List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The natural product berberine synergizes with osimertinib preferentially against MET-amplified osimertinib-resistant lung cancer via direct MET inhibition. Pharmacological Research, 2022, 175, 105998.	7.1	21
2	Overcoming acquired resistance to third-generation EGFR inhibitors by targeting activation of intrinsic apoptotic pathway through Mcl-1 inhibition, Bax activation, or both. Oncogene, 2022, 41, 1691-1700.	5.9	9
3	Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APC-1252-M1, a novel Bcl-2/Bcl-XL dual inhibitor that induces Bax-dependent apoptosis. Neoplasia, 2022, 29, 100798.	5.3	5
4	Therapeutic efficacy of the novel SHP2 degrader SHP2-D26, alone or in combination, against lung cancer is associated with modulation of p70S6K/S6, Bim and Mcl-1. Cancer Gene Therapy, 2022, 29, 1558-1569.	4.6	7
5	The novel BET degrader, QCA570, is highly active against the growth of human NSCLC cells and synergizes with osimertinib in suppressing osimertinib-resistant EGFR-mutant NSCLC cells American Journal of Cancer Research, 2022, 12, 779-792.	1.4	0
6	mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why?. Frontiers of Medicine, 2021, 15, 221-231.	3.4	34
7	YAP1 Expression in SCLC Defines a Distinct Subtype With T-cell–Inflamed Phenotype. Journal of Thoracic Oncology, 2021, 16, 464-476.	1.1	93
8	Downregulation of death receptor 4 is tightly associated with positive response of EGFR mutant lung cancer to EGFR-targeted therapy and improved prognosis. Theranostics, 2021, 11, 3964-3980.	10.0	15
9	Managing Acquired Resistance to Third-Generation EGFR Tyrosine Kinase Inhibitors Through Co-Targeting MEK/ERK Signaling. Lung Cancer: Targets and Therapy, 2021, Volume 12, 1-10.	2.7	11
10	Regulation of Cancer Metastasis by TRAIL/Death Receptor Signaling. Biomolecules, 2021, 11, 499.	4.0	20
11	Rictor, an essential component of mTOR complex 2, undergoes caspase-mediated cleavage during apoptosis induced by multiple stimuli. Apoptosis: an International Journal on Programmed Cell Death, 2021, 26, 338-347.	4.9	4
12	Membrane-Associated RING-CH 8 Functions as a Novel PD-L1 E3 Ligase to Mediate PD-L1 Degradation Induced by EGFR Inhibitors. Molecular Cancer Research, 2021, 19, 1622-1634.	3.4	19
13	Targeting c-Myc to Overcome Acquired Resistance of EGFR Mutant NSCLC Cells to the Third-Generation EGFR Tyrosine Kinase Inhibitor, Osimertinib. Cancer Research, 2021, 81, 4822-4834.	0.9	29
14	Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer. Acta Biomaterialia, 2021, 129, 258-268.	8.3	18
15	Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis. Cell Reports Methods, 2021, 1, 100050.	2.9	10
16	MET inhibition downregulatesÂDR4 expression in MET-amplified lung cancer cells with acquired resistance to EGFR inhibitors through suppressing AP-1-mediated transcription. Neoplasia, 2021, 23, 766-774.	5.3	8
17	Re-enforcing the strategy of targeting MEK/ERK signaling to overcome acquired resistance to third generation EGFR inhibitors. Oncoscience, 2021, 8, 80-81.	2.2	1
18	Taking action early to manage emergence of acquired resistance to osimertinib or other third generation EGFR inhibitors. Oncoscience, 2021, 8, 101-102.	2.2	1

#	Article	IF	CITATIONS
19	Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-dependent apoptosis. Cancer Letters, 2021, 519, 141-149.	7.2	8
20	Induction of SREBP1 degradation coupled with suppression of SREBP1-mediated lipogenesis impacts the response of EGFR mutant NSCLC cells to osimertinib. Oncogene, 2021, 40, 6653-6665.	5.9	17
21	ERK inhibition effectively overcomes acquired resistance of epidermal growth factor receptorâ€mutant non–small cell lung cancer cells to osimertinib. Cancer, 2020, 126, 1339-1350.	4.1	40
