Byonghyo Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/24509/publications.pdf

Version: 2024-02-01

149 papers 4,593 citations

147801 31 h-index 63 g-index

149 all docs

149 docs citations

149 times ranked 3467 citing authors

#	Article	IF	CITATIONS
1	Sparse Superimposed Coding for Short-Packet URLLC. IEEE Internet of Things Journal, 2022, 9, 5275-5289.	8.7	10
2	Direction-of-Arrival Estimation for Large Antenna Arrays With Hybrid Analog and Digital Architectures. IEEE Transactions on Signal Processing, 2022, 70, 72-88.	5. 3	23
3	Active User Detection and Channel Estimation for Massive Machine-Type Communication: Deep Learning Approach. IEEE Internet of Things Journal, 2022, 9, 11904-11917.	8.7	16
4	Deep Reinforcement Learning-Based Network Slicing for Beyond 5G. IEEE Access, 2022, 10, 7384-7395.	4.2	18
5	Integrated Sensing and Communication Waveform Design With Sparse Vector Coding: Low Sidelobes and Ultra Reliability. IEEE Transactions on Vehicular Technology, 2022, 71, 4489-4494.	6.3	22
6	Pseudo-Label-Free Weakly Supervised Semantic Segmentation Using Image Masking. IEEE Access, 2022, 10, 19401-19411.	4.2	7
7	Robust DoA Estimation Using Denoising Autoencoder and Deep Neural Networks. IEEE Access, 2022, 10, 52551-52564.	4.2	10
8	6G R&D vision: Requirements and candidate technologies. Journal of Communications and Networks, 2022, 24, 232-245.	2.6	34
9	Energy-Efficient Power Control and Beamforming for Reconfigurable Intelligent Surface-Aided Uplink IoT Networks. IEEE Transactions on Wireless Communications, 2022, 21, 10162-10176.	9.2	8
10	Fast Terahertz Beam Training Via Frequency-dependent Precoding. , 2022, , .		3
11	Sparse Vector Coding Aided Ultra-Reliable and Low-Latency Communications in Multi-User Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 1019-1024.	6.3	8
12	Deep Learning Based Low-Rank Matrix Completion for IoT Network Localization. IEEE Wireless Communications Letters, 2021, 10, 2115-2119.	5.0	10
13	Optimal Restricted Isometry Condition of Normalized Sampling Matrices for Exact Sparse Recovery With Orthogonal Least Squares. IEEE Transactions on Signal Processing, 2021, 69, 1521-1536.	5.3	18
14	Sparse Vector Coding-based Superimposed Transmission for Short Packet URLLC. , 2021, , .		5
15	Power Minimization of Intelligent Reflecting Surface-Aided Uplink IoT Networks. , 2021, , .		10
16	Partial Sample Transmission and Deep Neural Decoding for URLLC-based V2X Systems. , 2021, , .		2
17	Energy-Efficient mmWave UDN Using Distributed Multi-Agent Deep Reinforcement Learning. , 2021, , .		4
18	Energy-Efficient Millimeter-Wave Cell-Free Systems Under Limited Feedback. IEEE Transactions on Communications, 2021, 69, 4067-4082.	7.8	19

