Jinfang Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450636/publications.pdf Version: 2024-02-01

LINEANC 7HU

#	Article	IF	CITATIONS
1	Innate Lymphoid Cells and Intestinal Inflammatory Disorders. International Journal of Molecular Sciences, 2022, 23, 1856.	4.1	10
2	Differential regulation of transcription factor T-bet induction during NK cell development and T helper-1 cell differentiation. Immunity, 2022, 55, 639-655.e7.	14.3	11
3	Redefining the Foreign Antigen and Self-Driven Memory CD4+ T-Cell Compartments via Transcriptomic, Phenotypic, and Functional Analyses. Frontiers in Immunology, 2022, 13, .	4.8	6
4	Recent advances in understanding the Th1/Th2 effector choice. Faculty Reviews, 2021, 10, 30.	3.9	65
5	B cell residency but not T cell–independent IgA switching in the gut requires innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
6	Recent advances in understanding the role of IL-4 signaling. Faculty Reviews, 2021, 10, 71.	3.9	28
7	IFNÎ ³ suppresses the expression of GFI1 and thereby inhibits Th2 cell proliferation. PLoS ONE, 2021, 16, e0260204.	2.5	1
8	Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cellular and Molecular Life Sciences, 2020, 77, 289-303.	5.4	44
9	Differential Expression of the Transcription Factor GATA3 Specifies Lineage and Functions of Innate Lymphoid Cells. Immunity, 2020, 52, 83-95.e4.	14.3	52
10	CD4 T Helper Cell Subsets and Related Human Immunological Disorders. International Journal of Molecular Sciences, 2020, 21, 8011.	4.1	148
11	The Transcription Factor T-bet Resolves Memory B Cell Subsets with Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity, 2020, 52, 842-855.e6.	14.3	144
12	Requirements for the differentiation of innate T-bethigh memory-phenotype CD4+ T lymphocytes under steady state. Nature Communications, 2020, 11, 3366.	12.8	16
13	Enhanced Cell Division Is Required for the Generation of Memory CD4 T Cells to Migrate Into Their Proper Location. Frontiers in Immunology, 2020, 10, 3113.	4.8	2
14	Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell, 2019, 176, 982-997.e16.	28.9	159
15	Editorial: Continued Fascination–A Tribute to a Giant in Immunology, Dr. William E. Paul. Frontiers in Immunology, 2019, 10, 354.	4.8	1
16	BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses. EMBO Journal, 2019, 38, .	7.8	83
17	Cutting Edge: Core Binding Factor β Is Required for Group 2 Innate Lymphoid Cell Activation. Journal of Immunology, 2019, 202, 1669-1673.	0.8	8
18	Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cellular and Molecular Immunology, 2019, 16, 225-235.	10.5	107

#	Article	IF	CITATIONS
19	Lymphoid tissue inducer—A divergent member of the ILC family. Cytokine and Growth Factor Reviews, 2018, 42, 5-12.	7.2	45
20	Transformation of Accessible Chromatin and 3D Nucleome Underlies Lineage Commitment of Early T Cells. Immunity, 2018, 48, 227-242.e8.	14.3	188
21	Foreign antigen-independent memory-phenotype CD4+ T cells: a new player in innate immunity?. Nature Reviews Immunology, 2018, 18, 1-1.	22.7	17
22	Bcl11b, a novel GATA3-interacting protein, suppresses Th1 while limiting Th2 cell differentiation. Journal of Experimental Medicine, 2018, 215, 1449-1462.	8.5	41
23	S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science, 2018, 359, 114-119.	12.6	408
24	T Helper Cell Differentiation, Heterogeneity, and Plasticity. Cold Spring Harbor Perspectives in Biology, 2018, 10, a030338.	5.5	222
25	Transient T-bet expression functionally specifies a distinct T follicular helper subset. Journal of Experimental Medicine, 2018, 215, 2705-2714.	8.5	68
26	Mysterious ILC2 tissue adaptation. Nature Immunology, 2018, 19, 1042-1044.	14.5	13
27	The transcription factor Bhlhe40 is a switch of inflammatory versus antiinflammatory Th1 cell fate determination. Journal of Experimental Medicine, 2018, 215, 1813-1821.	8.5	115
28	PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49, 247-263.e7.	14.3	104
29	Seventeen-Year Journey Working With a Master. Frontiers in Immunology, 2018, 9, 960.	4.8	1
30	Transcriptional regulators dictate innate lymphoid cell fates. Protein and Cell, 2017, 8, 242-254.	11.0	49
31	Cutting Edge: Notch Signaling Promotes the Plasticity of Group-2 Innate Lymphoid Cells. Journal of Immunology, 2017, 198, 1798-1803.	0.8	115
32	Small-Molecule RORγt Antagonists: One Stone Kills Two Birds. Trends in Immunology, 2017, 38, 229-231.	6.8	13
33	IL-7Rα Expression Regulates Murine Dendritic Cell Sensitivity to Thymic Stromal Lymphopoietin. Journal of Immunology, 2017, 198, 3909-3918.	0.8	9
34	Memory-phenotype CD4 ⁺ T cells spontaneously generated under steady-state conditions exert innate T _H 1-like effector function. Science Immunology, 2017, 2, .	11.9	65
35	Dynamic balance between master transcription factors determines the fates and functions of CD4 T cell and innate lymphoid cell subsets. Journal of Experimental Medicine, 2017, 214, 1861-1876.	8.5	165
36	Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4ÂT Cells during Tuberculosis. Cell Reports, 2017, 18, 3091-3104.	6.4	94