22	Searching for the real function of mTOR signaling in the regulation of PD-L1 expression. Translational Oncology, 2020, 13, 100847.	3.7	20
23	Inhibition of ACK1 delays and overcomes acquired resistance of EGFR mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib. Lung Cancer, 2020, 150, 26-35.	2.0	11
24	MEK or ERK inhibition effectively abrogates emergence of acquired osimertinib resistance in the treatment of epidermal growth factor receptor–mutant lung cancers. Cancer, 2020, 126, 3788-3799.	4.1	26
25	BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of Mcl-1. Cancer Research, 2020, 80, 2380-2393.	0.9	28
26	A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics, 2020, 10, 3708-3721.	10.0	36
27	Overcoming acquired resistance of EGFRâ€mutant NSCLC cells to the third generation EGFR inhibitor, osimertinib, with the natural product honokiol. Molecular Oncology, 2020, 14, 882-895.	4.6	26
28	Overcoming acquired resistance of epidermal growth factor receptorâ€mutant non–small cell lung cancer cells to osimertinib by combining osimertinib with the histone deacetylase inhibitor panobinostat (LBH589). Cancer, 2020, 126, 2024-2033.	4.1	32
29	Does the natural product, honokiol, have value in the battle against osimertinib resistance?. Oncoscience, 2020, 7, 73-75.	2.2	0
30	The novel MET inhibitor, HQP8361, possesses single agent activity and enhances therapeutic efficacy of AZD9291 (osimertinib) against AZD9291-resistant NSCLC cells with activated MET. American Journal of Cancer Research, 2020, 10, 3316-3327.	1.4	2
31	Does the natural product, honokiol, have value in the battle against osimertinib resistance?. Oncoscience, 2020, 7, 73-75.	2.2	0
32	Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhancing protein stabilization accompanied with enhanced β-TrCP degradation. Oncogene, 2019, 38, 6270-6282.	5.9	53
33	MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. Journal of Hematology and Oncology, 2019, 12, 63.	17.0	181
34	mTORC2 Suppresses GSK3-Dependent Snail Degradation to Positively Regulate Cancer Cell Invasion and Metastasis. Cancer Research, 2019, 79, 3725-3736.	0.9	20
35	The Third-Generation EGFR Inhibitor, Osimertinib, Promotes c-FLIP Degradation, Enhancing Apoptosis Including TRAIL-Induced Apoptosis in NSCLC Cells with Activating EGFR Mutations. Translational Oncology, 2019, 12, 705-713.	3.7	20
36	Tumour necrosis factorâ€Ì±â€induced protein 8â€ŀike 2 is a novel regulator of proliferation, migration, and invasion in human rectal adenocarcinoma cells. Journal of Cellular and Molecular Medicine, 2019, 23, 1698-1713.	3.6	18

#	Article	IF	CITATIONS
37	Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS ONE, 2019, 14, e0206309.	2.5	7
38	Does osimertinib treatment discriminate young patients?. Journal of Thoracic Disease, 2019, 11, S1852-S1854.	1.4	1
39	Monocyte chemotactic protein-induced protein-1 enhances DR5 degradation and negatively regulates DR5 activation-induced apoptosis through its deubiquitinase function. Oncogene, 2018, 37, 3415-3425.	5.9	15
40	Inhibition of IGF1R enhances 2-deoxyglucose in the treatment of non-small cell lung cancer. Lung Cancer, 2018, 123, 36-43.	2.0	11
41	Co-inhibition of BET and proteasome enhances ER stress and Bim-dependent apoptosis with augmented cancer therapeutic efficacy. Cancer Letters, 2018, 435, 44-54.	7.2	23
42	Therapeutic potential of osimertinib in the treatment of lung cancer with HER2 aberrations. Translational Cancer Research, 2018, 7, S577-S579.	1.0	0
43	Modulation of Bax and mTOR for Cancer Therapeutics. Cancer Research, 2017, 77, 3001-3012.	0.9	24
44	Inhibition of p70S6K does not mimic the enhancement of Akt phosphorylation by rapamycin. Heliyon, 2017, 3, e00378.	3.2	11
