
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450417/publications.pdf Version: 2024-02-01

VANG-KOOK SUN

#	Article	IF	CITATIONS
1	Uniformly distributed reaction by 3D host-lithium composite anode for high rate capability and reversibility of Li-O2 batteries. Chemical Engineering Journal, 2022, 427, 130914.	6.6	10
2	Microstructure-optimized concentration-gradient NCM cathode for long-life Li-ion batteries. Materials Today, 2022, 52, 9-18.	8.3	43
3	All-Solid-State Lithium Batteries: Li ⁺ -Conducting Ionomer Binder for Dry-Processed Composite Cathodes. ACS Energy Letters, 2022, 7, 1092-1100.	8.8	56
4	Intrinsic weaknesses of Co-free Ni–Mn layered cathodes for electric vehicles. Materials Today, 2022, 56, 8-15.	8.3	19
5	Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Materials, 2022, 47, 515-525.	9.5	60
6	Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries. ACS Energy Letters, 2022, 7, 401-409.	8.8	32
7	Geometrical engineering of a SPAN–graphene composite cathode for practical Li–S batteries. Journal of Materials Chemistry A, 2022, 10, 10844-10853.	5.2	15
8	Evolution of a Radially Aligned Microstructure in Boron-Doped Li[Ni _{0.95} Co _{0.04} Al _{0.01}]O ₂ Cathode Particles. ACS Applied Materials & Interfaces, 2022, 14, 17500-17508.	4.0	19
9	Highâ€Energy Niâ€Rich Cathode Materials for Longâ€Range and Long‣ife Electric Vehicles. Advanced Energy Materials, 2022, 12, .	10.2	43
10	A Rising Tide of Co-Free Chemistries for Li-Ion Batteries. ACS Energy Letters, 2022, 7, 1774-1775.	8.8	17
11	Degradation Mechanism of Ni-Rich Cathode Materials: Focusing on Particle Interior. ACS Energy Letters, 2022, 7, 2362-2369.	8.8	94
12	Promoting grain growth in Ni-rich single-crystal cathodes for high-performance lithium-ion batteries through Ce doping. Journal of Solid State Electrochemistry, 2022, 26, 2097-2105.	1.2	17
13	All-solid-state lithium batteries featuring hybrid electrolytes based on Li+ ion-conductive Li7La3Zr2O12 framework and full-concentration gradient Ni-rich NCM cathode. Chemical Engineering Journal, 2022, 450, 138043.	6.6	16
14	Enhanced cycling stability of Sn-doped Li[Ni0.90Co0.05Mn0.05]O2 via optimization of particle shape and orientation. Chemical Engineering Journal, 2021, 405, 126887.	6.6	38
15	Diverting Exploration of Silicon Anode into Practical Way: A Review Focused on Silicon-Graphite Composite for Lithium Ion Batteries. Energy Storage Materials, 2021, 35, 550-576.	9.5	248
16	Unraveling the New Role of an Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries. ACS Energy Letters, 2021, 6, 69-78.	8.8	99
17	Lithiumâ€Substituted Tunnel/Spinel Heterostructured Cathode Material for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2008569.	7.8	17
18	Microstrain Alleviation in High-Energy Ni-Rich NCMA Cathode for Long Battery Life. ACS Energy Letters, 2021, 6, 216-223.	8.8	82

#	Article	IF	CITATIONS
19	WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries. Molecules, 2021, 26, 377.	1.7	12
20	Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy and Environmental Science, 2021, 14, 1573-1583.	15.6	83
21	Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy and Environmental Science, 2021, 14, 844-852.	15.6	174
22	Electrolyteâ€Mediated Stabilization of Highâ€Capacity Microâ€5ized Antimony Anodes for Potassiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2005993.	11.1	96
23	Optimized Niâ€Rich NCMA Cathode for Electric Vehicle Batteries. Advanced Energy Materials, 2021, 11, 2003767.	10.2	78
24	Enhanced Cycling Stability of O3-Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode through Sn Addition for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 6593-6600.	1.5	14
25	Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Liâ€ S Batteries. Small, 2021, 17, e2007242.	5.2	23
26	Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries. ACS Energy Letters, 2021, 6, 2153-2161.	8.8	41
27	Microstructure Engineered Niâ€Rich Layered Cathode for Electric Vehicle Batteries. Advanced Energy Materials, 2021, 11, 2100884.	10.2	76
28	Electrolyte Chemistry in 3D Metal Oxide Nanorod Arrays Deciphers Lithium Dendrite-Free Plating/Stripping Behaviors for High-Performance Lithium Batteries. Journal of Physical Chemistry Letters, 2021, 12, 4857-4866.	2.1	19
29	An Experimental Checklist for Reporting Battery Performances. ACS Energy Letters, 2021, 6, 2187-2189.	8.8	30
30	Advances in Solid-State Batteries, a Virtual Issue. ACS Energy Letters, 2021, 6, 2356-2358.	8.8	8
31	Closely Coupled Binary Metal Sulfide Nanosheets Shielded Molybdenum Sulfide Nanorod Hierarchical Structure via Eco-Benign Surface Exfoliation Strategy towards Efficient Lithium and Sodium-ion Batteries. Energy Storage Materials, 2021, 38, 344-353.	9.5	21
32	Ambilaterality of Redox Mediators towards ¹ O ₂ in Liâ€O ₂ Batteries: Trap and Quencher. Advanced Functional Materials, 2021, 31, 2102442.	7.8	11
33	Capacity Fading Mechanisms in Ni-Rich Single-Crystal NCM Cathodes. ACS Energy Letters, 2021, 6, 2726-2734.	8.8	258
34	Achieving High-Performance Li–S Batteries via Polysulfide Adjoining Interface Engineering. ACS Applied Materials & Interfaces, 2021, 13, 39435-39445.	4.0	17
35	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	5.6	27
36	Gifts from Nature: Bioâ€Inspired Materials for Rechargeable Secondary Batteries. Advanced Materials, 2021, 33, e2006019.	11.1	30

#	Article	IF	CITATIONS
37	Interfacial Model Deciphering Highâ€Voltage Electrolytes for High Energy Density, High Safety, and Fastâ€Charging Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2102964.	11.1	122
38	Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Materials, 2021, 41, 183-195.	9.5	42
39	Ultra-stable cycling of multi-doped (Zr,B) Li[Ni0.885Co0.100Al0.015]O2 cathode. Journal of Power Sources, 2021, 513, 230548.	4.0	16
40	State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications. Chemical Science, 2021, 12, 7623-7655.	3.7	28
41	High-performance Ni-rich Li[Ni _{0.9–<i>x</i>} Co _{0.1} Al _{<i>x</i>}]O ₂ cathodes <i>via</i> multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy and Environmental Science. 2021. 14. 5084-5095.	15.6	47
42	In Situ Oriented Mn Deficient ZnMn ₂ 0 ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zincâ€Ion Batteries. Advanced Science, 2021, 8, 2002636.	5.6	90
43	Quasi-compensatory effect in emerging anode-free lithium batteries. EScience, 2021, 1, 3-12.	25.0	48
44	High-Energy Cathodes via Precision Microstructure Tailoring for Next-Generation Electric Vehicles. ACS Energy Letters, 2021, 6, 4195-4202.	8.8	44
45	Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nature Communications, 2021, 12, 6552.	5.8	167
46	Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy and Environmental Science, 2021, 14, 6616-6626.	15.6	82
47	Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy Storage Materials, 2020, 25, 714-723.	9.5	57
48	Controllable and stable organometallic redox mediators for lithium oxygen batteries. Materials Horizons, 2020, 7, 214-222.	6.4	15
49	Na _{2.3} Cu _{1.1} Mn ₂ O _{7â^î^} nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. Journal of Materials Chemistry A, 2020, 8, 770-778.	5.2	20
50	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials, 2020, 28, 407-417.	9.5	175
51	Cobaltâ€Free Highâ€Capacity Niâ€Rich Layered Li[Ni _{0.9} Mn _{0.1}]O ₂ Cathode. Advanced Energy Materials, 2020, 10, 1903179.	10.2	141
52	Niâ€Rich Layered Cathode Materials with Electrochemoâ€Mechanically Compliant Microstructures for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2020, 10, 1903360.	10.2	136
53	Nano/Microstructured Silicon–Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries. Nano Letters, 2020, 20, 625-635.	4.5	164
54	High-Energy W-Doped Li[Ni0.95Co0.04Al0.01]O2 Cathodes for Next-Generation Electric Vehicles. Energy Storage Materials, 2020, 33, 399-407.	9.5	88

#	Article	IF	CITATIONS
55	Recent Progress and Perspective of Advanced Highâ€Energy Coâ€Less Niâ€Rich Cathodes for Liâ€Ion Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 2020, 10, 2002027.	10.2	221
56	Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Letters, 2020, 5, 3221-3223.	8.8	151
57	Role of Liâ€Ion Depletion on Electrode Surface: Underlying Mechanism for Electrodeposition Behavior of Lithium Metal Anode. Advanced Energy Materials, 2020, 10, 2002390.	10.2	115
58	Sodiumâ€lon Batteries: Understanding the Capacity Fading Mechanisms of O3â€Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode for Sodiumâ€lon Batteries (Adv. Energy) Tj E	ET ዉqው 0 0	rg & T /Overlo
59	Investigation of superior sodium storage and reversible Na ₂ S conversion reactions in a porous NiS ₂ @C composite using <i>in operando</i> X-ray diffraction. Journal of Materials Chemistry A, 2020, 8, 24401-24407.	5.2	14
60	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	8.8	88
61	Understanding the Capacity Fading Mechanisms of O3â€Type Na[Ni _{0.5} Mn _{0.5}]O ₂ Cathode for Sodiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2001609.	10.2	59
62	Model-Based Design of Stable Electrolytes for Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 3124-3131.	8.8	71
63	Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nature Energy, 2020, 5, 860-869.	19.8	278
64	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 3168-3175.	8.8	38
65	Additives Engineered Nonflammable Electrolyte for Safer Potassium Ion Batteries. Advanced Functional Materials, 2020, 30, 2001934.	7.8	77
66	Co-Free Layered Cathode Materials for High Energy Density Lithium-Ion Batteries. ACS Energy Letters, 2020, 5, 1814-1824.	8.8	117
67	Oxidation Stability of Organic Redox Mediators as Mobile Catalysts in Lithium–Oxygen Batteries. ACS Energy Letters, 2020, 5, 2122-2129.	8.8	31
68	New Class of Niâ€Rich Cathode Materials Li[Ni <i>_x</i> Co <i>_y</i> B _{1â^`} <i>_x</i> _{a^`} <i><sub for Next Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000495.</sub </i>	o> yo¦s ub>	·2
69	Multidimensional Na ₄ VMn _{0.9} Cu _{0.1} (PO ₄) ₃ /C cotton-candy cathode materials for high energy Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12055-12068.	5.2	48
70	Multi-Doped (Ga,B) Li[Ni _{0.885} Co _{0.100} Al _{0.015}]O ₂ Cathode. Journal of the Electrochemical Society, 2020, 167, 100557.	1.3	13
71	High-energy O3-Na _{1â^'2x} Ca _x [Ni _{0.5} Mn _{0.5}]O ₂ cathodes for long-life sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 13776-13786.	5.2	46
72	Perpendicularly aligned TiC-coated carbon cloth cathode for high-performance Li-O2 batteries. Chemical Engineering Journal, 2020, 399, 125699.	6.6	18

#	Article	IF	CITATIONS
73	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	8.8	303
74	Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16376-16386.	4.0	22
75	Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 2020, 120, 6626-6683.	23.0	593
76	Beyond Doping and Coating: Prospective Strategies for Stable High-Capacity Layered Ni-Rich Cathodes. ACS Energy Letters, 2020, 5, 1136-1146.	8.8	313
77	Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode. RSC Advances, 2020, 10, 6536-6539.	1.7	4
78	A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Materials Today, 2020, 36, 73-82.	8.3	163
79	Limited effects of a redox mediator in lithium–oxygen batteries: indecomposable by-products. Journal of Materials Chemistry A, 2020, 8, 5622-5628.	5.2	12
80	Electrolyte Engineering Enables High Stability and Capacity Alloying Anodes for Sodium and Potassium Ion Batteries. ACS Energy Letters, 2020, 5, 766-776.	8.8	134
81	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	8.8	97
82	Development of Novel Cathode with Large Lithium Storage Mechanism Based on Pyrophosphateâ€Based Conversion Reaction for Rechargeable Lithium Batteries. Small Methods, 2020, 4, 1900847.	4.6	5
83	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	10.2	111
84	Quasi-solid-state zinc-ion battery based on α-MnO2 cathode with husk-like morphology. Electrochimica Acta, 2020, 345, 136189.	2.6	24
85	Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. Nano Letters, 2020, 20, 3247-3254.	4.5	78
86	Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries. ACS Energy Letters, 2020, 5, 1278-1280.	8.8	54
87	A New Type of Ni-Rich Cathode for High-Energy Lithium-Ion Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 72-72.	0.0	0
88	Microstructure-Tailored Ni-Rich NCA Cathode for Next Electric Vehicles. ECS Meeting Abstracts, 2020, MA2020-02, 70-70.	0.0	0
89	A 4 V Class Potassium Metal Battery with Extremely Low Overpotential. ACS Nano, 2019, 13, 9306-9314.	7.3	76
90	Mutual Conservation of Redox Mediator and Singlet Oxygen Quencher in Lithium–Oxygen Batteries. ACS Catalysis, 2019, 9, 9914-9922.	5.5	33