#	Article	IF	CITATIONS
37	T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of TH17-induced neuroinflammation. Nature Immunology, 2017, 18, 1117-1127.	14.5	99
38	Histone demethylases UTX and JMJD3 are required for NKT cell development in mice. Cell and Bioscience, 2017, 7, 25.	4.8	28
39	GATA3 Regulates the Development and Functions of Innate Lymphoid Cell Subsets at Multiple Stages. Frontiers in Immunology, 2017, 8, 1571.	4.8	54
40	B Cells Negatively Regulate the Establishment of CD49b+T-bet+ Resting Memory T Helper Cells in the Bone Marrow. Frontiers in Immunology, 2016, 7, 26.	4.8	6
41	The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation. Nature Communications, 2016, 7, 11378.	12.8	37
42	Novel Function of Extracellular Matrix Protein 1 in Suppressing Th17 Cell Development in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2016, 197, 1054-1064.	0.8	22
43	Gfi1, a transcriptional repressor, inhibits the induction of the T helper type 1 programme in activated <scp>CD</scp> 4 T cells. Immunology, 2016, 147, 476-487.	4.4	21
44	Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment. Nature Immunology, 2016, 17, 169-178.	14.5	116
45	Transcriptional Regulatory Network for the Development of Innate Lymphoid Cells. Mediators of Inflammation, 2015, 2015, 1-8.	3.0	10
46	Bcl11b drives the birth of ILC2 innate lymphocytes. Journal of Experimental Medicine, 2015, 212, 828-828.	8.5	11
47	T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine, 2015, 75, 14-24.	3.2	307
48	Individual T Helper Cells Have a Quantitative Cytokine Memory. Immunity, 2015, 42, 108-122.	14.3	38
49	Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells. Cytokine, 2015, 76, 13-24.	3.2	109
50	Tet2: Breaking Down Barriers to T Cell Cytokine Expression. Immunity, 2015, 42, 593-595.	14.3	4
51	Dynamic expression of transcription factors T-bet and GATA-3 by regulatory T cells maintains immunotolerance. Nature Immunology, 2015, 16, 197-206.	14.5	237
52	The Transcription Factor IRF8 Activates Integrin-Mediated TGF-Î ² Signaling and Promotes Neuroinflammation. Immunity, 2014, 40, 187-198.	14.3	111
53	Immunologic Applications of Conditional Gene Modification Technology in the Mouse. Current Protocols in Immunology, 2014, 105, 10.34.1-10.34.13.	3.6	28
54	The Transcription Factor GATA3 Is Critical for the Development of All IL-7Rα-Expressing Innate Lymphoid Cells. Immunity, 2014, 40, 378-388.	14.3	320

