Shalini Narayana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2450200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Column-based model of electric field excitation of cerebral cortex. Human Brain Mapping, 2004, 22, 1-14.	3.6	208
2	Changes occur in resting state network of motor system during 4weeks of motor skill learning. Neurolmage, 2011, 58, 226-233.	4.2	134
3	Changes in regional activity are accompanied with changes in inter-regional connectivity during 4Âweeks motor learning. Brain Research, 2010, 1318, 64-76.	2.2	130
4	Effects of Timing and Duration of Cognitive Activation in [¹⁵ 0]Water PET Studies. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 423-430.	4.3	108
5	CBF changes during brain activation: fMRI vs. PET. NeuroImage, 2004, 22, 443-446.	4.2	89
6	Long-term motor training induced changes in regional cerebral blood flow in both task and resting states. NeuroImage, 2009, 45, 75-82.	4.2	89
7	Neural correlates of efficacy of voice therapy in Parkinson's disease identified by performance–correlation analysis. Human Brain Mapping, 2010, 31, 222-236.	3.6	77
8	Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation. Clinical Neurophysiology, 2016, 127, 1822-1836.	1.5	73
9	Brain Magnetic Resonance Imaging in Newly Diagnosed Systemic Lupus Erythematosus. Journal of Rheumatology, 2008, 35, 2348-2354.	2.0	70
10	Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system. Human Brain Mapping, 2004, 22, 329-340.	3.6	63
11	Is it time to replace the Wada test and put awake craniotomy to sleep?. Epilepsia, 2014, 55, 629-632.	5.1	60
12	Abnormal resting state corticolimbic blood flow in depressed unmedicated patients with major depression: A ¹⁵ Oâ€H ₂ O PET study. Human Brain Mapping, 2012, 33, 272-279.	3.6	58
13	Intensity modulation of TMS-induced cortical excitation: Primary motor cortex. Human Brain Mapping, 2006, 27, 478-487.	3.6	56
14	Neuroimaging evidence of white matter inflammation in newly diagnosed systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 3048-3057.	6.7	55
15	Native Experience with a Tone Language Enhances Pitch Discrimination and the Timing of Neural Responses to Pitch Change. Frontiers in Psychology, 2011, 2, 146.	2.1	52
16	Modeling motor connectivity using TMS/PET and structural equation modeling. NeuroImage, 2008, 41, 424-436.	4.2	50
17	PET-Based Confirmation of Orientation Sensitivity of TMS-Induced Cortical Activation in Humans. Brain Stimulation, 2013, 6, 898-904.	1.6	50
18	Electrophysiological and functional connectivity of the human supplementary motor area. NeuroImage, 2012, 62, 250-265.	4.2	46

SHALINI NARAYANA

#	Article	IF	CITATIONS
19	A Noninvasive Imaging Approach to Understanding Speech Changes Following Deep Brain Stimulation in Parkinson's Disease. American Journal of Speech-Language Pathology, 2009, 18, 146-161.	1.8	45
20	Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation. Journal of Neural Engineering, 2015, 12, 046014.	3.5	44
21	Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Research, 2016, 1646, 249-261.	2.2	44
22	Clinical Applications of Transcranial Magnetic Stimulation in Pediatric Neurology. Journal of Child Neurology, 2015, 30, 1111-1124.	1.4	33
23	PET Imaging in the Photosensitive Baboon: Case-controlled Study. Epilepsia, 2007, 48, 245-253.	5.1	30
24	Concurrent TMS to the primary motor cortex augments slow motor learning. NeuroImage, 2014, 85, 971-984.	4.2	29
25	Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clinical Neurophysiology, 2018, 129, 560-571.	1.5	27
26	Assessing Motor Function in Young Children With Transcranial Magnetic Stimulation. Pediatric Neurology, 2015, 52, 94-103.	2.1	26
27	Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Frontiers in Human Neuroscience, 2014, 8, 657.	2.0	24
28	Functional neuroimaging of the baboon during concurrent image-guided transcranial magnetic stimulation. NeuroImage, 2011, 57, 1393-1401.	4.2	21
29	On the relative merits of invasive and non-invasive pre-surgical brain mapping: New tools in ablative epilepsy surgery. Epilepsy Research, 2018, 142, 153-155.	1.6	21
30	Repetitive Transcranial Magnetic Stimulation Educes Frequency-Specific Causal Relationships in the Motor Network. Brain Stimulation, 2016, 9, 406-414.	1.6	20
31	Automated-parameterization of the motor evoked potential and cortical silent period induced by transcranial magnetic stimulation. Clinical Neurophysiology, 2009, 120, 1577-1587.	1.5	19
32	Repetitive Transcranial Magnetic Stimulation Elicits Rate-Dependent Brain Network Responses in Non-Human Primates. Brain Stimulation, 2013, 6, 777-787.	1.6	19
33	Variation in the topography of the speech production cortex verified by cortical stimulation and high gamma activity. NeuroReport, 2014, 25, 1411-1417.	1.2	18
34	"Resting―CBF in the epileptic baboon: Correlation with ketamine dose and interictal epileptic discharges. Epilepsy Research, 2008, 82, 57-63.	1.6	16
35	Technical Tips: MEG and EEG with Sedation. Neurodiagnostic Journal,the, 2013, 53, 229-240.	0.1	16
36	Functional PET Evaluation of the Photosensitive Baboon. Open Neuroimaging Journal, 2011, 5, 206-215.	0.2	15