#	Article	IF	CITATIONS
91	Degradation Mechanism of Highly Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1–<i>x</i>–<i>y</i>}]O ₂ Cathodes with <i>x</i> > 0.9. ACS Applied Materials & Interfaces, 2019, 11, 30936-30942.	4.0	152
92	Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries. Journal of Materials Chemistry A, 2019, 7, 20675-20682.	5.2	29
93	Suppressing detrimental phase transitions <i>via</i> tungsten doping of LiNiO ₂ cathode for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18580-18588.	5.2	175
94	A single layer of Fe ₃ O ₄ @TiO ₂ submicron spheres as a high-performance electrode for lithium-ion microbatteries. Sustainable Energy and Fuels, 2019, 3, 2675-2687.	2.5	6
95	Li[Ni _{0.9} Co _{0.09} W _{0.01}]O ₂ : A New Type of Layered Oxide Cathode with High Cycling Stability. Advanced Energy Materials, 2019, 9, 1902698.	10.2	121
96	Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. Journal of Power Sources, 2019, 442, 227242.	4.0	118
97	New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Letters, 2019, 4, 2613-2622.	8.8	160
98	Nano-compacted Li ₂ S/Graphene Composite Cathode for High-Energy Lithium–Sulfur Batteries. ACS Energy Letters, 2019, 4, 2787-2795.	8.8	37
99	Layered K _{0.28} MnO ₂ ·0.15H ₂ O as a Cathode Material for Potassium-Ion Intercalation. ACS Applied Materials & Interfaces, 2019, 11, 43312-43319.	4.0	25
100	Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Letters, 2019, 4, 2995-3001.	8.8	297
101	Energy Spotlight. ACS Energy Letters, 2019, 4, 2763-2769.	8.8	1
102	A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21362-21370.	5.2	61
103	A method of increasing the energy density of layered Ni-rich Li[Ni _{1â^'2x} Co _x Mn _x]O ₂ cathodes (<i>x</i> = 0.05, 0.1,) Tj E	TQ q. ⊵10.`	78 431 4 rgB1
104	A dendrite- and oxygen-proof protective layer for lithium metal in lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 3857-3862.	5.2	61
105	Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.	5.2	39
106	Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries. ACS Energy Letters, 2019, 4, 576-582.	8.8	217
107	Potassium vanadate as a new cathode material for potassium-ion batteries. Journal of Power Sources, 2019, 432, 24-29.	4.0	53
108	Adiponitrile (C ₆ H ₈ N ₂): A New Biâ€Functional Additive for Highâ€Performance Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902496.	7.8	115

#	Article	IF	CITATIONS
109	Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?. ACS Energy Letters, 2019, 4, 1394-1400.	8.8	290
110	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	15.6	130
111	Molecular-Scale Interfacial Model for Predicting Electrode Performance in Rechargeable Batteries. ACS Energy Letters, 2019, 4, 1584-1593.	8.8	117
112	High-Capacity Layered Cathodes for Next-Generation Electric Vehicles. ACS Energy Letters, 2019, 4, 1042-1044.	8.8	77
113	Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A, 2019, 7, 13441-13448.	5.2	34
114	K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.	8.2	120
115	Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen. Nature Communications, 2019, 10, 1380.	5.8	72
116	High-performance Ti-doped O3-type Na[Tix(Ni0.6Co0.2Mn0.2)1-x]O2 cathodes for practical sodium-ion batteries. Journal of Power Sources, 2019, 422, 1-8.	4.0	51
117	A New P2â€Type Layered Oxide Cathode with Extremely High Energy Density for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1803346.	10.2	143
118	Triple Hierarchical Porous Carbon Spheres as Effective Cathodes for Li–O ₂ Batteries. Journal of the Electrochemical Society, 2019, 166, A455-A463.	1.3	8
119	Verification for trihalide ions as redox mediators in Li-O2 batteries. Energy Storage Materials, 2019, 19, 148-153.	9.5	25
120	Microstructure ontrolled Niâ€Rich Cathode Material by Microscale Compositional Partition for Nextâ€Generation Electric Vehicles. Advanced Energy Materials, 2019, 9, 1803902.	10.2	175
121	Nano/Microstructured Silicon–Graphite Composite Anode for High-Energy-Density Li-Ion Battery. ACS Nano, 2019, 13, 2624-2633.	7.3	219
122	Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Materials Today, 2019, 23, 26-36.	8.3	118
123	A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte. Energy Storage Materials, 2019, 19, 270-280.	9.5	29
124	New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNi _x Co _y Mn _z O ₂ Cathodes and Beyond Them. Journal of the Electrochemical Society, 2019, 166, A5265-A5274.	1.3	38
125	We Editors Are Authors, Too. ACS Energy Letters, 2019, 4, 249-250.	8.8	2
126	Carbon-Free TiO ₂ Microspheres as Anode Materials for Sodium Ion Batteries. ACS Energy Letters, 2019, 4, 494-501.	8.8	63

#	Article	IF	CITATIONS
127	Shedding Light on the Oxygen Reduction Reaction Mechanism in Ether-Based Electrolyte Solutions: A Study Using Operando UV–Vis Spectroscopy. ACS Applied Materials & Interfaces, 2018, 10, 10860-10869.	4.0	6
128	Quaternary Transition Metal Oxide Layered Framework: O3-Type Na[Ni _{0.32} Fe _{0.13} Co _{0.15} Mn _{0.40}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 13500-13507.	1.5	39
129	Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2018, 276, 1-11.	2.6	220
130	Sodiumâ€Ion Batteries: Building Effective Layered Cathode Materials with Longâ€Term Cycling by Modifying the Surface via Sodium Phosphate. Advanced Functional Materials, 2018, 28, 1705968.	7.8	138
131	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn ₂ V ₂ O ₇ nanowire cathode through intercalation regulation. Journal of Materials Chemistry A, 2018, 6, 3850-3856.	5.2	293
132	Cation Ordering of Zr-Doped LiNiO ₂ Cathode for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 1808-1814.	3.2	160
133	Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and Metal-Free Anode. ACS Energy Letters, 2018, 3, 540-541.	8.8	99
134	Extracting maximum capacity from Ni-rich Li[Ni _{0.95} Co _{0.025} Mn _{0.025}]O ₂ cathodes for high-energy-density lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 4126-4132.	5.2	199
135	Bioinspired Surface Layer for the Cathode Material of Highâ€Energyâ€Density Sodiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1702942.	10.2	91
136	Capacity Fading of Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1â€"<i>x</i>â€"<i>y</i>}]O ₂ (0.6) Tj ETQq() 0 0 rgBT /Ov 1,060
137	Degradation?. Chemistry of Materials, 2018, 30, 1155-1163. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy, 2018, 45, 136-147.	8.2	143
138	Optimized Concentration of Redox Mediator and Surface Protection of Li Metal for Maintenance of High Energy Efficiency in Li–O ₂ Batteries. Advanced Energy Materials, 2018, 8, 1702258.	10.2	87
139	Clarification of Solvent Effects on Discharge Products in Li–O ₂ Batteries through a Titration Method. ACS Applied Materials & Interfaces, 2018, 10, 526-533.	4.0	25
140	Energy Research Outlook. <i>What to Look for in 2018</i> . ACS Energy Letters, 2018, 3, 261-263.	8.8	9
141	Multiwalled Carbon Nanotubes Anode in Lithium-Ion Battery with LiCoO ₂ , Li[Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ , and LiFe _{1/4} Mn _{1/2} Co _{1/4} PO ₄ Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 3225-3232.	3.2	47
142	Revealing the Reaction Mechanism of Na–O ₂ Batteries using Environmental Transmission Electron Microscopy. ACS Energy Letters, 2018, 3, 393-399.	8.8	30
143	Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 810, 34-40.	1.9	27
144	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	8.8	217

#	Article	IF	CITATIONS
145	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 17985-17993.	4.0	82
146	Pyrosynthesis of Na ₃ V ₂ (PO ₄) ₃ @C Cathodes for Safe and Lowâ€Cost Aqueous Hybrid Batteries. ChemSusChem, 2018, 11, 2239-2247.	3.6	47
147	Highâ€Capacity Concentration Gradient Li[Ni _{0.865} Co _{0.120} Al _{0.015}]O ₂ Cathode for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703612.	10.2	154
148	Na ₂ V ₆ O ₁₆ ·3H ₂ O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. Nano Letters, 2018, 18, 2402-2410.	4.5	461
149	Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy and Environmental Science, 2018, 11, 1271-1279.	15.6	322
150	Lowâ€Polarization Lithium–Oxygen Battery Using [DEME][TFSI] Ionic Liquid Electrolyte. ChemSusChem, 2018, 11, 229-236.	3.6	35
151	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018, 28, 1704294.	7.8	135
152	Controlling the Wettability between Freestanding Electrode and Electrolyte for High Energy Density Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A5006-A5013.	1.3	31
153	Recent Progress in Rechargeable Potassium Batteries. Advanced Functional Materials, 2018, 28, 1802938.	7.8	518
154	Microstructural Degradation: Microstructural Degradation of Niâ€Rich Li[Ni <i>_x</i> Co <i>_y</i> Mn ₁ <i>_{â^'xâ^'y}</i>]O ₂ Cathodes During Accelerated Calendar Aging (Small 45/2018). Small, 2018, 14, 1870207.	5.2	5
155	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, 1, .	2.0	37
156	Variation of Electronic Conductivity within Secondary Particles Revealing a Capacity-Fading Mechanism of Layered Ni-Rich Cathode. ACS Energy Letters, 2018, 3, 3002-3007.	8.8	80
157	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
158	ICAC 2018: The First International Conference Focused on NCM & NCA Cathode Materials for Lithium Ion Batteries. ACS Energy Letters, 2018, 3, 2757-2760.	8.8	9
159	Microstructural Degradation of Niâ€Rich Li[Ni <i>_x</i> Co <i>_y</i> Mn ₁ <i>_{â^'xâ^'y}</i>]O ₂ Cathodes During Accelerated Calendar Aging. Small, 2018, 14, e1803179.	5.2	86
160	High-Performance Cells Containing Lithium Metal Anodes, LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ (NCM 622) Cathodes, and Fluoroethylene Carbonate-Based Electrolyte Solution with Practical Loading. ACS Applied Materials & Interfaces, 2018, 10, 19773-19782.	4.0	77
161	Directions for True Development of Lithium Oxygen Batteries. ACS Energy Letters, 2018, 3, 1102-1102.	8.8	2
162	Microstructure Evolution of Concentration Gradient Li[Ni _{0.75} Co _{0.10} Mn _{0.15}]O ₂ Cathode for Lithiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802090.	7.8	62

#	Article	IF	CITATIONS
163	Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. Journal of Materials Chemistry A, 2018, 6, 12551-12558.	5.2	79
164	High-Performance LiNiO ₂ Cathodes with Practical Loading Cycled with Li metal Anodes in Fluoroethylene Carbonate-Based Electrolyte Solution. ACS Applied Energy Materials, 2018, 1, 2600-2607.	2.5	36
165	Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density. Advanced Energy Materials, 2018, 8, 1801560.	10.2	68
166	Development of P3-K _{0.69} CrO ₂ as an ultra-high-performance cathode material for K-ion batteries. Energy and Environmental Science, 2018, 11, 2821-2827.	15.6	157
167	High performance potassium–sulfur batteries based on a sulfurized polyacrylonitrile cathode and polyacrylic acid binder. Journal of Materials Chemistry A, 2018, 6, 14587-14593.	5.2	89
168	Improved Cycling Stability of Li[Ni _{0.90} Co _{0.05} Mn _{0.05}]O ₂ Through Microstructure Modification by Boron Doping for Liâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1801202.	10.2	336
169	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	8.8	159
170	K ₂ V ₆ O ₁₆ ·2.7H ₂ O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15530-15539.	5.2	201
171	A 4â€V Liâ€lon Battery using All‣pinelâ€Based Electrodes. ChemSusChem, 2018, 11, 2165-2170.	3.6	10
172	Review—A Comparative Evaluation of Redox Mediators for Li-O ₂ Batteries: A Critical Review. Journal of the Electrochemical Society, 2018, 165, A2274-A2293.	1.3	63
173	Simultaneous MgO coating and Mg doping of Na[Ni _{0.5} Mn _{0.5}]O ₂ cathode: facile and customizable approach to high-voltage sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16854-16862.	5.2	93
174	Recent research trends in Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 11582-11605.	5.2	199
175	Recent progress of advanced binders for Li-S batteries. Journal of Power Sources, 2018, 396, 19-32.	4.0	88
176	Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorineâ€free Electrolyte and Nanostructured S/C Composite. ChemSusChem, 2018, 11, 2981-2986.	3.6	20
177	Self-Passivation of a LiNiO ₂ Cathode for a Lithium-Ion Battery through Zr Doping. ACS Energy Letters, 2018, 3, 1634-1639.	8.8	161
178	Redox Mediators for Li–O ₂ Batteries: Status and Perspectives. Advanced Materials, 2018, 30, 1704162.	11.1	258
179	Largeâ€Scale LiO ₂ Pouch Type Cells for Practical Evaluation and Applications. Advanced Functional Materials, 2017, 27, 1605500.	7.8	38
180	Cathode Materials for Future Electric Vehicles and Energy Storage Systems. ACS Energy Letters, 2017, 2, 703-708.	8.8	95