#	Article	IF	CITATIONS
55	Transcriptional Regulatory Networks for CD4 T Cell Differentiation. Current Topics in Microbiology and Immunology, 2014, 381, 125-172.	1.1	54
56	TCR signaling fuels Treg cell suppressor function. Nature Immunology, 2014, 15, 1002-1003.	14.5	20
57	miR-155 Activates Cytokine Gene Expression in Th17 Cells by Regulating the DNA-Binding Protein Jarid2 to Relieve Polycomb-Mediated Repression. Immunity, 2014, 40, 865-879.	14.3	178
58	Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. ELife, 2014, 3, e01659.	6.0	478
59	Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nature Immunology, 2013, 14, 1190-1198.	14.5	414
60	TGF-β Cytokine Signaling Promotes CD8+ T Cell Development and Low-Affinity CD4+ T Cell Homeostasis by Regulation of Interleukin-7 Receptor α Expression. Immunity, 2013, 39, 335-346.	14.3	39
61	Growth Factor Independence 1 Antagonizes a p53-Induced DNA Damage Response Pathway in Lymphoblastic Leukemia. Cancer Cell, 2013, 23, 200-214.	16.8	65
62	Thpokâ€independent repression of <i><scp>R</scp>unx3</i> by <scp>G</scp> ata3 during <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell differentiation in the thymus. European Journal of Immunology, 2013, 43, 918-928.	2.9	43
63	Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature Immunology, 2013, 14, 1146-1154.	14.5	510
64	Critical Role of p38 and GATA3 in Natural Helper Cell Function. Journal of Immunology, 2013, 191, 1818-1826.	0.8	109
65	Lipid phosphatases identified by screening a mouse phosphatase shRNA library regulate T-cell differentiation and Protein kinase B AKT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1849-56.	7.1	19
66	MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hematopoietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica, 2012, 97, 818-826.	3.5	55
67	A Molecular Roadmap of Reprogramming Somatic Cells into iPS Cells. Cell, 2012, 151, 1617-1632.	28.9	762
68	The Transcription Factor T-bet Is Induced by Multiple Pathways and Prevents an Endogenous Th2 Cell Program during Th1 Cell Responses. Immunity, 2012, 37, 660-673.	14.3	269
69	STAT6-Dependent Regulation of Th9 Development. Journal of Immunology, 2012, 188, 968-975.	0.8	198
70	Genome-wide Analyses of Transcription Factor GATA3-Mediated Gene Regulation in Distinct T Cell Types. Immunity, 2011, 35, 299-311.	14.3	293
71	Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunology, 2011, 12, 247-254.	14.5	522
72	The transcription factor E4BP4 regulates the production of IL-10 and IL-13 in CD4+ T cells. Nature Immunology, 2011, 12, 450-459.	14.5	184

#	Article	IF	CITATIONS
73	KLF13 sustains thymic memory-like CD8+ T cells in BALB/c mice by regulating IL-4–generating invariant natural killer T cells. Journal of Experimental Medicine, 2011, 208, 1093-1103.	8.5	61
74	An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. International Immunology, 2011, 23, 415-420.	4.0	188
75	GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. Journal of Clinical Investigation, 2011, 121, 4503-4515.	8.2	462
76	The transcription factor Gfi1 regulates G-CSF signaling and neutrophil development through the Ras activator RasGRP1. Blood, 2010, 115, 3970-3979.	1.4	43
77	Evidence that Growth factor independence 1b regulates dormancy and peripheral blood mobilization of hematopoietic stem cells. Blood, 2010, 116, 5149-5161.	1.4	66
78	Differentiation of Effector CD4 T Cell Populations. Annual Review of Immunology, 2010, 28, 445-489.	21.8	2,783
79	The Transcription Factor GATA3 Actively Represses RUNX3 Protein-Regulated Production of Interferon-Î ³ . Immunity, 2010, 32, 507-517.	14.3	151
80	The sequential activity of Gata3 and Thpok is required for the differentiation of CD1dâ€restricted CD4 ⁺ NKT cells. European Journal of Immunology, 2010, 40, 2385-2390.	2.9	46
81	CD4+ T Cell Plasticity—Th2 Cells Join the Crowd. Immunity, 2010, 32, 11-13.	14.3	34
82	Peripheral CD4 ⁺ Tâ€cell differentiation regulated by networks of cytokines and transcription factors. Immunological Reviews, 2010, 238, 247-262.	6.0	479
83	Heterogeneity and plasticity of T helper cells. Cell Research, 2010, 20, 4-12.	12.0	465
84	Transcriptional regulation of Th2 cell differentiation. Immunology and Cell Biology, 2010, 88, 244-249.	2.3	52
85	How are TH2-type immune responses initiated and amplified?. Nature Reviews Immunology, 2010, 10, 225-235.	22.7	780
86	IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13463-13468.	7.1	362
87	Down-regulation of Gfi-1 expression by TGF-Î ² is important for differentiation of Th17 and CD103+ inducible regulatory T cells. Journal of Experimental Medicine, 2009, 206, 329-341.	8.5	124
88	Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nature Immunology, 2009, 10, 1260-1266.	14.5	87
89	Global Mapping of H3K4me3 and H3K27me3 Reveals Specificity and Plasticity in Lineage Fate Determination of Differentiating CD4+ T Cells. Immunity, 2009, 30, 155-167.	14.3	1,005
90	Gfi1 integrates progenitor versus granulocytic transcriptional programming. Blood, 2009, 113, 5466-5475.	1.4	64

