
Joshua S Sharp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2449421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De Novo Sequencing of Heparin/Heparan by Chemical Derivatization and LC-MS/MS. Methods in Molecular Biology, 2022, 2303, 163-172.	0.9	0
2	Safety and Pharmacokinetics of Intranasally Administered Heparin. Pharmaceutical Research, 2022, 39, 541-551.	3.5	3
3	Rational Design of a Cu Chelator That Mitigates Cuâ€Induced ROS Production by Amyloid Beta. ChemBioChem, 2022, 23, .	2.6	2
4	Validated determination of NRG1 Ig-like domain structure by mass spectrometry coupled with computational modeling. Communications Biology, 2022, 5, 452.	4.4	6
5	Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. Journal of Virology, 2021, 95, .	3.4	176
6	Structural analysis of glycosaminoglycans from Oviductus ranae. Glycoconjugate Journal, 2021, 38, 25-33.	2.7	2
7	Inline Liquid Chromatography–Fast Photochemical Oxidation of Proteins for Targeted Structural Analysis of Conformationally Heterogeneous Mixtures. Analytical Chemistry, 2021, 93, 3510-3516.	6.5	5
8	A Comprehensive Workflow for the Analysis of Bio-Macromolecular Supplements: Case Study of 20 Whey Protein Products. Journal of Dietary Supplements, 2021, , 1-19.	2.6	2
9	Flash Oxidation (FOX) System: A Novel Laser-Free Fast Photochemical Oxidation Protein Footprinting Platform. Journal of the American Society for Mass Spectrometry, 2021, 32, 1601-1609.	2.8	23
10	Self-Organized Amphiphiles Are Poor Hydroxyl Radical Scavengers in Fast Photochemical Oxidation of Proteins Experiments. Journal of the American Society for Mass Spectrometry, 2021, 32, 1155-1161.	2.8	6
11	Cryo-EM reveals the architecture of placental malaria VAR2CSA and provides molecular insight into chondroitin sulfate binding. Nature Communications, 2021, 12, 2956.	12.8	30
12	Laser-free Hydroxyl Radical Protein Footprinting to Perform Higher Order Structural Analysis of Proteins. Journal of Visualized Experiments, 2021, , .	0.3	6
13	De Novo Design of a Self-Assembled Artificial Copper Peptide that Activates and Reduces Peroxide. ACS Catalysis, 2021, 11, 10267-10278.	11.2	15
14	The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathogens, 2021, 17, e1009803.	4.7	17
15	Conformational properties of l-fucose and the tetrasaccharide building block of the sulfated l-fucan from Lytechinus variegatus. Journal of Structural Biology, 2020, 209, 107407.	2.8	7
16	Intrinsic Buffer Hydroxyl Radical Dosimetry Using Tris(hydroxymethyl)aminomethane. Journal of the American Society for Mass Spectrometry, 2020, 31, 169-172.	2.8	12
17	Peracylation Coupled with Tandem Mass Spectrometry for Structural Sequencing of Sulfated Glycosaminoglycan Mixtures without Depolymerization. Journal of the American Society for Mass Spectrometry, 2020, 31, 2061-2072.	2.8	5
18	Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Communications Biology, 2020, 3, 498.	4.4	20