#	Article	IF	CITATIONS
181	Novel strategy to improve the Li-storage performance of micro silicon anodes. Journal of Power Sources, 2017, 348, 302-310.	4.0	41
182	Future of Electrochemical Energy Storage. ACS Energy Letters, 2017, 2, 716-716.	8.8	13
183	Cu3Si-doped porous-silicon particles prepared by simplified chemical vapor deposition method as anode material for high-rate and long-cycle lithium-ion batteries. Journal of Alloys and Compounds, 2017, 701, 425-432.	2.8	42
184	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 1684-1694.	3.2	479
185	Hollandite-type Al-doped VO _{1.52} (OH) _{0.77} as a zinc ion insertion host material. Journal of Materials Chemistry A, 2017, 5, 8367-8375.	5.2	123
186	Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources, 2017, 355, 140-146.	4.0	29
187	An Advanced Separator for Li–O ₂ Batteries: Maximizing the Effect of Redox Mediators. Advanced Energy Materials, 2017, 7, 1602417.	10.2	100
188	Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. ACS Nano, 2017, 11, 5853-5863.	7.3	155
189	Structural Stability of LiNiO ₂ Cycled above 4.2 V. ACS Energy Letters, 2017, 2, 1150-1155.	8.8	292
190	Monoclinic-Orthorhombic Na _{1.1} Li _{2.0} V ₂ (PO ₄) ₃ /C Composite Cathode for Na ⁺ /Li ⁺ Hybrid-Ion Batteries. Chemistry of Materials, 2017, 29, 6642-6652.	3.2	17
191	Graphene Decorated by Indium Sulfide Nanoparticles as High-Performance Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23723-23730.	4.0	48
192	High-Energy Density Core–Shell Structured Li[Ni _{0.95} Co _{0.025} Mn _{0.025}]O ₂ Cathode for Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 5048-5052.	3.2	123
193	The reaction mechanism revealed. Nature Nanotechnology, 2017, 12, 503-504.	15.6	2
194	Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46, 3529-3614.	18.7	3,436
195	Liâ€O ₂ Batteries: Large‣cale LiO ₂ Pouch Type Cells for Practical Evaluation and Applications (Adv. Funct. Mater. 11/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
196	Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2802-2810.	5.2	79
197	Na Storage Capability Investigation of a Carbon Nanotube-Encapsulated Fe _{1–<i>x</i>} S Composite. ACS Energy Letters, 2017, 2, 364-372.	8.8	176
198	Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure. Nano Energy, 2017, 32, 320-328.	8.2	152

#	Article	IF	CITATIONS
199	Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2017, 2, 196-223.	8.8	1,033
200	Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries. ACS Applied Materials & Interfaces, 2017, 9, 39416-39424.	4.0	45
201	Effect of Mn in Li ₃ V _{2–<i>x</i>} Mn _{<i>x</i>} (PO ₄) ₃ as High Capacity Cathodes for Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40307-40316.	4.0	30
202	Self-assembled nickel-cobalt oxide microspheres from rods with enhanced electrochemical performance for sodium ion battery. Electrochimica Acta, 2017, 258, 220-227.	2.6	12
203	Facile synthesis and the exploration of the zinc storage mechanism of β-MnO ₂ nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23299-23309.	5.2	297
204	Antimony Selenide Nanorods Decorated on Reduced Graphene Oxide with Excellent Electrochemical Properties for Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2922-A2929.	1.3	30
205	Growing instead of confining. Nature Energy, 2017, 2, 768-769.	19.8	5
206	Tunnel-type β-FeOOH cathode material for high rate sodium storage via a new conversion reaction. Nano Energy, 2017, 41, 687-696.	8.2	41
207	Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium–Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. Journal of Physical Chemistry Letters, 2017, 8, 5331-5337.	2.1	101
208	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	5.2	107
209	Synergistic Integration of Soluble Catalysts with Carbon-Free Electrodes for Li–O ₂ Batteries. ACS Catalysis, 2017, 7, 8192-8199.	5.5	21
210	Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in Highâ€Ni Layered Oxide Cathodes. Advanced Materials, 2017, 29, 1606715.	11.1	127
211	Self-Rearrangement of Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy and Long-Life Lithium-Ion Batteries. Nano Letters, 2017, 17, 5600-5606.	4.5	142
212	Sodium oxygen batteries: one step further with catalysis by ruthenium nanoparticles. Journal of Materials Chemistry A, 2017, 5, 20678-20686.	5.2	29
213	Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25941-25951.	4.0	35
214	Extending the Battery Life Using an Al-Doped Li[Ni _{0.76} Co _{0.09} Mn _{0.15}]O ₂ Cathode with Concentration Gradients for Lithium Ion Batteries. ACS Energy Letters, 2017, 2, 1848-1854.	8.8	162
215	Optimized Bicompartment Two Solution Cells for Effective and Stable Operation of Li–O ₂ Batteries. Advanced Energy Materials, 2017, 7, 1701232.	10.2	61
216	2,4-Dimethoxy-2,4-dimethylpentan-3-one: An Aprotic Solvent Designed for Stability in Li–O2 Cells. Journal of the American Chemical Society, 2017, 139, 11690-11693.	6.6	34

#	Article	IF	CITATIONS
217	Direction for Development of Next-Generation Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2694-2695.	8.8	39
218	High-Energy Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1<i>–x–y</i>}]O ₂ Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles. Chemistry of Materials, 2017, 29, 10436-10445.	3.2	189
219	Controversial Topics on Lithium Superoxide in Li–O ₂ Batteries. ACS Energy Letters, 2017, 2, 2756-2760.	8.8	46
220	Lithiumâ€Oxygen Batteries: Optimized Bicompartment Two Solution Cells for Effective and Stable Operation of Li–O ₂ Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
221	A new perspective of the ruthenium ion: a bifunctional soluble catalyst for high efficiency Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 15512-15516.	5.2	21
222	Feasibility of Full (Li-Ion)–O ₂ Cells Comprised of Hard Carbon Anodes. ACS Applied Materials & Interfaces, 2017, 9, 4352-4361.	4.0	31
223	The Application of Metal Sulfides in Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1601329.	10.2	496
224	Walnut-like ZnO@Zn2TiO4 multicore-shell submicron spheres with a thin carbon layer: Fine synthesis, facile structural control and solar light photocatalytic application. Acta Materialia, 2017, 122, 287-297.	3.8	33
225	Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. ACS Applied Materials & Interfaces, 2017, 9, 4309-4319.	4.0	39
226	Fabrication of flower-like tin/carbon composite microspheres as long-lasting anode materials for lithium ion batteries. Materials Chemistry and Physics, 2017, 185, 6-13.	2.0	7
227	Microsphere Na _{0.65} [Ni _{0.17} Co _{0.11} Mn _{0.72}]O ₂ Cathode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 44534-44541.	4.0	46
228	(Battery Division Technology Award Address) Progress in High-Capacity Gradient Layered Li[NixCoyMnz]O2 Cathodes for Lithium-ion Batteries. ECS Meeting Abstracts, 2017, , .	0.0	0
229	Freestanding Bilayer Carbon–Sulfur Cathode with Function of Entrapping Polysulfide for High Performance Li–S Batteries. Advanced Functional Materials, 2016, 26, 1225-1232.	7.8	89
230	Frontispiece: A Longâ€Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. Chemistry - A European Journal, 2016, 22, .	1.7	0
231	A Longâ€Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution. Chemistry - A European Journal, 2016, 22, 6808-6814.	1.7	49
232	Nickelâ€Rich and Lithiumâ€Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials, 2016, 6, 1501010.	10.2	946
233	High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni _{0.85} 0.05Mn _{0.10}]O ₂ cathode. Energy and Environmental Science, 2016, 9, 2152-2158.	15.6	269
234	Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries. Journal of Power Sources, 2016, 324, 106-112.	4.0	58

#	Article	IF	CITATIONS
235	An Alternative Approach to Enhance the Performance of High Sulfur-Loading Electrodes for Li–S Batteries. ACS Energy Letters, 2016, 1, 136-141.	8.8	70
236	Nanostructured lithium sulfide materials for lithium-sulfur batteries. Journal of Power Sources, 2016, 323, 174-188.	4.0	76
237	Li–O ₂ cells with LiBr as an electrolyte and a redox mediator. Energy and Environmental Science, 2016, 9, 2334-2345.	15.6	229
238	Synthesis and Electrochemical Performance of Nickel-Rich Layered-Structure LiNi0.65Co0.08Mn0.27O2Cathode Materials Comprising Particles with Ni and Mn Full Concentration Gradients. Journal of the Electrochemical Society, 2016, 163, A1348-A1358.	1.3	19
239	Novel Cathode Materials for Naâ€ion Batteries Composed of Spokeâ€Like Nanorods of Na[Ni _{0.61} Co _{0.12} Mn _{0.27}]O ₂ Assembled in Spherical Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093.	7.8	78
240	Li-S Batteries: A Scaled-Up Lithium (Ion)-Sulfur Battery: Newly Faced Problems and Solutions (Adv.) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
241	A comprehensive study of the role of transition metals in O3-type layered Na[Ni _x Co _y Mn _z]O ₂ (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17952-17959.	5.2	110
242	Introducing Our Editorial Team. ACS Energy Letters, 2016, 1, 490-491.	8.8	1
243	Vanadium dioxide – Reduced graphene oxide composite as cathode materials for rechargeable Li and Na batteries. Journal of Power Sources, 2016, 326, 522-532.	4.0	45
244	Compositionally Graded Cathode Material with Longâ€Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 2016, 6, 1601417.	10.2	137
245	Nanostructured metal phosphide-based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 14915-14931.	5.2	240
246	Highâ€Capacity Layeredâ€Spinel Cathodes for Liâ€Ion Batteries. ChemSusChem, 2016, 9, 2404-2413.	3.6	17
247	Lithium-Ion Batteries: Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application (Adv. Energy Mater. 22/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
248	A Scaledâ€Up Lithium (Ion)â€Sulfur Battery: Newly Faced Problems and Solutions. Advanced Materials Technologies, 2016, 1, 1600052.	3.0	29
249	Publishing Electrochemical Energy Storage Papers in <i>ACS Energy Letters</i> . ACS Energy Letters, 2016, 1, 771-772.	8.8	2
250	Unveiling the sodium intercalation properties in Na1.86â–¡0.14Fe3(PO4)3. Journal of Power Sources, 2016, 324, 657-664.	4.0	38
251	Understanding problems of lithiated anodes in lithium oxygen full-cells. Journal of Materials Chemistry A, 2016, 4, 10467-10471.	5.2	23
252	Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni _{0.85} Co _{0.11} Al _{0.04}]O ₂ and Li[Ni _{0.84} Co _{0.06} Mn _{0.09} Al _{0.01}]O ₂ Two-Step Full Concentration Gradients. ACS Energy Letters, 2016, 1, 283-289.	8.8	110

#	Article	IF	CITATIONS
253	Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials, 2016, 8, e270-e270.	3.8	53
254	Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 10379-10393.	5.2	184
255	Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. ACS Applied Materials & Interfaces, 2016, 8, 1867-1875.	4.0	138
256	Iron–cobalt bimetal decorated carbon nanotubes as cost-effective cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 7020-7026.	5.2	43
257	Highâ€Energy, Highâ€Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO ₂ â€Webbed Carbon Nanotubes and a Dual Functional Carbonâ€Paper Interlayer. Advanced Energy Materials, 2016, 6, 1501480.	10.2	308
258	Mechanistic Role of Li ⁺ Dissociation Level in Aprotic Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2016, 8, 5300-5307.	4.0	120
259	Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries. Journal of Power Sources, 2016, 311, 49-56.	4.0	29
260	Neutron diffraction studies of the Na-ion battery electrode materials NaCoCr2(PO4)3, NaNiCr2(PO4)3, and Na2Ni2Cr(PO4)3. Journal of Solid State Chemistry, 2016, 238, 103-108.	1.4	19
261	Rational design of silicon-based composites for high-energy storage devices. Journal of Materials Chemistry A, 2016, 4, 5366-5384.	5.2	154
262	Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. Journal of Power Sources, 2016, 305, 259-266.	4.0	24
263	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	13.7	633
264	High-Performance Lithium–Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode–Electrolyte Interface. ACS Applied Materials & Interfaces, 2016, 8, 983-987.	4.0	104
265	Epicyanohydrin as an Interface Stabilizer Agent for Cathodes of Li-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A171-A177.	1.3	29
266	High-power lithium polysulfide-carbon battery. Carbon, 2016, 96, 125-130.	5.4	22
267	Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction. Nano Energy, 2016, 19, 522-531.	8.2	66
268	Study of the Most Relevant Aspects Related to Hard Carbons as Anode Materials for Naâ€ion Batteries, Compared with Liâ€ion Systems. Israel Journal of Chemistry, 2015, 55, 1260-1274.	1.0	32
269	Advanced Concentration Gradient Cathode Material with Twoâ€Slope for Highâ€Energy and Safe Lithium Batteries. Advanced Functional Materials, 2015, 25, 4673-4680.	7.8	127
270	In Situ Formation of a Cathode–Electrolyte Interface with Enhanced Stability by Titanium Substitution for High Voltage Spinel Lithiumâ€ion Batteries. Advanced Materials Interfaces, 2015, 2, 1500109.	1.9	65

#	Article	IF	CITATIONS
271	Improved capacity and stability of integrated Li and Mn rich layered-spinel Li _{1.17} Ni _{0.25} Mn _{1.08} O ₃ cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14598-14608.	5.2	29
272	High-performance electrode materials for lithium-ion batteries for electric vehicles. , 2015, , 191-241.		9
273	Improved Performances of Li[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode Material with Full Concentration Gradient for Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3059-A3063.	1.3	30
274	Nanoconfinement of low-conductivity products in rechargeable sodium–air batteries. Nano Energy, 2015, 12, 123-130.	8.2	63
275	Carbothermal synthesis of molybdenum(IV) oxide as a high rate anode for rechargeable lithium batteries. Journal of Power Sources, 2015, 280, 1-4.	4.0	16
276	Carbon-coated anatase titania as a high rate anode for lithium batteries. Journal of Power Sources, 2015, 281, 362-369.	4.0	23
277	Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy, 2015, 12, 725-734.	8.2	109
278	Nanostructured cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2015, 283, 219-236.	4.0	97
279	Study on the Catalytic Activity of Noble Metal Nanoparticles on Reduced Graphene Oxide for Oxygen Evolution Reactions in Lithium–Air Batteries. Nano Letters, 2015, 15, 4261-4268.	4.5	149
280	A carbon-free ruthenium oxide/mesoporous titanium dioxide electrode for lithium-oxygen batteries. Journal of Power Sources, 2015, 295, 299-304.	4.0	34
281	Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy, 2015, 16, 218-226.	8.2	128
282	Improvement of Electrochemical Properties of Lithium–Oxygen Batteries Using a Silver Electrode. Journal of Physical Chemistry C, 2015, 119, 15036-15040.	1.5	22
283	High surface area, mesoporous carbon for low-polarization, catalyst-free lithium oxygen battery. Solid State Ionics, 2015, 278, 133-137.	1.3	12
284	Recycling lithium batteries. , 2015, , 503-516.		11
285	Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability. Electrochimica Acta, 2015, 169, 291-299.	2.6	32
286	A new synthetic method of titanium oxyfluoride and its application as an anode material for rechargeable lithium batteries. Journal of Power Sources, 2015, 288, 376-383.	4.0	18
287	Understanding the behavior of Li–oxygen cells containing Lil. Journal of Materials Chemistry A, 2015, 3, 8855-8864.	5.2	187
288	Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 2015, 6, 6865.	5.8	210