#	Article	IF	CITATIONS
19	Gradual Federated Learning Using Simulated Annealing. , 2021, , .		2
20	Energy-Efficient Ultra-Dense Network Using LSTM-based Deep Neural Networks. IEEE Transactions on Wireless Communications, 2021, 20, 4702-4715.	9.2	26
21	Deep Learning-Based Spreading Sequence Design and Active User Detection for Massive Machine-Type Communications. IEEE Wireless Communications Letters, 2021, 10, 1618-1622.	5.0	9
22	Weak Signal Frequency Detection Using Chaos Theory: A Comprehensive Analysis. IEEE Transactions on Vehicular Technology, 2021, 70, 8950-8963.	6.3	13
23	Stochasticity and Skip Connection Improve Knowledge Transfer. , 2021, , .		5
24	Deep Learning-Based Beam Tracking for Millimeter-Wave Communications Under Mobility. IEEE Transactions on Communications, 2021, 69, 7458-7469.	7.8	23
25	Gradual Federated Learning With Simulated Annealing. IEEE Transactions on Signal Processing, 2021, 69, 6299-6313.	5.3	6
26	Deep Learning-Based Intelligent Reflecting Surface Phase Shift Control. , 2021, , .		2
27	User Association with Multi-Agent Reinforcement Learning for Energy-Efficient UDN. , 2021, , .		0
28	Deep Learning-Based Beamforming for Intelligent Reflecting Surface-Assisted mmWave Systems. , 2021, , .		3
29	Compressive Sensing Based Channel Estimation for Millimeter-Wave Full-Dimensional MIMO With Lens-Array. IEEE Transactions on Vehicular Technology, 2020, 69, 2337-2342.	6.3	42
30	Channel Aware Sparse Transmission for Ultra Low-Latency Communications in TDD Systems. IEEE Transactions on Communications, 2020, 68, 1175-1186.	7.8	11
31	Deep Neural Network-based Joint Active User Detection and Channel Estimation for mMTC., 2020,,.		6
32	Efficient Beam Training and Sparse Channel Estimation for Millimeter Wave Communications Under Mobility. IEEE Transactions on Communications, 2020, 68, 6583-6596.	7.8	27
33	Estimation of Dynamically Varying Support of Sparse Signals via Sequential Monte-Carlo Method. IEEE Transactions on Signal Processing, 2020, 68, 4135-4147.	5.3	4
34	Optimal Restricted Isometry Condition for Exact Sparse Recovery with Orthogonal Least Squares. , 2020, , .		2
35	Energy-Efficient Ultra-Dense Network using Deep Reinforcement Learning. , 2020, , .		10
36	Pilot-Less One-Shot Sparse Coding for Short Packet-Based Machine-Type Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 9117-9120.	6.3	10

#	Article	IF	CITATIONS
37	Downlink Compressive Channel Estimation With Phase Noise in Massive MIMO Systems. IEEE Transactions on Communications, 2020, 68, 5534-5548.	7.8	11
38	Enhanced Sparse Vector Coding for Ultra-Reliable and Low Latency Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 5698-5702.	6.3	22
39	Energy Efficient Ultra-Dense Network Using Long Short-Term Memory. , 2020, , .		3
40	Deep Neural Network Based Matrix Completion for Internet of Things Network Localization. , 2020, , .		5
41	Principal Component Analysis-Based Broadband Hybrid Precoding for Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2020, 19, 6331-6346.	9.2	37
42	Deep Neural Network-Based Active User Detection for Grant-Free NOMA Systems. IEEE Transactions on Communications, 2020, 68, 2143-2155.	7.8	58
43	Downlink Pilot Precoding and Compressed Channel Feedback for FDD-Based Cell-Free Systems. IEEE Transactions on Wireless Communications, 2020, 19, 3658-3672.	9.2	33
44	Joint Sparse Recovery Using Signal Space Matching Pursuit. IEEE Transactions on Information Theory, 2020, 66, 5072-5096.	2.4	21
45	Sparse Vector Transmission: An Idea Whose Time Has Come. IEEE Vehicular Technology Magazine, 2020, 15, 32-39.	3.4	8
46	Localization of Internet of Things Network via Deep Neural Network Based Matrix Completion. , 2020, , .		3
47	Energy-Efficient FDD-based Massive MIMO Systems Using Finite Rate Feedback. , 2020, , .		O
48	Low-Rank Matrix Completion Using Graph Neural Network. , 2020, , .		0
49	Ultra-Mini Slot Transmission for 5G+ and 6G URLLC Network. , 2020, , .		4
50	Energy-Efficient Cell-Free Systems Using Finite Rate Feedback. , 2020, , .		1
51	Nearly Optimal Restricted Isometry Condition for Rank Aware Order Recursive Matching Pursuit. IEEE Transactions on Signal Processing, 2019, 67, 4449-4463.	5.3	12
52	Low-Rank Matrix Completion: A Contemporary Survey. IEEE Access, 2019, 7, 94215-94237.	4.2	102
53	A Near-Optimal Restricted Isometry Condition of Multiple Orthogonal Least Squares. IEEE Access, 2019, 7, 46822-46830.	4.2	8
54	Towards Faster-Than-Nyquist Transmission for Beyond 5G Wireless Communications., 2019,,.		7