45	The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Scientific Reports, 2017, 7, 8027.	3.3	25
46	Overcoming Acquired Resistance to AZD9291, A Third-Generation EGFR Inhibitor, through Modulation of MEK/ERK-Dependent Bim and Mcl-1 Degradation. Clinical Cancer Research, 2017, 23, 6567-6579.	7.0	103
47	DR5 suppression induces sphingosine-1-phosphate-dependent TRAF2 polyubiquitination, leading to activation of JNK/AP-1 and promotion of cancer cell invasion. Cell Communication and Signaling, 2017, 15, 18.	6.5	8
48	Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. Journal of Translational Medicine, 2016, 14, 111.	4.4	78
49	Human papillomavirus oncoprotein E6 upregulates c-Met through p53 downregulation. European Journal of Cancer, 2016, 65, 21-32.	2.8	25
50	Met gene amplification and protein hyperactivation is a mechanism of resistance to both first and third generation EGFR inhibitors in lung cancer treatment. Cancer Letters, 2016, 380, 494-504.	7.2	137
51	Expression of Death Receptor 4 Is Positively Regulated by MEK/ERK/AP-1 Signaling and Suppressed upon MEK Inhibition. Journal of Biological Chemistry, 2016, 291, 21694-21702.	3.4	22
52	Paradoxical activation of MEK/ERK signaling induced by B-Raf inhibition enhances DR5 expression and DR5 activation-induced apoptosis in Ras-mutant cancer cells. Scientific Reports, 2016, 6, 26803.	3.3	14
53	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
54	GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth. Oncotarget, 2015, 6, 8974-8987.	1.8	15

#	Article	IF	CITATIONS
55	Enhancing therapeutic efficacy of the MEK inhibitor, MEK162, by blocking autophagy or inhibiting PI3K/Akt signaling in human lung cancer cells. Cancer Letters, 2015, 364, 70-78.	7.2	40
56	A Translational, Pharmacodynamic, and Pharmacokinetic Phase IB Clinical Study of Everolimus in Resectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2015, 21, 1859-1868.	7.0	22
57	Internal Ribosome Entry Site-Based Bicistronic In Situ Reporter Assays for Discovery of Transcription-Targeted Lead Compounds. Chemistry and Biology, 2015, 22, 957-964.	6.0	6
58	Rictor Undergoes Glycogen Synthase Kinase 3 (GSK3)-dependent, FBXW7-mediated Ubiquitination and Proteasomal Degradation. Journal of Biological Chemistry, 2015, 290, 14120-14129.	3.4	59
59	mTOR Complex 2 Stabilizes Mcl-1 Protein by Suppressing Its Glycogen Synthase Kinase 3-Dependent and SCF-FBXW7-Mediated Degradation. Molecular and Cellular Biology, 2015, 35, 2344-2355.	2.3	48
60	Cables1 Complex Couples Survival Signaling to the Cell Death Machinery. Cancer Research, 2015, 75, 147-158.	0.9	35
61	The novel proteasome inhibitor carfilzomib activates and enhances extrinsic apoptosis involving stabilization of death receptor 5. Oncotarget, 2015, 6, 17532-17542.	1.8	38
62	The BET bromodomain inhibitor, JQ1, facilitates c-FLIP degradation and enhances TRAIL-induced apoptosis independent of BRD4 and c-Myc inhibition. Oncotarget, 2015, 6, 34669-34679.	1.8	35
63	Suppression of death receptor 5 enhances cancer cell invasion and metastasis through activation of caspase-8/TRAF2-mediated signaling. Oncotarget, 2015, 6, 41324-41338.	1.8	28
64	Phase 1 and pharmacokinetic study of everolimus in combination with cetuximab and carboplatin for recurrent/metastatic squamous cell carcinoma of the head and neck. Cancer, 2014, 120, 3940-3951.	4.1	53
65	Poly (<scp>ADP</scp>) ribose polymerase enzyme inhibitor, veliparib, potentiates chemotherapy and radiation in vitro and in vivo in small cell lung cancer. Cancer Medicine, 2014, 3, 1579-1594.	2.8	74
66	Maintaining Glycogen Synthase Kinase-3 Activity Is Critical for mTOR Kinase Inhibitors to Inhibit Cancer Cell Growth. Cancer Research, 2014, 74, 2555-2568.	0.9	40