#	Article	IF	CITATIONS
289	NaCrO ₂ cathode for high-rate sodium-ion batteries. Energy and Environmental Science, 2015, 8, 2019-2026.	15.6	307
290	Highly monodisperse magnetite/carbon composite microspheres with a mesoporous structure as high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 42990-42996.	1.7	8
291	Electrochemical Performance of a Layered-Spinel Integrated Li[Ni _{1/3} Mn _{2/3}]O ₂ as a High Capacity Cathode Material for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 2600-2611.	3.2	46
292	A Mo ₂ C/Carbon Nanotube Composite Cathode for Lithium–Oxygen Batteries with High Energy Efficiency and Long Cycle Life. ACS Nano, 2015, 9, 4129-4137.	7.3	207
293	Alluaudite Na ₂ Co ₂ Fe(PO ₄) ₃ as an electroactive material for sodium ion batteries. Dalton Transactions, 2015, 44, 7881-7886.	1.6	58
294	Highly Cyclable Lithium–Sulfur Batteries with a Dual-Type Sulfur Cathode and a Lithiated Si/SiO _{<i>x</i>} Nanosphere Anode. Nano Letters, 2015, 15, 2863-2868.	4.5	116
295	Interphase Evolution of a Lithium-Ion/Oxygen Battery. ACS Applied Materials & Interfaces, 2015, 7, 22638-22643.	4.0	50
296	A high-capacity Li[Ni _{0.8} Co _{0.06} Mn _{0.14}]O ₂ positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22183-22190.	5.2	84
297	Effect of titanium addition as nickel oxide formation inhibitor in nickel-rich cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 299, 425-433.	4.0	54
298	Evaluation of (CF ₃ SO ₂) ₂ N ^{â^'} (TFSI) Based Electrolyte Solutions for Mg Batteries. Journal of the Electrochemical Society, 2015, 162, A7118-A7128.	1.3	301
299	Green Strategy to Single Crystalline Anatase TiO ₂ Nanosheets with Dominant (001) Facets and Its Lithiation Study toward Sustainable Cobalt-Free Lithium Ion Full Battery. ACS Sustainable Chemistry and Engineering, 2015, 3, 3086-3095.	3.2	34
300	Review—Understanding and Mitigating Some of the Key Factors that Limit Non-Aqueous Lithium-Air Battery Performance. Journal of the Electrochemical Society, 2015, 162, A2439-A2446.	1.3	27
301	Review—High-Capacity Li[Ni ₁₋ <i>_x</i> Co <i>_x</i> _{_{/2}Mn<i>_x</i>162. A2483-A2489.}]0	₂₁₂₇
302	Catalytic Behavior of Lithium Nitrate in Li-O ₂ Cells. ACS Applied Materials & Interfaces, 2015, 7, 16590-16600.	4.0	127
303	Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties. Journal of the Electrochemical Society, 2015, 162, A2313-A2318.	1.3	16
304	Highly lithium-ion conductive battery separators from thermally rearranged polybenzoxazole. Chemical Communications, 2015, 51, 2068-2071.	2.2	31
305	A sustainable iron-based sodium ion battery of porous carbon–Fe ₃ O ₄ /Na ₂ FeP ₂ O ₇ with high performance. RSC Advances, 2015, 5, 8793-8800.	1.7	74
306	An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Research, 2015, 8, 1464-1479.	5.8	304

#	Article	IF	CITATIONS
307	The Lithium/Air Battery: Still an Emerging System or a Practical Reality?. Advanced Materials, 2015, 27, 784-800.	11.1	543
308	Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 273, 663-669.	4.0	23
309	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	3.8	213
310	Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nature Communications, 2014, 5, 5693.	5.8	255
311	Lithiation of an Iron Oxideâ€Based Anode for Stable, Highâ€Capacity Lithiumâ€Ion Batteries of Porous Carbon–Fe ₃ O ₄ /Li[Ni _{0.59} Co _{0.16} Mn _{0.25}]O< Energy Technology, 2014, 2, 778-785.	su b. 82 <td>אלא.4</td>	אלא.4
312	Electrochemical Energy Conversion: Past, Present, and Future. ChemPhysChem, 2014, 15, 1903-1904.	1.0	4
313	Simple fabrication and electrochemical performance of porous and double-shelled macroporous CuO nanomaterials with a thin carbon layer. RSC Advances, 2014, 4, 60573-60580.	1.7	3
314	Comparison of Nanorod‧tructured Li[Ni _{0.54} Co _{0.16} Mn _{0.30}]O ₂ with Conventional Cathode Materials for Liâ€Ion Batteries. ChemSusChem, 2014, 7, 245-252.	3.6	36
315	High dispersion of TiO ₂ nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi _{0.5} Mn _{1.5} O ₄ . Journal of Materials Chemistry A, 2014, 2, 18938-18945.	5.2	22
316	Improved lithium-ion battery performance of LiNi0.5Mn1.5â^'xTixO4 high voltage spinel in full-cells paired with graphite and Li4Ti5O12 negative electrodes. Journal of Power Sources, 2014, 262, 62-71.	4.0	45
317	Thermal properties of fully delithiated olivines. Journal of Power Sources, 2014, 256, 479-484.	4.0	11
318	Progress in High-Capacity Core–Shell Cathode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry Letters, 2014, 5, 671-679.	2.1	57
319	Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.	4.5	422
320	Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni _{0.7} Mn _{0.3}]O ₂ . Journal of the Electrochemical Society, 2014, 161, A920-A926.	1.3	267
321	Sodiumâ€lon Battery based on an Electrochemically Converted NaFePO ₄ Cathode and Nanostructured Tin–Carbon Anode. ChemPhysChem, 2014, 15, 2152-2155.	1.0	57
322	A Highâ€Energy Liâ€Ion Battery Using a Siliconâ€Based Anode and a Nanoâ€Structured Layered Composite Cathode. Advanced Functional Materials, 2014, 24, 3036-3042.	7.8	139
323	Aprotic and Aqueous Li–O ₂ Batteries. Chemical Reviews, 2014, 114, 5611-5640.	23.0	975
324	Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer. Journal of the Electrochemical Society, 2014, 161, A142-A148.	1.3	31

#	Article	IF	CITATIONS
325	Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 175-182.	1.5	37
326	An Advanced Lithium–Air Battery Exploiting an Ionic Liquid-Based Electrolyte. Nano Letters, 2014, 14, 6572-6577.	4.5	200
327	Stable, High Voltage Li _{0.85} Ni _{0.46} Cu _{0.1} Mn _{1.49} O ₄ Spinel Cathode in a Lithium-Ion Battery Using a Conversion-Type CuO Anode. ACS Applied Materials & Interfaces, 2014, 6, 5206-5211.	4.0	38
328	Migration of Mn cations in delithiated lithium manganese oxides. Physical Chemistry Chemical Physics, 2014, 16, 20697-20702.	1.3	22
329	The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chemical Communications, 2014, 50, 13307-13310.	2.2	69
330	A Physical Pulverization Strategy for Preparing a Highly Active Composite of CoO _{<i>x</i>} and Crushed Graphite for Lithium–Oxygen Batteries. ChemPhysChem, 2014, 15, 2070-2076.	1.0	10
331	Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries. Nature Communications, 2014, 5, 4895.	5.8	186
332	Nanorod and Nanoparticle Shells in Concentration Gradient Core–Shell Lithium Oxides for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 3295-3303.	3.6	18
333	High Electrochemical Performances of Microsphere C-TiO ₂ Anode for Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 11295-11301.	4.0	213
334	High Capacity O3-Type Na[Li _{0.05} (Ni _{0.25} Fe _{0.25} Mn _{0.5}) _{0.95}]O _{2< Cathode for Sodium Ion Batteries. Chemistry of Materials, 2014, 26, 6165-6171.}	/sub>	175
335	High-Energy Layered Oxide Cathodes with Thin Shells for Improved Surface Stability. Chemistry of Materials, 2014, 26, 5973-5979.	3.2	41
336	α-Fe ₂ O ₃ Submicron Spheres with Hollow and Macroporous Structures as High-Performance Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 2897-2907.	1.5	82
337	Differentiating allotropic LiCoO2/Li2Co2O4: A structural and electrochemical study. Journal of Power Sources, 2014, 271, 97-103.	4.0	24
338	Surfactant-Assisted Synthesis of Fe ₂ O ₃ Nanoparticles and F-Doped Carbon Modification toward an Improved Fe ₃ O ₄ @CF _{<i>x</i>} /LiNi _{0.5} Mn _{1.5} O _{4ACS Applied Materials & Interfaces, 2014, 6, 15499-15509.}	b>Battery.	. 72
339	Low Temperature Electrochemical Properties of Li[NixCoyMn1-x-y]O2Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1514-A1520.	1.3	27
340	Development of Microstrain in Aged Lithium Transition Metal Oxides. Nano Letters, 2014, 14, 4873-4880.	4.5	171
341	Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium–sulfur battery. Journal of Power Sources, 2014, 265, 14-19.	4.0	68
342	Role of the Lithium Salt in the Performance of Lithium–Oxygen Batteries: A Comparative Study. ChemElectroChem, 2014, 1, 47-50.	1.7	46

#	Article	IF	CITATIONS
343	Advanced Na[Ni _{0.25} Fe _{0.5} Mn _{0.25}]O ₂ /C–Fe ₃ O _{4 Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.}	ระบอ	283
344	A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode. ACS Applied Materials & Interfaces, 2014, 6, 10924-10928.	4.0	124
345	Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Materials Today, 2014, 17, 285-297.	8.3	140
346	An Advanced Lithiumâ€Sulfur Battery. Advanced Functional Materials, 2013, 23, 1076-1080.	7.8	310
347	Titaniumâ€Based Anode Materials for Safe Lithiumâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 959-969.	7.8	456
348	Formation of a Continuous Solidâ€Solution Particle and its Application to Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1028-1036.	7.8	39
349	Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O2 batteries. Physical Chemistry Chemical Physics, 2013, 15, 5572.	1.3	76
350	Interactions of Dimethoxy Ethane with Li ₂ O ₂ Clusters and Likely Decomposition Mechanisms for Li–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 8041-8049.	1.5	74
351	Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium–oxygen battery application. Nanoscale, 2013, 5, 10390.	2.8	40
352	A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nature Communications, 2013, 4, 2383.	5.8	379
353	Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy and Environmental Science, 2013, 6, 2609.	15.6	221
354	Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte. Electrochimica Acta, 2013, 89, 848-853.	2.6	21
355	Synthesis of Porous Carbon Supported Palladium Nanoparticle Catalysts by Atomic Layer Deposition: Application for Rechargeable Lithium–O ₂ Battery. Nano Letters, 2013, 13, 4182-4189.	4.5	184
356	Progress in Lithium–Sulfur Batteries: The Effective Role of a Polysulfideâ€Added Electrolyte as Buffer to Prevent Cathode Dissolution. ChemSusChem, 2013, 6, 2245-2248.	3.6	70
357	Rattle type α-Fe2O3 submicron spheres with a thin carbon layer for lithium-ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 10107.	5.2	31
358	Sodium salt effect on hydrothermal carbonization of biomass: a catalyst for carbon-based nanostructured materials for lithium-ion battery applications. Green Chemistry, 2013, 15, 2722.	4.6	61
359	Cobalt-Free Nickel Rich Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11434-11440.	4.0	236
360	Ordered Mesoporous Carbon Electrodes for Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2013, 5, 13426-13431.	4.0	69