#	Article	IF	Citations
55	Path Selection Based Feedback Reduction for FDD Massive MIMO Systems., 2019,,.		3
56	Feedback Reduction for Beyond 5G Cellular Systems. , 2019, , .		3
57	A Near-Optimal Condition for Exact Sparse Recovery with Orthogonal Least Squares. , 2019, , .		0
58	Active User Detection of Machine-Type Communications via Dimension Spreading Neural Network. , 2019, , .		3
59	Channel Aware Sparse Signaling for Ultra-Low Latency TDD Access. , 2019, , .		1
60	Systematic Resource Allocation in Cloud RAN With Caching as a Service Under Two Timescales. IEEE Transactions on Communications, 2019, 67, 7755-7770.	7.8	24
61	Localization of IoT Networks via Low-Rank Matrix Completion. IEEE Transactions on Communications, 2019, 67, 5833-5847.	7.8	27
62	Service Multiplexing and Revenue Maximization in Sliced C-RAN Incorporated With URLLC and Multicast eMBB. IEEE Journal on Selected Areas in Communications, 2019, 37, 881-895.	14.0	132
63	Pilot-Less Sparse Vector Coding for Short Packet Transmission. IEEE Wireless Communications Letters, 2019, 8, 1036-1039.	5.0	20
64	Performance Analysis of FD-NOMA-Based Decentralized V2X Systems. IEEE Transactions on Communications, 2019, 67, 5024-5036.	7.8	109
65	EP-Based Joint Active User Detection and Channel Estimation for Massive Machine-Type Communications. IEEE Transactions on Communications, 2019, 67, 5178-5189.	7.8	73
66	Nearly Sharp Restricted Isometry Condition of Rank Aware Order Recursive Matching Pursuit., 2019, , .		0
67	Low Latency Random Access for Small Cell Toward Future Cellular Networks. IEEE Access, 2019, 7, 178563-178576.	4.2	8
68	Detection of weak multi-target with adjacent frequency based on chaotic system. International Journal of Distributed Sensor Networks, 2019, 15, 155014771989024.	2.2	7
69	Automotive Radar Signal Classification Using Bypass Recurrent Convolutional Networks. , 2019, , .		4
70	Tonal signal detection in passive sonar systems using atomic norm minimization. Eurasip Journal on Advances in Signal Processing, 2019, 2019, .	1.7	6
71	Sparsity-Aware Ordered Successive Interference Cancellation for Massive Machine-Type Communications. IEEE Wireless Communications Letters, 2018, 7, 134-137.	5.0	20
72	Packet Structure and Receiver Design for Low Latency Wireless Communications With Ultra-Short Packets. IEEE Transactions on Communications, 2018, 66, 796-807.	7.8	58

#	Article	lF	Citations
73	Optimal Power Control for Transmitting Correlated Sources With Energy Harvesting Constraints. IEEE Transactions on Wireless Communications, 2018, 17, 461-476.	9.2	5
74	Fast Uplink Access in TDD Systems for Ultra Reliable and Low Latency Communications. , 2018, , .		0
75	AoD-Based Statistical Beamforming for Cell-Free Massive MIMO Systems. , 2018, , .		4
76	Moving Target Classification In Automotive Radar Systems Using Transposed Convolutional Networks. , 2018, , .		4
77	Pilot Assignment and Channel Estimation via Deep Neural Network. , 2018, , .		4
78	New Radio Technologies for Ultra Reliable and Low Latency Communications. , 2018, , .		6
79	Dedicated Beam-based Channel Training Technique for Millimeter Wave Communications with high Mobility. , 2018, , .		2
80	Sparse Vector Coding for Short Packet Transmission in Massive Machine Type Communications. , 2018, , .		7
81	Greedy Sparse Channel Estimation for Millimeter Wave Communications. , 2018, , .		4
82	Channel Aware Sparse Signaling for Ultra Low-Latency Communication in TDD Systems. , 2018, , .		2
83	A Compressive Sensing-Based Active User and Symbol Detection Technique for Massive Machine-Type Communications. , $2018, , .$		2
84	Sparse Vector Coding for Ultra Short Packet Transmission. , 2018, , .		5
85	Hybrid Active User Detection for Massive Machine-type Communications in IoT., 2018,,.		4
86	Multiple Orthogonal Least Squares for Joint Sparse Recovery. , 2018, , .		5
87	Moving Target Classification in Automotive Radar Systems Using Convolutional Recurrent Neural Networks. , 2018, , .		21
88	Ultra-Reliable and Low-Latency Communications in 5G Downlink: Physical Layer Aspects. IEEE Wireless Communications, 2018, 25, 124-130.	9.0	378
89	Channel Feedback Based on AoD-Adaptive Subspace Codebook in FDD Massive MIMO Systems. IEEE Transactions on Communications, 2018, 66, 5235-5248.	7.8	77
90	MAP-Based Active User and Data Detection for Massive Machine-Type Communications. IEEE Transactions on Vehicular Technology, 2018, 67, 8481-8494.	6.3	52