#	Article	IF	CITATIONS
91	Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nature Immunology, 2008, 9, 1122-1130.	14.5	186
92	CD4 T cells: fates, functions, and faults. Blood, 2008, 112, 1557-1569.	1.4	1,333
93	Formation of IL-7Rαhigh and IL-7Rαlow CD8 T Cells during Infection Is Regulated by the Opposing Functions of GABPα and Gfi-1. Journal of Immunology, 2008, 180, 5309-5319.	0.8	72
94	Elevating Calcium in Th2 Cells Activates Multiple Pathways to Induce IL-4 Transcription and mRNA Stabilization. Journal of Immunology, 2008, 181, 3984-3993.	0.8	31
95	Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells. Blood, 2007, 110, 2276-2285.	1.4	61
96	Transcriptional regulation of Th2 differentiation. Retrovirology, 2006, 3, 1.	2.0	0
97	GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Research, 2006, 16, 3-10.	12.0	352
98	Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18214-18219.	7.1	102
99	Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. Journal of Experimental Medicine, 2005, 202, 793-804.	8.5	237
100	GATA3 and STAT5 – Critical Inducers of the Th2 Fate. Retrovirology, 2005, 2, S16.	2.0	1
101	Interleukin 2 plays a central role in Th2 differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3880-3885.	7.1	340
102	Basophils Produce IL-4 and Accumulate in Tissues after Infection with a Th2-inducing Parasite. Journal of Experimental Medicine, 2004, 200, 507-517.	8.5	379
103	Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunology, 2004, 5, 1157-1165.	14.5	572
104	Interleukin-4 elicits apoptosis of developing mast cells via a Stat6-dependent mitochondrial pathway. Experimental Hematology, 2004, 32, 52-59.	0.4	27
105	IL-4 selectively enhances FcÎ ³ RIII expression and signaling on mouse mast cells. Cellular Immunology, 2003, 224, 65-73.	3.0	23
106	Molecular mechanisms of interleukinâ€4–induced upâ€regulation of type I collagen gene expression in murine fibroblasts. Arthritis and Rheumatism, 2003, 48, 2275-2284.	6.7	58
107	Stat5 Activation Plays a Critical Role in Th2 Differentiation. Immunity, 2003, 19, 739-748.	14.3	307
108	In TH2 cells the II4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10623-10628.	7.1	72

#	ARTICLE	IF	CITATIONS
109	Growth Factor Independent-1 Induced by IL-4 Regulates Th2 Cell Proliferation. Immunity, 2002, 16, 733-744.	14.3	177
110	Critical Sites for the Interaction between IL-2R ^ĵ 3 and JAK3 and the Following Signaling. Biochemical and Biophysical Research Communications, 2001, 283, 598-605.	2.1	7
111	Disrupting Il13 impairs production of IL-4 specified by the linked allele. Nature Immunology, 2001, 2, 461-466.	14.5	18
112	Stat6 Is Necessary and Sufficient for IL-4's Role in Th2 Differentiation and Cell Expansion. Journal of Immunology, 2001, 166, 7276-7281.	0.8	241
113	A Novel Protein MAJN Binds to Jak3 and Inhibits Apoptosis Induced by IL-2 Deprival. Biochemical and Biophysical Research Communications, 2000, 270, 267-271.	2.1	6
114	Transient Inhibition of Interleukin 4 Signaling by T Cell Receptor Ligation. Journal of Experimental Medicine, 2000, 192, 1125-1134.	8.5	53
115	Study on the interaction between Jak3 and IL-2R Î ³ using the yeast two-hybrid system. Science Bulletin, 1999, 44, 1664-1669.	1.7	0
116	The positive and negative control actions of PTPase on IL-2 signaling. Science in China Series C: Life Sciences, 1999, 42, 614-620.	1.3	1
117	Cloning of a cDNA encoding a nerve growth factor precursor from the Agkistrodon halys Pallas. Toxicon, 1999, 37, 465-470.	1.6	15
118	Jak-STAT pathway is involved in the induction ofTNF-β gene during stimulation by IL-2. European Journal of Immunology, 1998, 28, 805-810.	2.9	34
119	Identification of a serine protease with nerve growth promoting activity from snake venom. NeuroReport, 1998, 9, 3577-3581.	1.2	3