#		Article	IF	CITATIONS
30	61	Lithiumâ€Sulfur Batteries: An Advanced Lithiumâ€Sulfur Battery (Adv. Funct. Mater. 8/2013). Advanced Functional Materials, 2013, 23, 1092-1092.	7.8	5
30	62	Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nature Communications, 2013, 4, 2437.	5.8	409
30	63	Self-assembled hollow mesoporous Co3O4 hybrid architectures: a facile synthesis and application in Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13164.	5.2	40
30	64	Alternative materials for sodium ion–sulphur batteries. Journal of Materials Chemistry A, 2013, 1, 5256.	5.2	141
30	65	An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide framework cathode. Physical Chemistry Chemical Physics, 2013, 15, 3827.	1.3	88
30	66	Iron trifluoride synthesized via evaporation method and its application to rechargeable lithium batteries. Journal of Power Sources, 2013, 223, 1-8.	4.0	48
30	67	Magnetism in Lithium–Oxygen Discharge Product. ChemSusChem, 2013, 6, 1196-1202.	3.6	23
30	68	Synthesis of Fe3O4/C composite microspheres for a high performance lithium-ion battery anode. Journal of Power Sources, 2013, 244, 177-182.	4.0	36
30	69	Improved rate capability of lithium-ion batteries with Ag nanoparticles deposited onto silicon/carbon composite microspheres as an anode material. Solid State Ionics, 2013, 237, 28-33.	1.3	30
37	70	Investigation of the carbon electrode changes during lithium oxygen cell operation in a tetraglyme-based electrolyte. Electrochemistry Communications, 2013, 34, 250-253.	2.3	21
37	71	Monodispersed hollow carbon/Fe3O4 composite microspheres for high performance anode materials in lithium-ion batteries. Journal of Power Sources, 2013, 244, 538-543.	4.0	33
37	72	Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (xÂ=Â1/3, 0.5,) Tj ETQq0 121-130.	0 0 0 rgBT 4.0	/Overlock 1 1,694
37	73	Encapsulation of Metal Oxide Nanocrystals into Porous Carbon with Ultrahigh Performances in Lithium-Ion Battery. ACS Applied Materials & amp; Interfaces, 2013, 5, 2133-2136.	4.0	55
37	74	Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. Journal of Power Sources, 2013, 234, 201-207.	4.0	237
37	75	Cathode Material with Nanorod Structure—An Application for Advanced High-Energy and Safe Lithium Batteries. Chemistry of Materials, 2013, 25, 2109-2115.	3.2	137
37	76	Improving the electrochemical performance of LiMn0.85Fe0.15PO4–LiFePO4 core–shell materials based on an investigation of carbon source effect. Journal of Power Sources, 2013, 244, 663-667.	4.0	23
37	77	Influence of Temperature on Lithium–Oxygen Battery Behavior. Nano Letters, 2013, 13, 2971-2975.	4.5	63
37	78	Ruthenium-Based Electrocatalysts Supported on Reduced Graphene Oxide for Lithium-Air Batteries. ACS Nano, 2013, 7, 3532-3539.	7.3	369

#	Article	IF	CITATIONS
379	Unique core–shell structured SiO ₂ (Li ⁺) nanoparticles for high-performance composite polymer electrolytes. Journal of Materials Chemistry A, 2013, 1, 395-401.	5.2	50
380	Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode. Journal of Power Sources, 2013, 244, 363-368.	4.0	79
381	Evidence for lithium superoxide-like species in the discharge product of a Li–O2 battery. Physical Chemistry Chemical Physics, 2013, 15, 3764.	1.3	188
382	A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. Journal of Power Sources, 2013, 221, 266-271.	4.0	183
383	3 Dimensional Carbon Nanostructures for Li-ion Battery Anode. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
384	Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 17870.	6.7	64
385	Fe-Fe ₃ O ₄ Composite Electrode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2012, 159, A325-A329.	1.3	20
386	Nickel-Layer Protected, Carbon-Coated Sulfur Electrode for Lithium Battery. Journal of the Electrochemical Society, 2012, 159, A390-A395.	1.3	27
387	Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.	13.3	921
388	3-dimensional carbon nanotube for Li-ion battery anode. Journal of Power Sources, 2012, 219, 364-370.	4.0	53
389	Improved Co-substituted, LiNi0.5â^'Co2Mn1.5â^'O4 lithium ion battery cathode materials. Journal of Power Sources, 2012, 220, 354-359.	4.0	51
390	Reversible NaFePO4 electrode for sodium secondary batteries. Electrochemistry Communications, 2012, 22, 149-152.	2.3	350
391	Challenges Facing Lithium Batteries and Electrical Double‣ayer Capacitors. Angewandte Chemie - International Edition, 2012, 51, 9994-10024.	7.2	2,407
392	Olivine LiCoPO4–carbon composite showing high rechargeable capacity. Journal of Materials Chemistry, 2012, 22, 14932.	6.7	53
393	A Metal-Free, Lithium-Ion Oxygen Battery: A Step Forward to Safety in Lithium-Air Batteries. Nano Letters, 2012, 12, 5775-5779.	4.5	148
394	Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. Journal of Materials Chemistry, 2012, 22, 22135.	6.7	61
395	A Transmission Electron Microscopy Study of the Electrochemical Process of Lithium–Oxygen Cells. Nano Letters, 2012, 12, 4333-4335.	4.5	107
396	A Long Life, High Capacity, High Rate Lithium-Air Battery Using a Stable Glyme Electrolyte. ECS Meeting Abstracts, 2012, , .	0.0	0

#	Article	IF	CITATIONS
397	An improved high-performance lithium–air battery. Nature Chemistry, 2012, 4, 579-585.	6.6	996
398	A tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte for advanced lithium ion batteries. Electrochemistry Communications, 2012, 14, 43-46.	2.3	32
399	Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries. Electrochemistry Communications, 2012, 17, 18-21.	2.3	101
400	Improved electrochemical performances of LiM0.05Co0.95O1.95F0.05 (M=Mg, Al, Zr) at high voltage. Electrochimica Acta, 2012, 68, 153-157.	2.6	39
401	Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries. Electrochimica Acta, 2012, 75, 123-130.	2.6	64
402	Synthesis and electrochemical properties of nanorod-shaped LiMn1.5Ni0.5O4 cathode materials for lithium-ion batteries. Materials Chemistry and Physics, 2012, 132, 223-227.	2.0	9
403	A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. Journal of Power Sources, 2012, 202, 308-313.	4.0	155
404	Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries. Journal of Power Sources, 2012, 203, 115-120.	4.0	63
405	The Role of AlF ₃ Coatings in Improving Electrochemical Cycling of Liâ€Enriched Nickelâ€Manganese Oxide Electrodes for Liâ€Ion Batteries. Advanced Materials, 2012, 24, 1192-1196.	11.1	629
406	Batteries: The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries (Adv. Mater. 9/2012). Advanced Materials, 2012, 24, 1276-1276.	11.1	8
407	Doubleâ€6tructured LiMn _{0.85} Fe _{0.15} PO ₄ Coordinated with LiFePO ₄ for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2012, 51, 1853-1856.	7.2	102
408	Effect of Mo-doped LiFePO ₄ Positive Electrode Material for Lithium Batteries. Journal of Electrochemical Science and Technology, 2012, 3, 172-177.	0.9	2
409	Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes. Journal of Materials Chemistry, 2011, 21, 17325.	6.7	205
410	Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials. Chemistry of Materials, 2011, 23, 1954-1963.	3.2	106
411	Electrochemical Properties of Sol–Gel Prepared Li2ZrxTi1–x(PO4)3 Electrodes for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2011, 158, A396.	1.3	10
412	Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2 cell at elevated temperature and additives to improve its cycle life. Journal of Materials Chemistry, 2011, 21, 17754.	6.7	89
413	Solid state synthesis of LiFePO4 studied by in situ high energy X-ray diffraction. Journal of Materials Chemistry, 2011, 21, 5604.	6.7	49
414	Advanced cathode materials for lithium-ion batteries. MRS Bulletin, 2011, 36, 498-505.	1.7	40

#	Article	IF	CITATIONS
415	A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nature Communications, 2011, 2, 516.	5.8	327
416	Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9891.	6.7	320
417	Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 13621.	6.7	64
418	Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. Journal of Materials Chemistry, 2011, 21, 19368.	6.7	75
419	Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.	15.6	433
420	A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10108.	6.7	126
421	Spherical core-shell Li[(Li0.05Mn0.95)0.8(Ni0.25Mn0.75)0.2]2O4 spinels as high performance cathodes for lithium batteries. Energy and Environmental Science, 2011, 4, 935.	15.6	63
422	Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 2011, 115, 25535-25542.	1.5	166
423	Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials. Journal of the Electrochemical Society, 2011, 159, A1-A5.	1.3	31
424	Lithium-ion batteries. A look into the future. Energy and Environmental Science, 2011, 4, 3287.	15.6	2,246
425	A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte. Solid State Ionics, 2011, 202, 36-39.	1.3	37
426	Effect of 1-butyl-1-methylpyrrolidinium hexafluorophosphate as a flame-retarding additive on the cycling performance and thermal properties of lithium-ion batteries. Electrochimica Acta, 2011, 56, 10179-10184.	2.6	32
427	Synthesis of silicon/carbon, multi-core/shell microspheres using solution polymerization for a high performance Li ion battery. Electrochimica Acta, 2011, 58, 578-582.	2.6	24
428	An Advanced Lithium Ion Battery Based on High Performance Electrode Materials. Journal of the American Chemical Society, 2011, 133, 3139-3143.	6.6	382
429	Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery. Journal of Power Sources, 2011, 196, 343-348.	4.0	141
430	Development of high power lithium-ion batteries: Layer Li[Ni0.4Co0.2Mn0.4]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. Journal of Power Sources, 2011, 196, 7039-7043.	4.0	17
431	Improvement of electrochemical properties of Li1.1Al0.05Mn1.85O4 achieved by an AlF3 coating. Journal of Power Sources, 2011, 196, 1353-1357.	4.0	57
432	Nanostructured TiO ₂ and Its Application in Lithiumâ€ion Storage. Advanced Functional Materials, 2011, 21, 3231-3241.	7.8	154

#	Article	IF	CITATIONS
433	Micrometerâ€Sized, Nanoporous, Highâ€Volumetricâ€Capacity LiMn _{0.85} Fe _{0.15} PO ₄ Cathode Material for Rechargeable Lithiumâ€Ion Batteries. Advanced Materials, 2011, 23, 5050-5054.	11.1	180
434	Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode. Journal of Power Sources, 2011, 196, 6997-7001.	4.0	51
435	AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. Journal of Power Sources, 2011, 196, 6974-6977.	4.0	100
436	Effects of manganese and cobalt on the electrochemical and thermal properties of layered Li[Ni0.52Co0.16+Mn0.32â^']O2 cathode materials. Journal of Power Sources, 2011, 196, 6710-6715.	4.0	25
437	Enhanced electrochemical performance of carbon–LiMn1â^'Fe PO4 nanocomposite cathode for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6924-6928.	4.0	95
438	Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C. Journal of Power Sources, 2011, 196, 7742-7746.	4.0	204
439	Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. Journal of Power Sources, 2011, 196, 7763-7766.	4.0	118
440	High specific capacity and excellent stability of interface-controlled MWCNT based anodes in lithium ion battery. Materials Research Society Symposia Proceedings, 2011, 1313, 139201.	0.1	0
441	Pitch Carbon-coated Lithium Sulfide Electrode for Advanced, Lithium-metal Free-sulfur Batteries. Green, 2011, 1, .	0.4	5
442	High-Voltage Performance of Li[Ni[sub 0.55]Co[sub 0.15]Mn[sub 0.30]]O[sub 2] Positive Electrode Material for Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A180.	1.3	30
443	One-Pot Synthesis of Alkyl-Terminated Silicon Nanoparticles by Solution Reduction. Korean Chemical Engineering Research, 2011, 49, 577-581.	0.2	1
444	Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells. Electrochimica Acta, 2010, 55, 4637-4641.	2.6	59
445	Synthesis and electrochemical performances of core-shell structured Li[(Ni1/3Co1/3Mn1/3)0.8(Ni1/2Mn1/2)0.2]O2 cathode material for lithium ion batteries. Journal of Power Sources, 2010, 195, 6043-6048.	4.0	48
446	Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. Journal of Power Sources, 2010, 195, 8297-8301.	4.0	27
447	A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€Ion Batteries. Advanced Functional Materials, 2010, 20, 485-491.	7.8	252
448	Highâ€Performance Carbon‣iMnPO ₄ Nanocomposite Cathode for Lithium Batteries. Advanced Functional Materials, 2010, 20, 3260-3265.	7.8	298
449	Double Carbon Coating of LiFePO ₄ as High Rate Electrode for Rechargeable Lithium Batteries. Advanced Materials, 2010, 22, 4842-4845.	11.1	361
450	Nanostructured Anode Material for Highâ€Power Battery System in Electric Vehicles. Advanced Materials, 2010, 22, 3052-3057.	11.1	359

#	Article	IF	CITATIONS
451	Improved electrochemical properties of BiOF-coated 5V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 2023-2028.	4.0	101
452	Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries. Journal of Power Sources, 2010, 195, 2909-2913.	4.0	235
453	Spinel lithium manganese oxide synthesized under a pressurized oxygen atmosphere. Electrochimica Acta, 2010, 55, 8397-8401.	2.6	10
454	Highly conductive and transparent thin films fabricated with predominantly semiconducting single-walled carbon nanotubes. Carbon, 2010, 48, 2646-2649.	5.4	4
455	Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta, 2010, 55, 1193-1199.	2.6	55
456	High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8621-8627.	2.6	98
457	Thermally Annealed Co[sub 2]MnAl Thin-Film Electrode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2010, 157, A636.	1.3	2
458	Effect of Manganese Content on the Electrochemical and Thermal Stabilities of Li[Ni[sub 0.58]Co[sub 0.28â^'x]Mn[sub 0.14+x]]O[sub 2] Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A1335.	1.3	23
459	Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A447.	1.3	79
460	High Capacity and Excellent Stability of Lithium Ion Battery Anode Using Interface-Controlled Binder-Free Multiwall Carbon Nanotubes Grown on Copper. ACS Nano, 2010, 4, 3440-3446.	7.3	184
461	Role of surface coating on cathode materials for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7606.	6.7	569
462	Effect of AlF ₃ Coating on Thermal Behavior of Chemically Delithiated Li _{0.35} [Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ . Journal of Physical Chemistry C, 2010, 114, 4710-4718.	1.5	99
463	PVA assisted growth of hydrophobic honeycomb network of CdS thin films. Journal of Alloys and Compounds, 2010, 503, 422-425.	2.8	8
464	The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis. Journal of Alloys and Compounds, 2010, 506, 372-376.	2.8	49
465	High Temperature Performance of Surface-Treated Li[sub 1.1](Ni[sub 0.15]Co[sub 0.1]Mn[sub 0.55])O[sub 1.95] Layered Oxide. Journal of the Electrochemical Society, 2010, 157, A1035.	1.3	69
466	Synthesis of Li ₄ Mn ₅ O ₁₂ and its application to the non-aqueous hybrid capacitor. Physica Scripta, 2010, T139, 014053.	1.2	3
467	Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 7074.	6.7	214
468	Synthesis of Li2Mn3O7and Application to Hybrid Capacitor. Journal of Electrochemical Science and Technology, 2010, 1, 97-101.	0.9	4