67	MLN4924, an NAE inhibitor, suppresses AKT and mTOR signaling via upregulation of REDD1 in human myeloma cells. Blood, 2014, 123, 3269-3276.	1.4	64
68	c-FLIP links mTORC2 to apoptosis. Oncoscience, 2014, 1, 306-307.	2.2	2
69	Soluble FAS ligand as a biomarker of disease recurrence in differentiated thyroid cancer. Cancer, 2013, 119, 1503-1511.	4.1	14
70	mTOR kinase inhibitors as potential cancer therapeutic drugs. Cancer Letters, 2013, 340, 1-8.	7.2	128
71	Novel Small-Molecule Inhibitors of Bcl-XL to Treat Lung Cancer. Cancer Research, 2013, 73, 5485-5496.	0.9	62
72	The E3 ubiquitin ligases β-TrCP and FBXW7 cooperatively mediates GSK3-dependent Mcl-1 degradation induced by the Akt inhibitor API-1, resulting in apoptosis. Molecular Cancer, 2013, 12, 146.	19.2	58

#	Article	IF	CITATIONS
73	The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis. Cancer Letters, 2013, 338, 229-238.	7.2	28
74	Blockade of Glioma Proliferation Through Allosteric Inhibition of JAK2. Science Signaling, 2013, 6, ra55.	3.6	23
75	mTOR Complex 2 Is Involved in Regulation of Cbl-Dependent c-FLIP Degradation and Sensitivity of TRAIL-Induced Apoptosis. Cancer Research, 2013, 73, 1946-1957.	0.9	36
76	Protein Phosphatase 2A and DNA-dependent Protein Kinase Are Involved in Mediating Rapamycin-induced Akt Phosphorylation. Journal of Biological Chemistry, 2013, 288, 13215-13224.	3.4	47
77	Niclosamide Overcomes Acquired Resistance to Erlotinib through Suppression of STAT3 in Non–Small Cell Lung Cancer. Molecular Cancer Therapeutics, 2013, 12, 2200-2212.	4.1	137
78	Prognostic impact of Fas-associated death domain, a key component in death receptor signaling, is dependent on the presence of lymph node metastasis in head and neck squamous cell carcinoma. Cancer Biology and Therapy, 2013, 14, 365-369.	3.4	19
79	Impact of genetic alterations on mTOR-targeted cancer therapy. Chinese Journal of Cancer, 2013, 32, 270-274.	4.9	8
80	Rapamycin Induces Bad Phosphorylation in Association with Its Resistance to Human Lung Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 45-56.	4.1	40
81	Elevated expression of eukaryotic translation initiation factor 4E is associated with proliferation, invasion and acquired resistance to erlotinib in lung cancer. Cancer Biology and Therapy, 2012, 13, 272-280.	3.4	52
82	Acridine Yellow G Blocks Glioblastoma Growth via Dual Inhibition of Epidermal Growth Factor Receptor and Protein Kinase C Kinases. Journal of Biological Chemistry, 2012, 287, 6113-6127.	3.4	11
83	Oncogenic Ras and B-Raf Proteins Positively Regulate Death Receptor 5 Expression through Co-activation of ERK and JNK Signaling. Journal of Biological Chemistry, 2012, 287, 257-267.	3.4	35
84	Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncology Reports, 2012, 28, 659-667.	2.6	22
85	The Novel Akt Inhibitor API-1 Induces c-FLIP Degradation and Synergizes with TRAIL to Augment Apoptosis Independent of Akt Inhibition. Cancer Prevention Research, 2012, 5, 612-620.	1.5	15
86	NNK promotes migration and invasion of lung cancer cells through activation of c-Src/PKCι/FAK loop. Cancer Letters, 2012, 318, 106-113.	7.2	53
87	K-Ras mutation-mediated IGF-1-induced feedback ERK activation contributes to the rapalog resistance in pancreatic ductal adenocarcinomas. Cancer Letters, 2012, 322, 58-69.	7.2	24
88	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
89	The combination of RAD001 and NVP-BKM120 synergistically inhibits the growth of lung cancer in vitro and in vivo. Cancer Letters, 2012, 325, 139-146.	7.2	54
90	c-Myc Suppression of DNA Double-strand Break Repair. Neoplasia, 2012, 14, 1190-IN35.	5.3	48

#	Article	IF	CITATIONS
91	Retinoic Acid Enhances TRAIL-Induced Apoptosis in Cancer Cells by Upregulating TRAIL Receptor 1 Expression. Cancer Research, 2011, 71, 5245-5254.	0.9	41