#	Article	IF	CITATIONS
91	Expectation Propagation-Based Active User Detection and Channel Estimation for Massive Machine-Type Communications. , $2018, , .$		2
92	Sparse Vector Coding for 5G Ultra-Reliable and Low Latency Communications. , 2018, , .		11
93	FDD-Based Cell-Free Massive MIMO Systems. , 2018, , .		19
94	Sparse Vector Coding for Ultra Reliable and Low Latency Communications. IEEE Transactions on Wireless Communications, 2018, 17, 6693-6706.	9.2	41
95	Compressed Sensing for Wireless Communications: Useful Tips and Tricks. IEEE Communications Surveys and Tutorials, 2017, 19, 1527-1550.	39.4	246
96	Expectation-Maximization-Based Channel Estimation for Multiuser MIMO Systems. IEEE Transactions on Communications, 2017, 65, 2397-2410.	7.8	31
97	Oblique Projection Matching Pursuit. Mobile Networks and Applications, 2017, 22, 377-382.	3.3	4
98	Detection of Large-Scale Wireless Systems via Sparse Error Recovery. IEEE Transactions on Signal Processing, 2017, 65, 6038-6052.	5.3	11
99	Multiple subspace matching pursuit for spectrum sensing. , 2017, , .		0
100	Overview of Full-Dimension MIMO in LTE-Advanced Pro. , 2017, 55, 176-184.		164
101	Exploring the interactions of communication, computing and caching in cloud RAN under two timescale., 2017,,.		7
102	Joint active user detection and channel estimation for massive machine-type communications., 2017,,.		25
103	Orthogonal least squares algorithm for the multiple-measurement vectors problem. , 2017, , .		0
104	Pilot beamforming for massive machine type communication systems. , 2017, , .		0
105	Localization in Internet of Things network: Matrix completion approach. , 2016, , .		12
106	Sparse signal recovery via tree search matching pursuit. Journal of Communications and Networks, 2016, 18, 699-712.	2.6	12
107	Packet Structure and Receiver Design for Low-Latency Communications with Ultra-Small Packets. , 2016, , .		8
108	Kalman-based time-varying sparse channel estimation. , 2016, , .		0

#	Article	IF	Citations
109	Exploiting dominant eigendirections for feedback compression for FDD-based massive MIMO systems. , 2016, , .		8
110	Localization of Internet of Things network via Euclidean distance matrix completion., 2016,,.		2
111	DEARER: A Distance-and-Energy-Aware Routing With Energy Reservation for Energy Harvesting Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 3798-3813.	14.0	46
112	Transmitting correlated sources using energy harvesting transmitters., 2016,,.		1
113	Exact Recovery of Sparse Signals Using Orthogonal Matching Pursuit: How Many Iterations Do We Need?. IEEE Transactions on Signal Processing, 2016, 64, 4194-4202.	5.3	40
114	A MIMO Relay With Delayed Feedback Can Improve DoF in \$K\$- User MISO Interference Channel With No CSIT. IEEE Transactions on Vehicular Technology, 2016, 65, 10188-10192.	6.3	6
115	Joint Channel Training and Feedback for FDD Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 8762-8767.	6.3	59
116	Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO. IEEE Transactions on Communications, 2016, 64, 601-617.	7.8	173
117	Compressive sensing based pilot reduction technique for massive MIMO systems. , 2015, , .		2
118	Joint CSIT Acquisition Based on Low-Rank Matrix Completion for FDD Massive MIMO Systems. IEEE Communications Letters, 2015, 19, 2178-2181.	4.1	78
119	Downlink Pilot Reduction for Massive MIMO Systems via Compressed Sensing. IEEE Communications Letters, 2015, 19, 1889-1892.	4.1	28
120	Iterative group detection and decoding for large MIMO systems. Journal of Communications and Networks, 2015, 17, 609-621.	2.6	37
121	Guest Editorial Location-Awareness for Radios and Networks, Part II. IEEE Journal on Selected Areas in Communications, 2015, 33, 2269-2271.	14.0	1
122	Soft decision-directed channel estimation for multiuser MIMO systems. , 2015, , .		1
123	Guest Editorial Location-Awareness for Radios and Networks, Part I. IEEE Journal on Selected Areas in Communications, 2015, 33, 1285-1287.	14.0	3
124	Iterative Channel Estimation Using Virtual Pilot Signals for MIMO-OFDM Systems. IEEE Transactions on Signal Processing, 2015, 63, 3032-3045.	5.3	60
125	Statistical Recovery of Simultaneously Sparse Time-Varying Signals From Multiple Measurement Vectors. IEEE Transactions on Signal Processing, 2015, 63, 6136-6148.	5.3	28
126	Antenna Grouping Based Feedback Compression for FDD-Based Massive MIMO Systems. IEEE Transactions on Communications, 2015, 63, 3261-3274.	7.8	114