#	Article	IF	CITATIONS
469	Synthesis of Defective-Structure Li4Mn5O12by Combustion Method and Its Application to Hybrid Capacitor. Journal of the Korean Electrochemical Society, 2010, 13, 103-109.	0.1	3
470	Role of AlF[sub 3] Coating on LiCoO[sub 2] Particles during Cycling to Cutoff Voltage above 4.5 V. Journal of the Electrochemical Society, 2009, 156, A1005.	1.3	70
471	Effects of Co doping on Li[Ni0.5CoxMn1.5â^x]O4 spinel materials for 5V lithium secondary batteries via Co-precipitation. Journal of Power Sources, 2009, 189, 752-756.	4.0	54
472	Effect of protecting metal oxide (Co3O4) layer on electrochemical properties of spinel Li1.1Mn1.9O4 as a cathode material for lithium battery applications. Journal of Power Sources, 2009, 189, 494-498.	4.0	32
473	Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009, 55, 288-297.	2.6	104
474	Electrochemical evaluation of La1 â^ x Ca x CoO3 cathode material for zinc air batteries application. Journal of Electroceramics, 2009, 23, 382-386.	0.8	22
475	High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 2009, 8, 320-324.	13.3	1,323
476	Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11, 756-759.	2.3	96
477	Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochimica Acta, 2009, 54, 3851-3856.	2.6	177
478	Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt. Electrochimica Acta, 2009, 54, 5804-5812.	2.6	31
479	Electrochemical characterization of Li2MnO3–Li[Ni1/3Co1/3Mn1/3]O2–LiNiO2 cathode synthesized via co-precipitation for lithium secondary batteries. Journal of Power Sources, 2009, 189, 571-575.	4.0	178
480	Electrochemical behaviour of Heusler alloy Co2MnSi for secondary lithium batteries. Journal of Power Sources, 2009, 188, 281-285.	4.0	9
481	Effect of carbon coating on thermal stability of natural graphite spheres used as anode materials in lithium-ion batteries. Journal of Power Sources, 2009, 190, 553-557.	4.0	58
482	Improvement of high voltage cycling performance and thermal stability of lithium–ion cells by use of a thiophene additive. Electrochemistry Communications, 2009, 11, 1900-1903.	2.3	87
483	Overcharge Behavior of Metal Oxide-Coated Cathode Materials. , 2009, , 1-33.		0
484	High Electrochemical Li Intercalation in Titanate Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14034-14039.	1.5	15
485	Improvement of High Voltage Cycling Performances of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3]]O[sub 2] at 55ŰC by a (NH[sub 4])[sub 3]AlF[sub 6] Coating. Electrochemical and Solid-State Letters, 2009, 12, A163.	2.2	38
486	Mesoporous Anatase TiO ₂ with High Surface Area and Controllable Pore Size by F ^{â^²} -lon Doping: Applications for High-Power Li-lon Battery Anode. Journal of Physical Chemistry C, 2009, 113, 21258-21263.	1.5	113

#	Article	IF	CITATIONS
487	Electrochemical characterization of Ti–Si and Ti–Si–Al alloy anodes for Li-ion batteries produced by mechanical ball milling. Journal of Alloys and Compounds, 2009, 472, 461-465.	2.8	58
488	LixNi0.25Mn0.75Oy (0.5 ≤≤2, 2 â‰ÿ≤2.75) compounds for high-energy lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 4510.	6.7	116
489	Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries. Journal of Materials Chemistry, 2009, 19, 1995.	6.7	72
490	Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.	2.2	82
491	Development of LiNi[sub 0.5]Mn[sub 1.5]O[sub 4]/Li[sub 4]Ti[sub 5]O[sub 12] System with Long Cycle Life. Journal of the Electrochemical Society, 2009, 156, A1047.	1.3	88
492	Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells. Journal of Power Sources, 2008, 179, 347-350.	4.0	112
493	Optimization of microwave synthesis of Li[Ni0.4Co0.2Mn0.4]O2 as a positive electrode material for lithium batteries. Electrochimica Acta, 2008, 53, 3065-3074.	2.6	35
494	Particle size effect of Li[Ni0.5Mn0.5]O2 prepared by co-precipitation. Electrochimica Acta, 2008, 53, 6033-6037.	2.6	66
495	Consideration of long and middle range interaction on the calculation of activities for binary polymer solutions. Macromolecular Research, 2008, 16, 320-328.	1.0	0
496	Vapor–liquid equilibria for polymer solutions through a groupâ€contribution method: Chainâ€length dependence. Journal of Applied Polymer Science, 2008, 110, 2634-2640.	1.3	1
497	Improvement of structural and electrochemical properties of AlF3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode materials on high voltage region. Journal of Power Sources, 2008, 178, 826-831.	4.0	144
498	Physical and electrochemical properties of spherical Li1+x(Ni1/3Co1/3Mn1/3)1â^'xO2 cathode materials. Journal of Power Sources, 2008, 177, 177-183.	4.0	144
499	Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl) Tj ETQq1 1 0.78	84314 rgE 4.0	3T/Overloc
500	Synthesis and electrochemical properties of Ni doped titanate nanotubes for lithium ion storage. Applied Surface Science, 2008, 254, 7718-7722.	3.1	11
501	Nanosized TiN–SBR hybrid coating of stainless steel as bipolar plates for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2008, 54, 574-581.	2.6	24
502	Investigation of anode-supported SOFC with cobalt-containing cathode and GDC interlayer. Solid State Ionics, 2008, 179, 1535-1539.	1.3	56
503	Combustion synthesized LiMnSnO4 cathode for lithium batteries. Electrochemistry Communications, 2008, 10, 455-460.	2.3	17
504	Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane fuel cell. Electrochemistry Communications, 2008, 10, 480-484.	2.3	67

#	Article	IF	CITATIONS
505	Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Acta, 2008, 53, 4500-4504.	2.6	68
506	Comparative study of Li[Ni1/3Co1/3Mn1/3]O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications. Materials Chemistry and Physics, 2008, 110, 222-227.	2.0	35
507	The Effect of Morphological Properties on the Electrochemical Behavior of High Tap Density C–LiFePO[sub 4] Prepared via Coprecipitation. Journal of the Electrochemical Society, 2008, 155, A414.	1.3	35
508	Improvement of Electrochemical Performance of Li[Ni _{0.8} Co _{0.15} Al _{0.05}]O ₂ Cathode Materials by AlF ₃ coating at Various Temperatures. Industrial & Engineering Chemistry Research, 2008, 47, 3876-3882.	1.8	61
509	Effects of Metal Ions on the Structural and Thermal Stabilities of Li[Ni[sub 1â^'xâ^'y]Co[sub x]Mn[sub y]]O[sub 2] (x+yâ‰ û .5) Studied by In Situ High Temperature XRD. Journal of the Electrochemical Society, 2008, 155, A952.	1.3	26
510	Improvement of the Electrochemical Properties of Li[Ni[sub 0.5]Mn[sub 0.5]]O[sub 2] by AlF[sub 3] Coating. Journal of the Electrochemical Society, 2008, 155, A705.	1.3	43
511	In Situ XAFS Study of the Effect of Dopants in Li[sub 1+x]Ni[sub (1â^'3x)â^•2]Mn[sub (3+x)â^•2]O[sub 4] (0≤â‰⊈â^•3), a Li-Ion Battery Cathode Material. Journal of the Electrochemical Society, 2008, 155, A845.	1.3	13
512	Structural, Electrochemical, and Thermal Aspects of Li[(Ni[sub 0.5]Mn[sub 0.5])[sub 1â^'x]Co[sub x]]O[sub 2]â€,(0≤â‰0.2) for High-Voltage Application of Lithium-Ion Secondary Batteries. Journal of the Electrochemical Society, 2008, 155, A374.	1.3	31
513	Structural Characterization of Titanate Nanotubes for Lithium Storage. Journal of Nanoscience and Nanotechnology, 2008, 8, 5022-5025.	0.9	0
514	Improvement of Electrochemical Performances of Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2] Cathode Materials by Fluorine Substitution. Journal of the Electrochemical Society, 2007, 154, A649.	1.3	141
515	Ag Deposition on Si-C Composite Anodes for Lithium Ion Batteries. Solid State Phenomena, 2007, 124-126, 1035-1038.	0.3	0
516	Significant Improvement of Electrochemical Performance of AlF[sub 3]-Coated Li[Ni[sub 0.8]Co[sub 0.1]]Mn[sub 0.1]]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2007, 154, A1005.	1.3	199
517	On the Safety of the Li[sub 4]Ti[sub 5]O[sub 12]â^•LiMn[sub 2]O[sub 4] Lithium-Ion Battery System. Journal of the Electrochemical Society, 2007, 154, A1083.	1.3	177
518	Preparation and Electrochemical Evaluation of La _{1-x} Sr _x MnO ₃ Cathode Material for Zinc Air Secondary Batteries Application. Solid State Phenomena, 2007, 124-126, 1055-1058.	0.3	7
519	Structural Transformation of Li[Ni[sub 0.5â^x]Co[sub 2x]Mn[sub 0.5â^x]]O[sub 2] (2xâ‰ 9 .1) Charged in High-Voltage Range (4.5â€,V). Journal of the Electrochemical Society, 2007, 154, A520.	1.3	19
520	Characterization of Core-Shell Type Cathode Material in Li-ion Cells. ECS Transactions, 2007, 6, 3-9.	0.3	1
521	Microwave Synthesis of Spherical Li[Ni0.4Co0.2Mn0.4]O2Powders as a Positive Electrode Material for Lithium Batteries. Chemistry of Materials, 2007, 19, 2727-2729.	3.2	35
522	AlF[sub 3]-Coating to Improve High Voltage Cycling Performance of Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] Cathode Materials for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A168.	1.3	158

#	Article	IF	CITATIONS
523	Physical and Electrochemical Properties of Li[Ni[sub 0.4]Co[sub x]Mn[sub 0.6â^x]]O[sub 2] (x=0.1–0.4) Electrode Materials Synthesized via Coprecipitation. Journal of the Electrochemical Society, 2007, 154, A937.	1.3	34
524	Comparison of Structural Changes in Fully Delithiated Li[sub x][Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] and Li[sub x][Ni[sub 0.33]Co[sub 0.33]Mn[sub 0.30]Mg[sub 0.04]]O[sub 1.96]F[sub 0.04] Cathodes (x=0) upon Thermal Annealing. Journal of the Electrochemical Society, 2007, 154, A561.	1.3	8
525	Structural and Electrochemical Properties of Layered Li[Ni[sub 1â^'2x]Co[sub x]Mn[sub x]]O[sub 2] (x=0.1–0.3) Positive Electrode Materials for Li-Ion Batteries. Journal of the Electrochemical Society, 2007, 154, A971.	1.3	177
526	Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries. Journal of Physical Chemistry C, 2007, 111, 4061-4067.	1.5	163
527	lsothermal calorimetry investigation of Li1+xMn2â^'yAlzO4 spinel. Electrochimica Acta, 2007, 52, 5837-5842.	2.6	52
528	Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochimica Acta, 2007, 53, 1013-1019.	2.6	109
529	Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M=Ni, Mg, Al) spinel and its application for lithium secondary battery cathode. Electrochimica Acta, 2007, 52, 5201-5206.	2.6	50
530	Comparative study of different crystallographic structure of LiNi0.5Mn1.5O4â^îŕ cathodes with wide operation voltage (2.0–5.0V). Electrochimica Acta, 2007, 52, 7226-7230.	2.6	117
531	Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. Journal of Power Sources, 2007, 173, 502-509.	4.0	189
532	Synthesis and electrochemical properties of spherical spinel Li1.05M0.05Mn1.9O4 (M=Mg and Al) as a cathode material for lithium-ion batteries by co-precipitation method. Journal of Power Sources, 2007, 174, 726-729.	4.0	18
533	Electrochemical stability of core–shell structure electrode for high voltage cycling as positive electrode for lithium ion batteries. Journal of Power Sources, 2007, 174, 658-662.	4.0	23
534	Co-synthesis of nano-sized LSM–YSZ composites with enhanced electrochemical property. Journal of Solid State Electrochemistry, 2007, 11, 1385-1390.	1.2	29
535	Electrochemical performance of Li4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1â^xO2 cell for high power applications. Journal of Power Sources, 2007, 167, 212-216.	4.0	35
536	Synthesis and electrochemical properties of Li[Ni0.45Co0.1Mn0.45â^'xZrx]O2 (x=0, 0.02) via co-precipitation method. Journal of Power Sources, 2007, 174, 565-568.	4.0	30
537	Life prediction and reliability assessment of lithium secondary batteries. Journal of Power Sources, 2007, 174, 954-958.	4.0	63
538	Synthesis of Spherical Nano- to Microscale Coreâ^'Shell Particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2and Their Applications to Lithium Batteries. Chemistry of Materials, 2006, 18, 5159-5163.	3.2	116
539	Synthesis of Li[(Ni0.5Mn0.5)1-xLix]O2by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties. Chemistry of Materials, 2006, 18, 1658-1666.	3.2	82
540	Novel Coreâ^'Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries. Journal of Physical Chemistry B, 2006, 110, 6810-6815.	1.2	97