SHALINI NARAYANA

#	Article	IF	CITATIONS
37	Neuroimaging and Neuropsychological Studies in Sports-Related Concussions in Adolescents: Current State and Future Directions. Frontiers in Neurology, 2019, 10, 538.	2.4	13
38	Modeling the effective connectivity of the visual network in healthy and photosensitive, epileptic baboons. Brain Structure and Function, 2016, 221, 2023-2033.	2.3	12
39	Focality of the Induced E-Field Is a Contributing Factor in the Choice of TMS Parameters: Evidence from a 3D Computational Model of the Human Brain. Brain Sciences, 2020, 10, 1010.	2.3	12
40	Clinical Utility of Transcranial Magnetic Stimulation (TMS) in the Presurgical Evaluation of Motor, Speech, and Language Functions in Young Children With Refractory Epilepsy or Brain Tumor: Preliminary Evidence. Frontiers in Neurology, 2021, 12, 650830.	2.4	12
41	Estimation of the local statistical noise in positron emission tomography revisited: practical implementation. Neurolmage, 2003, 19, 442-456.	4.2	11
42	The Clinical Utility of Transcranial Magnetic Stimulation in Determining Hemispheric Dominance for Language: A Magnetoencephalography Comparison Study. Journal of Clinical Neurophysiology, 2020, 37, 90-103.	1.7	11
43	Successful motor mapping with transcranial magnetic stimulation in an infant: A case report. Neurology, 2017, 89, 2115-2117.	1.1	10
44	Concordance of the Resting State Networks in Typically Developing, 6-to 7-Year-Old Children and Healthy Adults. Frontiers in Human Neuroscience, 2017, 11, 199.	2.0	10
45	Positron emission tomography during transcranial magnetic stimulation does not require μ-metal shielding. Neurolmage, 2003, 19, 1812-1819.	4.2	8
46	Immediate and longâ€ŧerm effects of speech treatment targets and intensive dosage on Parkinson's disease dysphonia and the speech motor network: Randomized controlled trial. Human Brain Mapping, 2022, , .	3.6	8
47	Force sensing system for automated assessment of motor performance during fMRI. Journal of Neuroscience Methods, 2010, 190, 92-94.	2.5	7
48	The Role of the Primary Sensory Cortices in Early Language Processing. Journal of Cognitive Neuroscience, 2017, 29, 1755-1765.	2.3	7
49	Construction of a whole body blood flow model for use in positron emission tomography imaging with [150]water. Journal of Pharmacokinetics and Pharmacodynamics, 1997, 25, 539-568.	0.6	6
50	Image-guided TMS is safe in a predominately pediatric clinical population. Clinical Neurophysiology, 2022, 137, 193-206.	1.5	6
51	Dosimetry of [15 O]water: A physiologic approach. Medical Physics, 1996, 23, 159-168.	3.0	5
52	Concordance Between Transcranial Magnetic Stimulation and Functional Magnetic Resonance Imaging (MRI) Derived Localization of Language in a Clinical Cohort. Journal of Child Neurology, 2020, 35, 363-379.	1.4	5
53	Mapping typical and hypokinetic dysarthric speech production network using a connected speech paradigm in functional MRI. NeuroImage: Clinical, 2020, 27, 102285.	2.7	5
54	CNS Resident Award: role of the lateral premotor cortex in articulation. Clinical Neurosurgery, 2003, 50, 341-9.	0.2	5

SHALINI NARAYANA

#	Article	IF	CITATIONS
55	Acoustic Analysis of Intonation in Persons With Parkinson's Disease Receiving Transcranial Magnetic Stimulation and Intensive Voice Treatment. Journal of Voice, 2021, , .	1.5	3
56	Noninvasive Localization of Language Cortex in an Awake 4-Year-Old Child with Rasmussen Encephalitis: A Case Report. Operative Neurosurgery, 2020, 18, E175-E180.	0.8	2
57	Plasticity in the developing brain: neurophysiological basis for lesion-induced motor reorganization. Brain Communications, 2022, 4, fcab300.	3.3	2
58	Transcranial Magnetic Stimulation. , 2014, , .		1
59	710 TMS-PET as a Measure of Functional Effective Connectivity of the Human Supplementary Motor Area. Neurosurgery, 2000, 47, 502-502.	1.1	Ο
60	Presurgical language mapping in bilingual children using transcranial magnetic stimulation: illustrative case. Journal of Neurosurgery Case Lessons, 2021, 2, .	0.3	0