92	The Combination of RAD001 and NVP-BEZ235 Exerts Synergistic Anticancer Activity against Non-Small Cell Lung Cancer In Vitro and In Vivo. PLoS ONE, 2011, 6, e20899.	2.5	64
93	The NEDD8-Activating Enzyme Inhibitor, MLN4924, Cooperates with TRAIL to Augment Apoptosis through Facilitating c-FLIP Degradation in Head and Neck Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 2415-2425.	4.1	40
94	Celecoxib Promotes c-FLIP Degradation through Akt-Independent Inhibition of GSK3. Cancer Research, 2011, 71, 6270-6281.	0.9	35
95	Pleiotropic functions of EAPII/TTRAP/TDP2. Cell Cycle, 2011, 10, 3274-3283.	2.6	25
96	Drozitumab, a Human Antibody to Death Receptor 5, Has Potent Antitumor Activity against Rhabdomyosarcoma with the Expression of Caspase-8 Predictive of Response. Clinical Cancer Research, 2011, 17, 3181-3192.	7.0	38
97	Combinatorial Effects of Lapatinib and Rapamycin in Triple-Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2011, 10, 1460-1469.	4.1	90
98	Therapeutic Potential and Molecular Mechanism of a Novel, Potent, Nonpeptide, Smac Mimetic SM-164 in Combination with TRAIL for Cancer Treatment. Molecular Cancer Therapeutics, 2011, 10, 902-914.	4.1	64
99	Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biology and Therapy, 2011, 12, 549-555.	3.4	56
100	Understanding the Role of the Death Receptor 5/FADD/caspase-8 Death Signaling in Cancer Metastasis. Molecular and Cellular Pharmacology, 2011, 3, 31-34.	1.7	27
101	Tipifarnib sensitizes cells to proteasome inhibition by blocking degradation of bortezomib-induced aggresomes. Blood, 2010, 116, 5285-5288.	1.4	25
102	Phase 1 and pharmacokinetic study of everolimus, a mammalian target of rapamycin inhibitor, in combination with docetaxel for recurrent/refractory nonsmall cell lung cancer. Cancer, 2010, 116, 3903-3909.	4.1	36
103	Mono- or Double-Site Phosphorylation Distinctly Regulates the Proapoptotic Function of Bax. PLoS ONE, 2010, 5, e13393.	2.5	28
104	Proteasome Inhibitor PS-341 (Bortezomib) Induces Calpain-dependent lκBα Degradation. Journal of Biological Chemistry, 2010, 285, 16096-16104.	3.4	91
105	ERK/Ribosomal S6 Kinase (RSK) Signaling Positively Regulates Death Receptor 5 Expression through Co-activation of CHOP and Elk1. Journal of Biological Chemistry, 2010, 285, 41310-41319.	3.4	56
106	Enhancing perifosine's anticancer efficacy by preventing autophagy. Autophagy, 2010, 6, 184-185.	9.1	24
107	N-acetylcysteine, reactive oxygen species and beyond. Cancer Biology and Therapy, 2010, 9, 109-110.	3.4	225
108	The eIF4E/eIF4G Interaction Inhibitor 4EGI-1 Augments TRAIL-Mediated Apoptosis through c-FLIP Down-regulation and DR5 Induction Independent of Inhibition of Cap-Dependent Protein Translation. Neoplasia, 2010, 12, 346-IN7.	5.3	81

#	Article	IF	CITATIONS
109	Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of Geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Molecular Cancer, 2010, 9, 23.	19.2	25
110	c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Molecular Cancer, 2010, 9, 315.	19.2	29
111	Protein Phosphatase 2A Negatively Regulates Eukaryotic Initiation Factor 4E Phosphorylation and elF4F Assembly through Direct Dephosphorylation of Mnk and elF4E. Neoplasia, 2010, 12, 848-855.	5.3	69
112	p90 ribosomal S6 kinase 2 promotes invasion and metastasis of human head and neck squamous cell carcinoma cells. Journal of Clinical Investigation, 2010, 120, 1165-1177.	8.2	133
113	c-FLIP Degradation Mediates Sensitization of Pancreatic Cancer Cells to TRAIL-Induced Apoptosis by the Histone Deacetylase Inhibitor LBH589. PLoS ONE, 2010, 5, e10376.	2.5	46
