
Andreas Musolff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anthropogenic Transformation Disconnects a Lowland River From Contemporary Carbon Stores in Its Catchment. Ecosystems, 2022, 25, 618-632.	3.4	2
2	Explaining the Variability in Highâ€Frequency Nitrate Export Patterns Using Longâ€Term Hydrological Event Classification. Water Resources Research, 2022, 58, .	4.2	14
3	Iron Exports From Catchments Are Constrained by Redox Status and Topography. Global Biogeochemical Cycles, 2022, 36, .	4.9	6
4	Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions. Water Resources Research, 2022, 58, .	4.2	8
5	Characterizing Catchmentâ€5cale Nitrogen Legacies and Constraining Their Uncertainties. Water Resources Research, 2022, 58, .	4.2	8
6	Tectonic Control of Groundwater Recharge and Flow in Faulted Volcanic Aquifers. Water Resources Research, 2022, 58, .	4.2	8
7	Disentangling the Impact of Catchment Heterogeneity on Nitrate Export Dynamics From Event to Longâ€Term Time Scales. Water Resources Research, 2021, 57, e2020WR027992.	4.2	23
8	Modeling Nitrate Export From a Mesoscale Catchment Using StorAge Selection Functions. Water Resources Research, 2021, 57, e2020WR028490.	4.2	19
9	Archetypes and Controls of Riverine Nutrient Export Across German Catchments. Water Resources Research, 2021, 57, e2020WR028134.	4.2	41
10	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 2021, 769, 144324.	8.0	24
11	Nitrate Transport and Retention in Western European Catchments Are Shaped by Hydroclimate and Subsurface Properties. Water Resources Research, 2021, 57, e2020WR029469.	4.2	18
12	Spatial and Temporal Variability in Concentrationâ€Discharge Relationships at the Event Scale. Water Resources Research, 2021, 57, e2020WR029442.	4.2	29
13	Longâ€Term Nitrate Trajectories Vary by Season in Western European Catchments. Clobal Biogeochemical Cycles, 2021, 35, e2021GB007050.	4.9	10
14	Using nitrate as a tracer to constrain age selection preferences in catchments with strong seasonality. Journal of Hydrology, 2021, 603, 126889.	5.4	6
15	Small-scale topography explains patterns and dynamics of dissolved organic carbon exports from the riparian zone of a temperate, forested catchment. Hydrology and Earth System Sciences, 2021, 25, 6067-6086.	4.9	7
16	Bending of the concentration discharge relationship can inform about in-stream nitrate removal. Hydrology and Earth System Sciences, 2021, 25, 6437-6463.	4.9	6
17	How Important is Denitrification in Riparian Zones? Combining Endâ€Member Mixing and Isotope Modeling to Quantify Nitrate Removal from Riparian Groundwater. Water Resources Research, 2020, 56, e2019WR025528.	4.2	49
18	Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe. Nature Communications, 2020, 11, 6302.	12.8	40

ANDREAS MUSOLFF

#	Article	IF	CITATIONS
19	On the shape of forward transit time distributions in low-order catchments. Hydrology and Earth System Sciences, 2020, 24, 2895-2920.	4.9	12
20	Controls of point and diffuse sources lowered riverine nutrient concentrations asynchronously, thereby warping molar N:P ratios. Environmental Research Letters, 2020, 15, 104009.	5.2	20
21	Long-term nitrogen retention and transit time distribution in agricultural catchments in western France. Environmental Research Letters, 2020, 15, 115011.	5.2	27
22	Trajectories of nitrate input and output in three nested catchments along a land use gradient. Hydrology and Earth System Sciences, 2019, 23, 3503-3524.	4.9	44
23	Multi-decadal trajectories of phosphorus loading, export, and instream retention along a catchment gradient. Science of the Total Environment, 2019, 667, 769-779.	8.0	19
24	High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment. Biogeosciences, 2019, 16, 4497-4516.	3.3	22
25	Exploring the Dynamics of Transit Times and Subsurface Mixing in a Small Agricultural Catchment. Water Resources Research, 2018, 54, 2317-2335.	4.2	68
26	Non-domestic phosphorus release in rivers during low-flow: Mechanisms and implications for sources identification. Journal of Hydrology, 2018, 560, 141-149.	5.4	22
27	Tomography of anthropogenic nitrate contribution along a mesoscale river. Science of the Total Environment, 2018, 615, 773-783.	8.0	14
28	River water infiltration enhances denitrification efficiency in riparian groundwater. Water Research, 2018, 130, 185-199.	11.3	67
29	Spatio-temporal controls of dissolved organic carbon stream water concentrations. Journal of Hydrology, 2018, 566, 205-215.	5.4	37
30	Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. Journal of Environmental Radioactivity, 2018, 192, 81-85.	1.7	31
31	The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 2017, 76, 1.	2.7	93
32	Does iron reduction control the release of dissolved organic carbon and phosphate at catchment scales? Need for a joint research effort. Global Change Biology, 2017, 23, e5-e6.	9.5	4
33	Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments. Geophysical Research Letters, 2017, 44, 4143-4151.	4.0	117
34	Unexpected release of phosphate and organic carbon to streams linked to declining nitrogen depositions. Global Change Biology, 2017, 23, 1891-1901.	9.5	37
35	Principal Component Analysis of the Spatiotemporal Pattern of Soil Moisture and Apparent Electrical Conductivity. Vadose Zone Journal, 2017, 16, 1-12.	2.2	10
36	Carbon and nutrient export regimes from headwater catchments to downstream reaches. Biogeosciences, 2017, 14, 4391-4407.	3.3	63