#	Article	IF	CITATIONS
541	Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3V range. Electrochimica Acta, 2006, 51, 4089-4095.	2.6	27
542	Rapidly solidified Ti–Si alloys/carbon composites as anode for Li-ion batteries. Electrochimica Acta, 2006, 52, 1523-1526.	2.6	39
543	The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochimica Acta, 2006, 52, 1592-1595.	2.6	49
544	Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochemistry Communications, 2006, 8, 821-826.	2.3	245
545	Synthesis of spherical Li[Ni(1/3â^'z)Co(1/3â^'z)Mn(1/3â^'z)Mgz]O2 as positive electrode material for lithium-ion battery. Electrochimica Acta, 2006, 51, 2447-2453.	2.6	92
546	Improvement of electrochemical properties of Li[Ni0.4Co0.2Mn(0.4â^'x)Mgx]O2â^'yFy cathode materials at high voltage region. Electrochimica Acta, 2006, 52, 1477-1482.	2.6	24
547	Relationship between glass network structure and conductivity of Li2O–B2O3–P2O5 solid electrolyte. Electrochimica Acta, 2006, 52, 1576-1581.	2.6	30
548	Improvement of cycling performance of Li1.1Mn1.9O4 at 60°C by NiO addition for Li-ion secondary batteries. Electrochimica Acta, 2006, 51, 5912-5919.	2.6	33
549	Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. Journal of Power Sources, 2006, 157, 464-470.	4.0	108
550	Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation. Journal of Power Sources, 2006, 159, 1328-1333.	4.0	228
551	Water activities of polymeric membrane/water systems in fuel cells. Journal of Power Sources, 2006, 157, 733-738.	4.0	7
552	Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4â^'xSx spinel material in 3-V region. Journal of Power Sources, 2006, 161, 19-26.	4.0	75
553	Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials. Journal of Power Sources, 2006, 161, 1314-1318.	4.0	54
554	Phase behaviors of solid polymer electrolytes/salt system in lithium secondary battery by group-contribution method: The pressure effect. Polymer, 2006, 47, 211-217.	1.8	2
555	Synthesis and electrochemical properties of Li[Ni0.4Co0.2Mn(0.4â^'x)Mgx]O2â^'yFy via a carbonate co-precipitation. Current Applied Physics, 2006, 6, e12-e16.	1.1	5
556	Synthesis and characterization of spherical morphology [Ni0.4Co0.2Mn0.4]3O4 materials for lithium secondary batteries. Journal of Power Sources, 2006, 160, 558-562.	4.0	18
557	Li2O–B2O3–P2O5 solid electrolyte for thin film batteries. Journal of Power Sources, 2006, 163, 223-228.	4.0	53
558	High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006, 162, 1346-1350.	4.0	119

#	Article	IF	CITATIONS
559	The effects of Na doping on performance of layered Li1.1â^'xNax[Ni0.2Co0.3Mn0.4]O2 materials for lithium secondary batteries. Materials Chemistry and Physics, 2006, 95, 218-221.	2.0	42
560	Electrochemical Properties of Lithium-Rich Li[sub 1+x](Mn[sub 1â^•3]Ni[sub 1â^•3]Co[sub 1â^•3])[sub 1â^'x]O[sub 2] at High Potential. Journal of the Electrochemical Society, 2006, 153, A1818.	⁰ 1.3	29
561	Improved Electrochemical Cycling Behavior of ZnO-Coated Li[sub 1.05]Al[sub 0.1]Mn[sub 1.85]O[sub 3.95]F[sub 0.05] Spinel at 55°C. Journal of the Electrochemical Society, 2006, 153, A1290.	1.3	42
562	Microscale Core-Shell Structured Li[(Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1])[sub 0.8](Ni[sub 0.5]Mn[sub) Tj ETQq0 Solid-State Letters, 2006, 9, A171.	0 0 rgBT / 2.2	Overlock 10 31
563	Ionic Conductivities of Solid Polymer Electrolyte/Salt Systems for Lithium Secondary Battery : Electrostatic Potential Contribution. ECS Transactions, 2006, 2, 1-12.	0.3	0
564	Improved electrochemical performance of Li-doped natural graphite anode for lithium secondary batteries. Journal of Power Sources, 2005, 139, 230-234.	4.0	26
565	Thermodynamic properties of direct methanol polymer electrolyte fuel cell. Journal of Power Sources, 2005, 145, 598-603.	4.0	5
566	Structural and electrochemical study of Li–Al–Mn–O–F spinel material for lithium secondary batteries. Journal of Power Sources, 2005, 146, 237-240.	4.0	43
567	Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2â^'zFz as lithium intercalation material. Journal of Power Sources, 2005, 146, 602-605.	4.0	62
568	Synthesis and structural characterization of layered Li[Ni1/3+xCo1/3Mn1/3â^'2xMox]O2 cathode materials by ultrasonic spray pyrolysis. Journal of Power Sources, 2005, 146, 622-625.	4.0	71
569	Effect of fluorine on the electrochemical properties of layered Li(Ni0.5Mn0.5)O2 cathode materials. Journal of Power Sources, 2005, 146, 650-653.	4.0	31
570	Ionic conductivities of solid polymer electrolyte/salt systems for lithium secondary battery. Polymer, 2005, 46, 3111-3118.	1.8	15
571	Synthesis and improved electrochemical performance of Al (OH)3-coated Li[Ni1/3Mn1/3Co1/3]O2 cathode materials at elevated temperature. Electrochimica Acta, 2005, 50, 4168-4173.	2.6	84
572	The effect of Al(OH)3 coating on the Li[Li0.2Ni0.2Mn0.6]O2 cathode material for lithium secondary battery. Electrochimica Acta, 2005, 50, 4784-4791.	2.6	114
573	Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 2005, 50, 4800-4806.	2.6	90
574	Effects of synthesis condition on LiNiMnO cathode material for prepared by ultrasonic spray pyrolysis method. Solid State Ionics, 2005, 176, 481-486.	1.3	54
575	Synthesis of Li[NiCoMn]O cathode materials via a carbonate process. Solid State Ionics, 2005, 176, 2577-2581.	1.3	32
576	Phase behaviors of polymer blend(PEO-PPO) electrolyte/LiCF3SO3 systems in lithium battery. Journal of Applied Polymer Science, 2005, 98, 2314-2319.	1.3	5

#	Article	IF	CITATIONS
577	Low-Temperature Synthesis of LixMn0.67Ni0.33O2 (0.2 <x 0.33)="" 17,="" 2005,="" 2834-2837.<="" <="" a="" advanced="" hexagonal="" layered="" materials,="" nanowires="" structure.="" td="" with=""><td>11.1</td><td>57</td></x>	11.1	57
578	Synthesis and electrochemical properties of layered LiNi1/2Mn1/2O2prepared by coprecipitation. Journal of Applied Electrochemistry, 2005, 35, 151-156.	1.5	16
579	Electrochemical Properties for Solid Polymer Electrolyte/Salt Systems in Lithium Secondary Batteries. Journal of the Electrochemical Society, 2005, 152, A864.	1.3	6
580	LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Showing Reversible Phase Transition on 3 V Region. Electrochemical and Solid-State Letters, 2005, 8, A163.	2.2	41
581	Effect of Fluorine on the Electrochemical Properties of Layered Li[Ni[sub 0.43]Co[sub 0.22]Mn[sub 0.35]]O[sub 2] Cathode Materials via a Carbonate Process. Electrochemical and Solid-State Letters, 2005, 8, A559.	2.2	34
582	XAS Investigation of Inhomogeneous Metal-Oxygen Bond Covalency in Bulk and Surface for Charge Compensation in Li-Ion Battery Cathode Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] Material. Journal o the Electrochemical Society, 2005, 152, A1320.	f 1.3	110
583	Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A1707.	1.3	133
584	In Situ Studies of Li[sub x]Mn[sub 2]O[sub 4] and Li[sub x]Al[sub 0.17]Mn[sub 1.83]O[sub 3.97]S[sub 0.03] Cathode by IMC. Journal of the Electrochemical Society, 2005, 152, A421.	1.3	47
585	Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material. Journal of Physical Chemistry B, 2005, 109, 20719-20723.	1.2	112
586	Role of Alumina Coating on Liâ~'Niâ^'Coâ^'Mnâ^'O Particles as Positive Electrode Material for Lithium-Ion Batteries. Chemistry of Materials, 2005, 17, 3695-3704.	3.2	493
587	Synthesis of Nanostructured Li[Ni1/3Co1/3Mn1/3]O2via a Modified Carbonate Process. Chemistry of Materials, 2005, 17, 6-8.	3.2	96
588	Synthesis and Characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2with the Microscale Coreâ^Shell Structure as the Positive Electrode Material for Lithium Batteries. Journal of the American Chemical Society, 2005, 127, 13411-13418.	6.6	417
589	Phase Transitions in Li[sub 1â^î]Ni[sub 0.5]Mn[sub 1.5]O[sub 4] during Cycling at 5 V. Electrochemical and Solid-State Letters, 2004, 7, A216.	2.2	109
590	Effect of Ti Substitution for Mn on the Structure of LiNi[sub 0.5]Mn[sub 1.5â^'x]Ti[sub x]O[sub 4] and Their Electrochemical Properties as Lithium Insertion Material. Journal of the Electrochemical Society, 2004, 151, A1911.	1.3	112
591	Mo[sup 6+]-Doped Li[Ni[sub (0.5+x)]Mn[sub (1.5â~²2x)]Mo[sub x]]O[sub 4] Spinel Materials for 5 V Lithium Secondary Batteries Prepared by Ultrasonic Spray Pyrolysis. Electrochemical and Solid-State Letters, 2004, 7, A451.	2.2	28
592	Effect of Li-Doping on Electrochemical Performance of Natural Graphite Anode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2004, 151, A1728.	1.3	6
593	Synthesis and electrochemical behavior of layered Li(Ni0.5â^'xCo2xMn0.5â^'x)O2 (x = 0 and 0.025) materials prepared by solid-state reaction method. Materials Research Bulletin, 2004, 39, 819-825.	2.7	19
594	Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochimica Acta, 2004, 49, 219-227.	2.6	231

#	Article	IF	CITATIONS
595	Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004, 49, 557-563.	2.6	210
596	Blended polymer electrolytes based on poly(lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochimica Acta, 2004, 50, 375-378.	2.6	91
597	A novel layered Li [Li0.12NizMg0.32â^²zMn0.56]O2 cathode material for lithium-ion batteries. Electrochimica Acta, 2004, 49, 4425-4432.	2.6	26
598	Electrodeposition of nano-structured nickel–21% tungsten alloy and evaluation of oxygen reduction reaction in a 1% sodium hydroxide solution. Electrochimica Acta, 2004, 49, 4411-4416.	2.6	21
599	Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 2004, 50, 939-948.	2.6	535
600	Structural and electrochemical properties of layered Li6Ni0.5Mn0.591?xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics, 2004, 171, 167-172.	1.3	94
601	Synthesis and electrochemical characterization of spinel Li[Li(1â^x)/3CrxTi(5â^2x)/3]O4 anode materials. Journal of Power Sources, 2004, 125, 242-245.	4.0	74
602	Polymer–polymer miscibility: generalized double lattice model. Polymer, 2004, 45, 8067-8074.	1.8	4
603	Synthesis and structural changes of LixFeyOz material prepared by a solid-state method. Journal of Power Sources, 2004, 134, 88-94.	4.0	33
604	Synthesis and electrochemical properties of 5V spinel LiNi0.5Mn1.5O4 cathode materials prepared by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004, 50, 439-434.	2.6	40
605	Synthesis and Electrochemical Properties of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub (1/3â^'x)]Mg[sub x]]O[sub 2â^'y]F[sub y] via Coprecipitation. Electrochemical and Solid-State Letters, 2004, 7, A477.	2.2	93
606	Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3̄m and P4332. Chemistry of Materials, 2004, 16, 906-914.	3.2	687
607	Hydrothermal Synthesis of Layered Li[Ni0.5Mn0.5]O2as Lithium Intercalation Material. Chemistry Letters, 2004, 33, 818-819.	0.7	10
608	Synthesis of Li[Ni1/3Co1/3Mn1/3]O2â^2Fzvia Coprecipitation. Chemistry Letters, 2004, 33, 1388-1389.	0.7	21
609	Effects of Molybdenum Doping on the Layered Li[Ni0.5+xMn0.5â^'2xMox]O2Cathode Materials for Lithium Secondary Batteries. Chemistry Letters, 2004, 33, 2-3.	0.7	18
610	Electrochemical properties of layered Li[Ni1/2Mn1/2]O2cathode material synthesised by ultrasonic spray pyrolysis. Journal of Applied Electrochemistry, 2003, 33, 1169-1173.	1.5	7
611	Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochimica Acta, 2003, 48, 503-506.	2.6	123
612	Synthesis and electrochemical characterization of orthorhombic LiMnO2 material. Electrochimica Acta, 2003, 48, 1031-1039.	2.6	47