114	Analysis of Death Receptor 5 and Caspase-8 Expression in Primary and Metastatic Head and Neck Squamous Cell Carcinoma and Their Prognostic Impact. PLoS ONE, 2010, 5, e12178.	2.5	41
115	Enhancing mTOR-targeted cancer therapy. Expert Opinion on Therapeutic Targets, 2009, 13, 1193-1203.	3.4	56
116	The Glycolytic Inhibitor 2-Deoxyglucose Activates Multiple Prosurvival Pathways through IGF1R. Journal of Biological Chemistry, 2009, 284, 23225-23233.	3.4	103
117	Phosphorylated eukaryotic translation initiation factor 4 (eIF4E) is elevated in human cancer tissues. Cancer Biology and Therapy, 2009, 8, 1463-1469.	3.4	97
118	Celecoxib antagonizes perifosine's anticancer activity involving a cyclooxygenase-2-dependent mechanism. Molecular Cancer Therapeutics, 2009, 8, 2575-2585.	4.1	14
119	Perifosine Inhibits Mammalian Target of Rapamycin Signaling through Facilitating Degradation of Major Components in the mTOR Axis and Induces Autophagy. Cancer Research, 2009, 69, 8967-8976.	0.9	137
120	The Role of Cetuximab in the Management of Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2009, 10, 230-238.	2.6	11
121	Inhibition of IκB Kinase-Nuclear Factor-κB Signaling Pathway by 3,5-Bis(2-flurobenzylidene)piperidin-4-one (EF24), a Novel Monoketone Analog of Curcumin. Molecular Pharmacology, 2008, 74, 654-661.	2.3	151
122	2-Deoxyglucose induces Akt phosphorylation via a mechanism independent of LKB1/AMP-activated protein kinase signaling activation or glycolysis inhibition. Molecular Cancer Therapeutics, 2008, 7, 809-817.	4.1	79
123	Overcoming mTOR inhibition-induced paradoxical activation of survival signaling pathways enhances mTOR inhibitors' anticancer efficacy. Cancer Biology and Therapy, 2008, 7, 1952-1958.	3.4	86
124	Therapeutic potential of synthetic triterpenoids in neuroblastoma. Cancer Biology and Therapy, 2008, 7, 718-720.	3.4	1
125	Down-regulation of 14-3-3ζ suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 162-167.	7.1	137
126	Coupling of Endoplasmic Reticulum Stress to CDDO-Me–Induced Up-regulation of Death Receptor 5 via a CHOP–Dependent Mechanism Involving JNK Activation. Cancer Research, 2008, 68, 7484-7492.	0.9	109

#	Article	IF	CITATIONS
127	The natural product honokiol preferentially inhibits cellular FLICE-inhibitory protein and augments death receptor–induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2212-2223.	4.1	47
128	LKB1 Is Necessary for Akt-Mediated Phosphorylation of Proapoptotic Proteins. Cancer Research, 2008, 68, 7270-7277.	0.9	68
129	Enhancing Mammalian Target of Rapamycin (mTOR)–Targeted Cancer Therapy by Preventing mTOR/Raptor Inhibition-Initiated, mTOR/Rictor-Independent Akt Activation. Cancer Research, 2008, 68, 7409-7418.	0.9	152
130	Perifosine Synergistically Enhances TRAIL-Induced Myeloma Cell Apoptosis via Up-Regulation of Death Receptors. Clinical Cancer Research, 2008, 14, 5090-5098.	7.0	38
131	CAAT/Enhancer Binding Protein Homologous Protein–Dependent Death Receptor 5 Induction Is a Major Component of SHetA2-Induced Apoptosis in Lung Cancer Cells. Cancer Research, 2008, 68, 5335-5344.	0.9	44
132	Involvement of c-FLIP and survivin down-regulation in flexible heteroarotinoid-induced apoptosis and enhancement of TRAIL-initiated apoptosis in lung cancer cells. Molecular Cancer Therapeutics, 2008, 7, 3556-3565.	4.1	48
133	Modulation of death receptors by cancer therapeutic agents. Cancer Biology and Therapy, 2008, 7, 163-173.	3.4	102
134	Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase-Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation. Molecular and Cellular Biology, 2007, 27, 7405-7413.	2.3	137
135	Assessment of apoptosis-inducing effects of docetaxel combined with the proteasome inhibitor PS-341 in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 749-754.	3.4	8