#	Article	IF	CITATIONS
37	Groundwater head controls nitrate export from an agricultural lowland catchment. Advances in Water Resources, 2016, 96, 95-107.	3.8	42
38	Estimating timeâ€variable aerobic respiration in the streambed by combining electrical conductivity and dissolved oxygen time series. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2199-2215.	3.0	19
39	Disentangling the influence of hydroclimatic patterns and agricultural management on river nitrate dynamics from sub-hourly to decadal time scales. Science of the Total Environment, 2016, 571, 791-800.	8.0	96
40	Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study. Science of the Total Environment, 2016, 545-546, 641-653.	8.0	94
41	Catchment controls on solute export. Advances in Water Resources, 2015, 86, 133-146.	3.8	219
42	Fluvial radiocarbon and its temporal variability during contrasting hydrological conditions. Biogeochemistry, 2015, 126, 57-69.	3.5	17
43	A method for automated, daily, temperature-based vertical streambed water-fluxes. Fundamental and Applied Limnology, 2014, 184, 173-181.	0.7	15
44	Current research in urban hydrogeology – A review. Advances in Water Resources, 2013, 51, 280-291.	3.8	137
45	Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrology and Earth System Sciences, 2012, 16, 3689-3697.	4.9	29
46	The IWAS-ToolBox: Software coupling for an integrated water resources management. Environmental Earth Sciences, 2012, 65, 1367-1380.	2.7	55
47	Towards optimal sampling schedules for integral pumping tests. Journal of Contaminant Hydrology, 2011, 124, 25-34.	3.3	3
48	Mass fluxes of xenobiotics below cities: challenges in urban hydrogeology. Environmental Earth Sciences, 2011, 64, 607-617.	2.7	18
49	Evaluation of xenobiotic impact on urban receiving waters by means of statistical methods. Water Science and Technology, 2010, 62, 684-692.	2.5	12
50	Micropollutant Loads in the Urban Water Cycle. Environmental Science & Technology, 2010, 44, 4877-4883.	10.0	87
51	Transport and Fate of Xenobiotics in the Urban Water Cycle: Studies in Halle/Saale and Leipzig (Germany). Environmental Pollution, 2010, , 213-226.	0.4	0
52	Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality. Hydrology and Earth System Sciences, 2009, 13, 1765-1774.	4.9	10
53	Investigation of sewer exfiltration using integral pumping tests and wastewater indicators. Journal of Contaminant Hydrology, 2009, 110, 118-129.	3.3	18
54	Micropollutants: challenges in hydrogeology. Hydrogeology Journal, 2009, 17, 763-766.	2.1	17

#	Article	IF	CITATIONS
55	Temporal and spatial patterns of micropollutants in urban receiving waters. Environmental Pollution, 2009, 157, 3069-3077.	7.5	117
56	Quantification of large-scale urban mass fluxes of xenobiotics and of the river–groundwater interaction in the city of Halle, Germany. Physics and Chemistry of the Earth, 2009, 34, 574-579.	2.9	16