JOSHUA S SHARP

#	Article	IF	CITATIONS
19	Rapid Quantification of Peptide Oxidation Isomers From Complex Mixtures. Analytical Chemistry, 2020, 92, 3834-3843.	6.5	3
20	Myxobacterial Response to Methyljasmonate Exposure Indicates Contribution to Plant Recruitment of Micropredators. Frontiers in Microbiology, 2020, 11, 34.	3.5	10
21	Enabling Real-Time Compensation in Fast Photochemical Oxidations of Proteins for the Determination of Protein Topography Changes. Journal of Visualized Experiments, 2020, , .	0.3	7
22	Compensated Hydroxyl Radical Protein Footprinting Measures Buffer and Excipient Effects on Conformation and Aggregation in an Adalimumab Biosimilar. AAPS Journal, 2019, 21, 87.	4.4	23
23	Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis. Scientific Reports, 2019, 9, 16566.	3.3	7
24	Top-Down ETD-MS Provides Unreliable Quantitation of Methionine Oxidation. Journal of Biomolecular Techniques, 2019, 30, jbt.19-3004-002.	1.5	3
25	Towards high-throughput fast photochemical oxidation of proteins: Quantifying exposure in high fluence microtiter plate photolysis. Analytical Biochemistry, 2018, 561-562, 32-36.	2.4	10
26	Real Time Normalization of Fast Photochemical Oxidation of Proteins Experiments by Inline Adenine Radical Dosimetry. Analytical Chemistry, 2018, 90, 12625-12630.	6.5	27
27	Variation in FPOP Measurements Is Primarily Caused by Poor Peptide Signal Intensity. Journal of the American Society for Mass Spectrometry, 2018, 29, 1901-1907.	2.8	11
28	Noncatalytic Antioxidant Role for Helicobacter pylori Urease. Journal of Bacteriology, 2018, 200, .	2.2	27
29	Improved de novo sequencing of heparin/heparan sulfate oligosaccharides by propionylation of sites of sulfation. Carbohydrate Research, 2018, 465, 16-21.	2.3	16
30	Structural Analysis of the Glycosylated Intact HIV-1 gp120–b12 Antibody Complex Using Hydroxyl Radical Protein Footprinting. Biochemistry, 2017, 56, 957-970.	2.5	27
31	A Multivariate Mixture Model to Estimate the Accuracy of Glycosaminoglycan Identifications Made by Tandem Mass Spectrometry (MS/MS) and Database Search. Molecular and Cellular Proteomics, 2017, 16, 255-264.	3.8	9
32	Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection. Scientific Reports, 2017, 7, 4552.	3.3	60
33	Mistakes in translation: Reflections on mechanism. PLoS ONE, 2017, 12, e0180566.	2.5	6
34	Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation. Journal of the American Society for Mass Spectrometry, 2016, 27, 1322-1327.	2.8	19
35	De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides. Analytical Chemistry, 2016, 88, 5299-5307.	6.5	31
36	Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. Journal of the American Chemical Society, 2016, 138, 13059-13067.	13.7	42