136	PPARÎ ³ ligands enhance TRAIL-induced apoptosis through DR5 upregulation and c-FLIP downregulation in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 99-106.	3.4	53
137	c-FLIP downregulation contributes to apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me) in human lung cancer cells. Cancer Biology and Therapy, 2007, 6, 1614-1620.	3.4	48
138	CCAAT/Enhancer Binding Protein Homologous Protein-Dependent Death Receptor 5 Induction and Ubiquitin/Proteasome-Mediated Cellular FLICE-Inhibitory Protein Down-Regulation Contribute to Enhancement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis by Dimethyl-Celecoxib in Human Non–Small-Cell Lung Cancer Cells. Molecular Pharmacology, 2007, 72, 1269-1279.	2.3	45
139	The Farnesyltransferase Inhibitor R115777 Up-regulates the Expression of Death Receptor 5 and Enhances TRAIL-Induced Apoptosis in Human Lung Cancer Cells. Cancer Research, 2007, 67, 4973-4980.	0.9	14
140	The Farnesyltransferase Inhibitor Lonafarnib Induces CCAAT/Enhancer-binding Protein Homologous Protein-dependent Expression of Death Receptor 5, Leading to Induction of Apoptosis in Human Cancer Cells. Journal of Biological Chemistry, 2007, 282, 18800-18809.	3.4	49
141	The alkylphospholipid perifosine induces apoptosis of human lung cancer cells requiring inhibition of Akt and activation of the extrinsic apoptotic pathway. Molecular Cancer Therapeutics, 2007, 6, 2029-2038.	4.1	87
142	The Proteasome Inhibitor PS-341 (Bortezomib) Up-Regulates DR5 Expression Leading to Induction of Apoptosis and Enhancement of TRAIL-Induced Apoptosis Despite Up-Regulation of c-FLIP and Survivin Expression in Human NSCLC Cells. Cancer Research, 2007, 67, 4981-4988.	0.9	150
143	Akt phosphorylation regulates the tumour-suppressor merlin through ubiquitination and degradation. Nature Cell Biology, 2007, 9, 1199-1207.	10.3	82
144	Depletion of ntracellular Glutathione Contributes to JNK-Mediated Death Receptor 5 Upregulation and Apoptosis Induction by the Novel Synthetic Triterpenoid Methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me)1. Cancer Biology and Therapy, 2006, 5, 492-497.	3.4	54

#	Article	IF	CITATIONS
145	Vitamin C Inactivates the Proteasome Inhibitor PS-341 in Human Cancer Cells. Clinical Cancer Research, 2006, 12, 273-280.	7.0	96
146	Cellular FLICE-Inhibitory Protein Down-regulation Contributes to Celecoxib-Induced Apoptosis in Human Lung Cancer Cells. Cancer Research, 2006, 66, 11115-11119.	0.9	69
147	Targeting mTOR signaling for lung cancer therapy. Journal of Thoracic Oncology, 2006, 1, 109-11.	1.1	9
148	Tumor Growth Inhibition by Simultaneously Blocking Epidermal Growth Factor Receptor and Cyclooxygenase-2 in a Xenograft Model. Clinical Cancer Research, 2005, 11, 6261-6269.	7.0	123
149	Activation of Nuclear Factor-ήB Contributes to Induction of Death Receptors and Apoptosis by the Synthetic Retinoid CD437 in DU145 Human Prostate Cancer Cells. Cancer Research, 2005, 65, 6354-6363.	0.9	79
150	Decoy Receptor 2 (DcR2) Is a p53 Target Gene and Regulates Chemosensitivity. Cancer Research, 2005, 65, 9169-9175.	0.9	73
151	Enhanced growth inhibition and apoptosis induction in NSCLC cell lines by combination of celecoxib and 4HPR at clinically relevant concentrations. Cancer Biology and Therapy, 2005, 4, 413-419.	3.4	30
152	Activation of Akt and eIF4E Survival Pathways by Rapamycin-Mediated Mammalian Target of Rapamycin Inhibition. Cancer Research, 2005, 65, 7052-7058.	0.9	759
153	c-Jun NH2-Terminal Kinase-Mediated Up-regulation of Death Receptor 5 Contributes to Induction of Apoptosis by the Novel Synthetic Triterpenoid Methyl-2-Cyano-3,12-Dioxooleana-1, 9-Dien-28-Oate in Human Lung Cancer Cells. Cancer Research, 2004, 64, 7570-7578.	0.9	161
