Glycine, Serine and Arginine in the Rat. PLoS ONE, 2014, 9, e113328.	2.5	8
143	The ω-3 and ω-6 fats in meals: A proposal for a simple new label. Nutrition, 2011, 27, 719-726.	2.4	7
144	Phenotypic Discrepancies in Acetyl-CoA Carboxylase 2-deficient Mice. Journal of Biological Chemistry, 2012. 287. 15801.	3.4	7

#	Article	IF	CITATIONS
145	Increasing Acyl CoA thioesterase activity alters phospholipid profile without effect on insulin action in skeletal muscle of rats. Scientific Reports, 2018, 8, 13967.	3.3	7
146	Fatty acid relationships in former cannabis users with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30, 280-285.	4.8	6
147	Kidney disease risk factors do not explain impacts of low dietary protein on kidney function and structure. IScience, 2021, 24, 103308.	4.1	6
148	New insight into the mechanism by which acute physical exercise ameliorates insulin resistance. Journal of Physiology, 2008, 586, 2251-2252.	2.9	5
149	Molecular Activity of Sodium Pumps in the Kidney of Mammals and Birds. Annals of the New York Academy of Sciences, 2003, 986, 606-607.	3.8	4
150	Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochemical and Biophysical Research Communications, 2022, 607, 131-137.	2.1	4
151	Using the Human Genome-Scale Metabolic Model Recon 2 for Steady-State Flux Analysis of Cancer Cell Metabolism. Methods in Molecular Biology, 2019, 1928, 479-489.	0.9	2
152	Ancestral dietary change alters the development of <i>Drosophila</i> larvae through MAPK signalling. Fly, 2022, 16, 298-310.	1.7	2
153	Metabolic Profiling of Mice with Deletion of the Orphan G Protein-Coupled Receptor, GPR37L1. Cells, 2022, 11, 1814.	4.1	1
154	PS - 46. SIRT3 overexpression in rat skeletal muscle does not alleviate high-fat diet-induced insulin resistance. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 130-130.	0.0	0
155	Phenotypic discrepancies in acetyl-CoA carboxylase 2-deficient mice Journal of Biological Chemistry, 2012, 287, 20468.	3.4	Ο
156	Mitochondrial Metabolism and Insulin Action. , 2013, , .		0
157	Impact of Lifestyle and Clinical Interventions on Mitochondrial Function in Obesity and Type 2 Diabetes. , 2019, , 367-397.		Ο
158	Abstract P3-02-09: Vulnerabilities in glutamine metabolism define triple-negative from Luminal A breast cancer subsets. , 2020, , .		0
159	Exploring How Compartmentâ€specific Changes in NAD Biosynthesis Influence the Response to Endurance Training. FASEB Journal, 2020, 34, 1-1.	0.5	0
160	Limited Metabolic Effect of the CREBRFR457Q Obesity Variant in Mice. Cells, 2022, 11, 497.	4.1	0