#	Article	IF	CITATIONS
613	Electrochemical properties and structural characterization of layered Li[Ni0.5Mn0.5]O2 cathode materials. Electrochimica Acta, 2003, 48, 2589-2592.	2.6	22
614	Synthesis and electrochemical behavior of Li[Li0.1Ni0.35â^'x/2CoxMn0.55â^'x/2]O2 cathode materials. Solid State Ionics, 2003, 164, 43-49.	1.3	102
615	Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics, 2003, 159, 111-119.	1.3	163
616	Synthesis and electrochemical properties of layered Li[Li0.15Ni(0.275â^'x/2)AlxMn(0.575â^'x/2)]O2 materials prepared by sol–gel method. Journal of Power Sources, 2003, 119-121, 161-165.	4.0	70
617	Electrochemical performance of Li[LixNi(1â~'3x)/2Mn(1+x)/2]O2 cathode materials synthesized by a sol–gel method. Journal of Power Sources, 2003, 119-121, 166-170.	4.0	61
618	Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. Journal of Power Sources, 2003, 123, 247-252.	4.0	314
619	Synthesis and electrochemical properties of sulfur doped-LixMnO2â^'ySy materials for lithium secondary batteries. Electrochemistry Communications, 2003, 5, 124-128.	2.3	17
620	Preparation of Mn-substituted LiFeO2: A solid solution of LiFeO2 and LixMnO2. Electrochemistry Communications, 2003, 5, 359-364.	2.3	12
621	Structural change and capacity loss mechanism in orthorhombic Li/LiFeO2 system during cycling. Electrochemistry Communications, 2003, 5, 549-554.	2.3	31
622	A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling. Journal of Power Sources, 2003, 119-121, 285-289.	4.0	13
623	Electrochemical and Ex Situ X-Ray Study of Li(Li[sub 0.2]Ni[sub 0.2]Mn[sub 0.6])O[sub 2] Cathode Material for Li Secondary Batteries. Electrochemical and Solid-State Letters, 2003, 6, A183.	2.2	111
624	The Effect of ZnO Coating on Electrochemical Cycling Behavior of Spinel LiMn[sub 2]O[sub 4] Cathode Materials at Elevated Temperature. Journal of the Electrochemical Society, 2003, 150, A970.	1.3	112
625	Electrochemical performance of layered Li[Li0.15Ni0.275–xMgxMn0.575]O2 cathode materials for lithium secondary batteries. Journal of Materials Chemistry, 2003, 13, 319-322.	6.7	62
626	Structural Characterization of Li[Li[sub 0.1]Ni[sub 0.35]Mn[sub 0.55]]O[sub 2] Cathode Material for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2003, 150, A538.	1.3	46
627	Synthesis and Electrochemical Properties of ZnO-Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Material for Lithium Secondary Batteries [Electrochemical and Solid-State Letters, 5, A99 (2002)]. Journal of the Electrochemical Society, 2003, 150, L11.	1.3	10
628	Preparation of Layered Li[Ni1/2Mn1/2]O2by Ultrasonic Spray Pyrolysis Method. Chemistry Letters, 2003, 32, 446-447.	0.7	11
629	Synthesis and Electrochemical Properties of ZnO-Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Material for Lithium Secondary Batteries [Electrochemical and Solid-State Letters, 5, A99 (2002)]. Electrochemical and Solid-State Letters, 2002, 5, L1.	2.2	4
630	Synthesis and Electrochemical Characteristics of Li[sub 0.7][Ni[sub 1/6]Mn[sub 5/6]]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2002, 149, A1250.	1.3	2

#	Article	IF	CITATIONS
631	Porous Polyacrylonitrile Membrane for Lithium-Ion Cells. Electrochemical and Solid-State Letters, 2002, 5, A63.	2.2	16
632	Preparation of Nano-Crystalline LiFe0.97Co0.03O1.95Cl0.05by Solid-State Method. Chemistry Letters, 2002, 31, 642-643.	0.7	10
633	Structural and electrochemical characteristics of nano-structured Li0.53Na0.03MnO2manganese oxide prepared by the sol–gel method. Journal of Materials Chemistry, 2002, 12, 3827-3831.	6.7	8
634	Synthesis and Electrochemical Properties of ZnO-Coated LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Material for Lithium Secondary Batteries. Electrochemical and Solid-State Letters, 2002, 5, A99.	2.2	237
635	Structural Characterization of Mn-Based Materials Using \hat{I}^3 -MnOOH Source. Electrochemical and Solid-State Letters, 2002, 5, A1.	2.2	18
636	Cycling behavior of the oxysulfide LiAl0.18Mn1.82O3.97S0.03 cathode materials at elevated temperature. Materials Letters, 2002, 56, 418-423.	1.3	7
637	Electrochemical properties of the oxysulfide lial0.18mn1.82o3.97s0.03 cathode materials at elevated temperature. Korean Journal of Chemical Engineering, 2002, 19, 718-721.	1.2	4
638	The effects of oxygen flow rate and anion doping on the performance of the LiNio2 electrode for lithium secondary batteries. Korean Journal of Chemical Engineering, 2002, 19, 791-796.	1.2	17
639	Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochemistry Communications, 2002, 4, 344-348.	2.3	257
640	Synthesis of nano-crystalline LiFeO2 material with advanced battery performance. Electrochemistry Communications, 2002, 4, 727-731.	2.3	34
641	Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5 V cathode material by composite carbonate process. Electrochemistry Communications, 2002, 4, 989-994.	2.3	149
642	Microstructure and cycling behavior of LiAl0.1Mn1.9O4 cathode for lithium secondary batteries at 3 V. Journal of Power Sources, 2002, 108, 97-105.	4.0	11
643	Cycling behavior of selenium-doped LiMn2O4 spinel cathode material at 3 V for lithium secondary batteries. Journal of Power Sources, 2002, 109, 234-238.	4.0	14
644	Layered Li(Ni0.5â^'xMn0.5â^'xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. Journal of Power Sources, 2002, 112, 41-48.	4.0	213
645	Synthesis and electrochemical properties of Li[Li(1â^'2x)/3NixMn(2â^'x)/3]O2 as cathode materials for lithium secondary batteries. Journal of Power Sources, 2002, 112, 634-638.	4.0	97
646	Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2â^'y) material for lithium secondary batteries. Electrochimica Acta, 2002, 47, 1721-1726.	2.6	98
647	Synthesis and electrochemical characteristics of LiCrxNi0.5â^'xMn1.5O4 spinel as 5 V cathode materials for lithium secondary batteries. Journal of Power Sources, 2002, 109, 427-430.	4.0	56
648	The effects of Ni and Li doping on the performance of lithium manganese oxide material for lithium secondary batteries. Electrochimica Acta, 2002, 47, 2937-2942.	2.6	22

#	Article	IF	CITATIONS
649	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 1053-1056.	1.5	0
650	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 1229-1233.	1.5	9
651	Title is missing!. , 2002, 9, 209-214.		11
652	Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling. Journal of Materials Chemistry, 2001, 11, 2519-2522.	6.7	66
653	Structural Changes (Degradation) of Oxysulfide LiAl[sub 0.24]Mn[sub 1.76]O[sub 3.98]S[sub 0.02] Spinel on High-Temperature Cycling. Journal of the Electrochemical Society, 2001, 148, A994.	1.3	38
654	Peculiar Cycle Behavior of LiAl0.1Mn1.9O4Material in the 3 V Region. Chemistry Letters, 2001, 30, 498-499.	0.7	1
655	Synthesis of Orthorhombic LiMnO2Material and Its Optimization. Chemistry Letters, 2001, 30, 882-883.	0.7	3
656	Synthesis and electrochemical characterization of Li1.02Mg0.1Mn1.9O3.99S0.01 using sol–gel method. Journal of Power Sources, 2001, 92, 244-249.	4.0	18
657	Cycling behavior of oxysulfide spinel LiCr0.19Mn1.81O3.98S0.02 cathode material which shows no capacity loss in the 3-V region. Journal of Power Sources, 2001, 94, 132-136.	4.0	12
658	Electrochemical characterization of gel polymer electrolytes prepared with porous membranes. Journal of Power Sources, 2001, 102, 41-45.	4.0	67
659	Structural degradation mechanism of oxysulfide spinel LiAl 0.24Mn1.76O3.98S0.02 cathode materials on high temperature cycling. Electrochemistry Communications, 2001, 3, 199-202.	2.3	24
660	Title is missing!. , 2001, 31, 1149-1153.		44
661	Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol–gel method. Electrochimica Acta, 2001, 46, 1215-1222.	2.6	104
662	Synthesis and electrochemical characterization of oxysulfide spinel LiAl0.15Mn1.85O3.97S0.03 cathode materials for rechargeable batteries. Electrochimica Acta, 2000, 46, 541-546.	2.6	19
663	Electrochemical cyclability of oxysulfide spinel Li1.03Al0.2Mn1.8O3.96S0.04 material for lithium secondary batteries. Electrochemistry Communications, 2000, 2, 6-9.	2.3	36
664	Degradation mechanisms in doped spinels of LiM0.05Mn1.95O4 (M=Li, B, Al, Co, and Ni) for Li secondary batteries. Journal of Power Sources, 2000, 89, 7-14.	4.0	155
665	Gel-coated membranes for lithium-ion polymer batteries. Solid State Ionics, 2000, 138, 41-49.	1.3	66
666	Synthesis and electro-optical properties of electroluminescent polymers containing carbazole unit. European Polymer Journal, 2000, 36, 957-963.	2.6	29

#	Article	IF	CITATIONS
667	Synthesis and Characterization of a New Spinel, Li[sub 1.02]Al[sub 0.25]Mn[sub 1.75]O[sub 3.97]S[sub 0.03], Operating at Potentials Between 4.3 and 2.4 V. Journal of the Electrochemical Society, 2000, 147, 2116.	1.3	82
668	Synthesis and electrochemical characteristics of oxysulfide spinel material for lithium secondary batteries. Electrochemistry Communications, 1999, 1, 597-599.	2.3	15
669	Synthesis and characterization of spinel LiMn2â°'xNixO4 for lithium/polymer battery applications. Journal of Power Sources, 1999, 79, 231-237.	4.0	82
670	Cycling behaviour of LiCoO2 cathode materials prepared by PAA-assisted sol–gel method for rechargeable lithium batteries. Journal of Power Sources, 1999, 83, 223-226.	4.0	28
671	Synthesis and characterization of LiNiO2 cathode material prepared by an adiphic acid-assisted sol–gel method for lithium secondary batteries. Solid State Ionics, 1999, 118, 159-168.	1.3	55
672	Synthesis and characterization of side chain liquid crystalline polymer with a polythiophene backbone. European Polymer Journal, 1999, 35, 89-94.	2.6	13
673	Synthesis and electrochemical characterization of LiMn2O4 cathode materials for lithium polymer batteries. Korean Journal of Chemical Engineering, 1999, 16, 449-455.	1.2	5
674	Overcoming Jahn-Teller Distortion for Spinel Mn Phase. Electrochemical and Solid-State Letters, 1999, 3, 7.	2.2	96
675	Overcoming Jahn–Teller distortion of oxysulfide spinel materials for lithium secondary batteries. Journal of Materials Chemistry, 1999, 9, 3147-3150.	6.7	28
676	Novel Polymer Electrolytes for Rechargeable Lithium-Ion Polymer Batteries. Electrochemical and Solid-State Letters, 1999, 2, 256.	2.2	5
677	Synthesis and cycling behavior of LiMn2O4 cathode materials prepared by glycine-assisted sol-gel method for lithium secondary batteries. Korean Journal of Chemical Engineering, 1998, 15, 64-70.	1.2	10
678	Synthesis of spinel LiMn2O4 cathode material prepared by an adipic acid-assisted sol–gel method for lithium secondary batteries. Solid State Ionics, 1998, 109, 285-294.	1.3	103
679	Effect of mixed solvent electrolytes on cycling performance of rechargeable Li/LiNi0.5Co0.5O2 cells with gel polymer electrolytes. Solid State Ionics, 1998, 111, 243-252.	1.3	9
680	Effect of crystallinity on the electrochemical behaviour of spinel Li1.03Mn2O4 cathode materials. Solid State Ionics, 1998, 112, 237-243.	1.3	32
681	Polymer Electrolytes Based on Acrylonitrileâ€Methyl Methacrylateâ€Styrene Terpolymers for Rechargeable Lithiumâ€Polymer Batteries. Journal of the Electrochemical Society, 1998, 145, 1958-1963.	1.3	31
682	Synthesis and electrochemical characteristics of spinel phase LiMn2O4-based cathode materials for lithium polymer batteries. Journal of Materials Chemistry, 1998, 8, 2399-2404.	6.7	46
683	Synthesis of LiCo0.5Ni>0.5O2 powders by a sol–gel method. Journal of Materials Chemistry, 1997, 7, 1481-1485.	6.7	27
684	Synthesis of Spinel LiMn2O4 by the Solâ^'Gel Method for a Cathode-Active Material in Lithium Secondary Batteries. Industrial & Engineering Chemistry Research, 1997, 36, 4839-4846.	1.8	81

#	Article	IF	CITATIONS
685	Synthesis of LiNiO2powders by a sol–gel method. Journal of Materials Science Letters, 1997, 16, 30-32.	0.5	34
686	Low-temperature preparation of ultrafine LiCoO2 powders by the sol–gel method. Journal of Materials Science, 1997, 32, 3177-3182.	1.7	57
687	Synthesis of high purity 110 K phase in the Bi(Pb)-Sr-Ca-Cu-O superconductor by the sol-gel method. Korean Journal of Chemical Engineering, 1997, 14, 59-63.	1.2	2
688	Synthesis and electrochemical studies of spinel Li1.03Mn2O4 cathode materials prepared by a sol-gel method for lithium secondary batteries. Solid State Ionics, 1997, 100, 115-125.	1.3	79
689	Preparation of Ultrafine YBa2Cu3O7-xSuperconductor Powders by the Poly(vinyl alcohol)-Assisted Solâ^'Gel Method. Industrial & Engineering Chemistry Research, 1996, 35, 4296-4300.	1.8	21
690	Synthesis of ultrafine LiCoO2 powders by the sol-gel method. Journal of Materials Science, 1996, 31, 3617-3621.	1.7	101
691	Catalytic behavior of YBa2Cu3O7-x in the partial oxidation of methanol to formaldehyde. Korean Journal of Chemical Engineering, 1995, 12, 36-38.	1.2	5
692	Preparation of high purity 110 K phase in the Bi(Pb)-Sr-Ca-Cu-O superconductor using the modified citrate process. Physica C: Superconductivity and Its Applications, 1993, 212, 37-42.	0.6	32
693	Catalytic behavior of YBa2Cu3O7-x in the partial oxidation of ethanol to acetaldehyde. Catalysis Letters, 1993, 17, 263-272.	1.4	6