154	The farnesyltransferase inhibitor lonafarnib induces growth arrest or apoptosis of human lung cancer cells without downregulation of Akt. Cancer Biology and Therapy, 2004, 3, 1092-1098.	3.4	27
155	Retinoic Acid Receptor Beta and Colon Cancer. Cancer Biology and Therapy, 2004, 3, 87-88.	3.4	11
156	Apoptosis as a Novel Target for Cancer Chemoprevention. Journal of the National Cancer Institute, 2004, 96, 662-672.	6.3	463
157	Death Receptor Regulation and Celecoxib-Induced Apoptosis in Human Lung Cancer Cells. Journal of the National Cancer Institute, 2004, 96, 1769-1780.	6.3	240
158	p53 Upregulates Death Receptor 4 Expression through an Intronic p53 Binding Site. Cancer Research, 2004, 64, 5078-5083.	0.9	158
159	Combination of Farnesyl Transferase Inhibition (Lonafarnib) and Proteasome Inhibition (Bortezomib) Results in Rapid Caspase Activation and down Regulation of p-AKT in Myeloma cell Lines and Primary Myeloma Cells Blood, 2004, 104, 2471-2471.	1.4	1
160	Hypermethylation of the Death-Associated Protein Kinase Promoter Attenuates the Sensitivity to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Human Non–Small Cell Lung Cancer Cells. Molecular Cancer Research, 2004, 2, 685-691.	3.4	28
161	Recent developments of retinoids as therapeutic agents. Expert Opinion on Therapeutic Patents, 2002, 12, 529-542.	5.0	4
162	How Much Do We Know About Retinoid-Regulated Genes?. Cancer Biology and Therapy, 2002, 1, 28-30.	3.4	4

#	Article	IF	CITATIONS
163	Retinoids and their receptors in cancer development and chemoprevention. Critical Reviews in Oncology/Hematology, 2002, 41, 41-55.	4.4	293
164	Evidence that the human death receptor 4 is regulated by activator protein 1. Oncogene, 2002, 21, 3121-3129.	5.9	70
165	The synthetic retinoid CD437 selectively induces apoptosis in human lung cancer cells while sparing normal human lung epithelial cells. Cancer Research, 2002, 62, 2430-6.	0.9	67
166	Identification of a novel synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate, that potently induces caspase-mediated apoptosis in human lung cancer cells. Molecular Cancer Therapeutics, 2002, 1, 177-84.	4.1	45
167	Overexpression of Bcl2 Blocks TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Induced Apoptosis in Human Lung Cancer Cells. Biochemical and Biophysical Research Communications, 2001, 280, 788-797.	2.1	125
168	Evidence that the death receptor DR4 is a DNA damageâ€inducible, p53â€regulated gene. Journal of Cellular Physiology, 2001, 188, 98-105.	4.1	126
169	All-trans-retinoic Acid Enhances the Effect of Adenovirus-Mediated Wild-Type p53 Gene Transfer in Head and Neck Squamous Cell Carcinoma. Laryngoscope, 2001, 111, 1459-1464.	2.0	4
170	Implication of multiple mechanisms in apoptosis induced by the synthetic retinoid CD437 in human prostate carcinoma cells. Oncogene, 2000, 19, 4513-4522.	5.9	63
171	Dual Mechanisms of Action of the Retinoid CD437: Nuclear Retinoic Acid Receptor-Mediated Suppression of Squamous Differentiation and Receptor-Independent Induction of Apoptosis in UMSCC22B Human Head and Neck Squamous Cell Carcinoma Cells. Molecular Pharmacology, 2000, 58, 508-514.	2.3	51
172	Evidence That Retinoic Acid Receptor Î ² Induction by Retinoids Is Important for Tumor Cell Growth Inhibition. Journal of Biological Chemistry, 2000, 275, 17149-17153.	3.4	94
173	Mechanisms of apoptosis induced by the synthetic retinoid CD437 in human non-small cell lung carcinoma cells. Oncogene, 1999, 18, 2357-2365.	5.9	110
174	Implication of c-Myc in apoptosis induced by the retinoid CD437 in human lung carcinoma cells. Oncogene, 1999, 18, 3894-3901.	5.9	31
175	Induction of apoptosis in human non-small cell lung carcinoma cells by the novel synthetic retinoid CD437. , 1997, 173, 279-284.		63