JOSHUA S SHARP

#	Article	IF	CITATIONS
37	GAG-ID: Heparan Sulfate (HS) and Heparin Glycosaminoglycan High-Throughput Identification Software*. Molecular and Cellular Proteomics, 2015, 14, 1720-1730.	3.8	26
38	High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface. Journal of Biological Chemistry, 2015, 290, 10729-10740.	3.4	54
39	Hydroxyl Radical Dosimetry for High Flux Hydroxyl Radical Protein Footprinting Applications Using a Simple Optical Detection Method. Analytical Chemistry, 2015, 87, 10719-10723.	6.5	52
40	Supercharging by <i>m</i> -NBA Improves ETD-Based Quantification of Hydroxyl Radical Protein Footprinting. Journal of the American Society for Mass Spectrometry, 2015, 26, 1424-1427.	2.8	13
41	Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting. Journal of the American Society for Mass Spectrometry, 2013, 24, 1767-1776.	2.8	27
42	An Approach for Separation and Complete Structural Sequencing of Heparin/Heparan Sulfate-like Oligosaccharides. Analytical Chemistry, 2013, 85, 5787-5795.	6.5	37
43	Alkyl Hydroperoxide Reductase Repair by Helicobacter pylori Methionine Sulfoxide Reductase. Journal of Bacteriology, 2013, 195, 5396-5401.	2.2	19
44	Exploiting enzyme specificities in digestions of chondroitin sulfates A and C: Production of well-defined hexasaccharides. Glycobiology, 2012, 22, 826-838.	2.5	38
45	Conformational Analysis of Therapeutic Proteins by Hydroxyl Radical Protein Footprinting. AAPS Journal, 2012, 14, 206-217.	4.4	46
46	Oligomeric Structure of the Chemokine CCL5/RANTES from NMR, MS, and SAXS Data. Structure, 2011, 19, 1138-1148.	3.3	79
47	LC-MS ^{<i>n</i>} Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy. Journal of the American Society for Mass Spectrometry, 2011, 22, 1577-87.	2.8	44
48	Synergistic Roles of Helicobacter pylori Methionine Sulfoxide Reductase and GroEL in Repairing Oxidant-damaged Catalase. Journal of Biological Chemistry, 2011, 286, 19159-19169.	3.4	58
49	Conversion of methionine into homocysteic acid in heavily oxidized proteomics samples. Rapid Communications in Mass Spectrometry, 2010, 24, 768-772.	1.5	24
50	Characterization of Glycosaminoglycans by ¹⁵ N NMR Spectroscopy and in Vivo Isotopic Labeling. Analytical Chemistry, 2010, 82, 4078-4088.	6.5	51
51	Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting. Journal of the American Society for Mass Spectrometry, 2009, 20, 1123-1126.	2.8	33
52	Pulsed Electron Beam Water Radiolysis for Submicrosecond Hydroxyl Radical Protein Footprinting. Analytical Chemistry, 2009, 81, 2496-2505.	6.5	67
53	Fast Photochemical Oxidation of Protein Footprints Faster than Protein Unfolding. Analytical Chemistry, 2009, 81, 6563-6571.	6.5	195
54	Quantifying protein interface footprinting by hydroxyl radical oxidation and molecular dynamics simulation: Application to galectin-1. Journal of the American Society for Mass Spectrometry, 2008, 19, 1692-1705.	2.8	65

JOSHUA S SHARP

#	Article	IF	CITATIONS
55	Probing the pH-Dependent Prepore to Pore Transition of <i>Bacillus anthracis</i> Protective Antigen with Differential Oxidative Protein Footprinting. Biochemistry, 2008, 47, 10694-10704.	2.5	21
56	Analysis of the Oxidative Damage-Induced Conformational Changes of Apo- and Holocalmodulin by Dose-Dependent Protein Oxidative Surface Mapping. Biophysical Journal, 2007, 92, 1682-1692.	0.5	51
57	Rapid identification of oxidationâ€induced conformational changes by kinetic analysis. Rapid Communications in Mass Spectrometry, 2007, 21, 3927-3936.	1.5	15
58	Measurement of Multisite Oxidation Kinetics Reveals an Active Site Conformational Change in SpoOF as a Result of Protein Oxidation. Biochemistry, 2006, 45, 6260-6266.	2.5	31
59	Effects of Anion Proximity in Peptide Primary Sequence on the Rate and Mechanism of Leucine Oxidation. Analytical Chemistry, 2006, 78, 4885-4893.	6.5	31
60	Structural characterization of the E2 glycoprotein from Sindbis by lysine biotinylation and LC-MS/MS. Virology, 2006, 348, 216-223.	2.4	14
61	Formation of [b(nâ^'1)+OH+H]+ ion structural analogs by solution-phase chemistry. Journal of the American Society for Mass Spectrometry, 2005, 16, 607-621.	2.8	11
62	Photochemical surface mapping of C14S-Sml1p for constrained computational modeling of protein structure. Analytical Biochemistry, 2005, 340, 201-212.	2.4	36
63	Analysis of Protein Solvent Accessible Surfaces by Photochemical Oxidation and Mass Spectrometry. Analytical Chemistry, 2004, 76, 672-683.	6.5	172
64	Protein surface mapping by chemical oxidation: Structural analysis by mass spectrometry. Analytical Biochemistry, 2003, 313, 216-225.	2.4	138
65	An oligopeptide transporter gene family in Arabidopsis. Plant Physiology, 2002, 128, 21-9.	4.8	47