#	Article	IF	Citations
127	Antenna group selection based user scheduling for massive MIMO systems. , 2014, , .		12
128	New approach for massive MIMO detection using sparse error recovery. , 2014, , .		20
129	Multipath Matching Pursuit. IEEE Transactions on Information Theory, 2014, 60, 2986-3001.	2.4	141
130	Sparse Detection With Integer Constraint Using Multipath Matching Pursuit. IEEE Communications Letters, 2014, 18, 1851-1854.	4.1	22
131	On the Beamforming Design for MIMO Multipair Two-Way Relay Channels. IEEE Transactions on Vehicular Technology, 2012, 61, 3301-3306.	6.3	20
132	Towards the Performance of ML and the Complexity of MMSE: A Hybrid Approach for Multiuser Detection. IEEE Transactions on Wireless Communications, 2012, 11, 2508-2519.	9.2	4
133	Iterative interstream interference cancellation for MIMO HSPA+ system. Journal of Communications and Networks, 2012, 14, 273-279.	2.6	2
134	Multiuser Detection via Compressive Sensing. IEEE Communications Letters, 2012, 16, 972-974.	4.1	105
135	Generalized Orthogonal Matching Pursuit. IEEE Transactions on Signal Processing, 2012, 60, 6202-6216.	5.3	494
136	A Vector Perturbation with User Selection for Multiuser MIMO Downlink. IEEE Transactions on Communications, 2012, 60, 3322-3331.	7.8	12
137	On the Recovery Limit of Sparse Signals Using Orthogonal Matching Pursuit. IEEE Transactions on Signal Processing, 2012, 60, 4973-4976.	5.3	143
138	A MMSE Vector Precoding with Block Diagonalization for Multiuser MIMO Downlink. IEEE Transactions on Communications, 2012, 60, 569-577.	7.8	39
139	Efficient Soft-Input Soft-Output Tree Detection via an Improved Path Metric. IEEE Transactions on Information Theory, 2012, 58, 1518-1533.	2.4	19
140	Multiple Candidate Matching Pursuit. Journal of Broadcast Engineering, 2012, 17, 954-963.	0.1	1
141	On further reduction of complexity in tree pruning based sphere search. IEEE Transactions on Communications, 2010, 58, 417-422.	7.8	31
142	Fast High-Quality Volume Ray Casting with Virtual Samplings. IEEE Transactions on Visualization and Computer Graphics, 2010, 16, 1525-1532.	4.4	15
143	Decision-Feedback Closest Lattice Point Search for UMTS HSPA System. IEEE Signal Processing Letters, 2009, 16, 1035-1038.	3.6	0
144	Joint Modulation Classification and Detection Using Sphere Decoding. IEEE Signal Processing Letters, 2009, 16, 778-781.	3.6	8

#	Article	IF	CITATIONS
145	Sphere Decoding With a Probabilistic Tree Pruning. IEEE Transactions on Signal Processing, 2008, 56, 4867-4878.	5. 3	88
146	Low-Power Filtering Via Minimum Power Soft Error Cancellation. IEEE Transactions on Signal Processing, 2007, 55, 5084-5096.	5.3	27
147	Energy-efficient soft error-tolerant digital signal processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2006, 14, 336-348.	3.1	98
148	Reliable low-power digital signal processing via reduced precision redundancy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2004, 12, 497-510.	3.1	162
149	Complexity analysis of multicarrier and single-carrier systems for very high-speed digital subscriber line. IEEE Transactions on Signal Processing, 2003, 51, 282-292.	5.3	7