List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448358/publications.pdf Version: 2024-02-01

267 papers	17,294 citations	⁸¹⁸¹ 76 h-index	21540 114 g-index
272	272	272	11874
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Towards Mapping of the Human Brain N-Glycome with Standardized Graphitic Carbon Chromatography. Biomolecules, 2022, 12, 85.	4.0	11
2	O-methylated N-glycans Distinguish Mosses from Vascular Plants. Biomolecules, 2022, 12, 136.	4.0	8
3	The Degree and Length of <i>O</i> â€Glycosylation of Recombinant Proteins Produced in <i>Pichia pastoris</i> Depends on the Nature of the Protein and the Process Type. Biotechnology Journal, 2021, 16, e2000266.	3.5	9
4	Beyond alcohol oxidase: the methylotrophic yeast <i>Komagataella phaffii</i> utilizes methanol also with its native alcohol dehydrogenase Adh2. FEMS Yeast Research, 2021, 21, .	2.3	14
5	Lewis A Glycans Are Present on Proteins Involved in Cell Wall Biosynthesis and Appear Evolutionarily Conserved Among Natural Arabidopsis thaliana Accessions. Frontiers in Plant Science, 2021, 12, 630891.	3.6	14
6	Nâ€Glycan profiling of chondrocytes and fibroblastâ€like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics - Clinical Applications, 2021, 15, e2000057.	1.6	8
7	Prolyl Hydroxylase Paralogs in Nicotiana benthamiana Show High Similarity With Regard to Substrate Specificity. Frontiers in Plant Science, 2021, 12, 636597.	3.6	10
8	The Structural Difference of Isobaric N-Glycans of Two Microalgae Samples Reveals Taxonomic Distance. Frontiers in Plant Science, 2021, 12, 643249.	3.6	3
9	Characterisation of a highly potent and near pan-neutralising anti-HIV monoclonal antibody expressed in tobacco plants. Retrovirology, 2021, 18, 17.	2.0	7
10	Impact of Specific N-Glycan Modifications on the Use of Plant-Produced SARS-CoV-2 Antigens in Serological Assays. Frontiers in Plant Science, 2021, 12, 747500.	3.6	8
11	Thorsmoerkia curvula gen. et spec. nov. (Trebouxiophyceae, Chlorophyta), a semi-terrestrial microalga from Iceland exhibits high levels of unsaturated fatty acids. Journal of Applied Phycology, 2021, 33, 3671-3682.	2.8	3
12	Investigation of a monoclonal antibody against enterotoxigenic <i>Escherichia coli</i> , expressed as secretory IgA1 and IgA2 in plants. Gut Microbes, 2021, 13, 1-14.	9.8	14
13	Bisecting Lewis X in Hybrid-Type <i>N</i> -Glycans of Human Brain Revealed by Deep Structural Glycomics. Analytical Chemistry, 2021, 93, 15175-15182.	6.5	17
14	A Combination of Structural, Genetic, Phenotypic and Enzymatic Analyses Reveals the Importance of a Predicted Fucosyltransferase to Protein O-Glycosylation in the Bacteroidetes. Biomolecules, 2021, 11, 1795.	4.0	5
15	Oxygen-Dependent Changes in the N-Glycome of Murine Pulmonary Endothelial Cells. Antioxidants, 2021, 10, 1947.	5.1	4
16	NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods. Molecular and Cellular Proteomics, 2020, 19, 11-30.	3.8	87
17	Engineering the interactions between a plantâ€produced <scp>HIV</scp> antibody and human Fc receptors. Plant Biotechnology Journal, 2020, 18, 402-414.	8.3	26
18	The secretome of <i>Pichia pastoris</i> in fedâ€batch cultivations is largely independent of the carbon source but changes quantitatively over cultivation time. Microbial Biotechnology, 2020, 13, 479-494.	4.2	15

#	Article	IF	CITATIONS
19	Utilization of different MurNAcÂsources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiology, 2020, 20, 352.	3.3	5
20	Glycosylphosphatidylinositol-Anchor Synthesis in Plants: A Glycobiology Perspective. Frontiers in Plant Science, 2020, 11, 611188.	3.6	15
21	Stable Protein Sialylation in Physcomitrella. Frontiers in Plant Science, 2020, 11, 610032.	3.6	21
22	Efficient N-Glycosylation of the Heavy Chain Tailpiece Promotes the Formation of Plant-Produced Dimeric IgA. Frontiers in Chemistry, 2020, 8, 346.	3.6	16
23	A first view on the unsuspected intragenus diversity of Nâ€glycans in <i>Chlorella</i> microalgae. Plant Journal, 2020, 103, 184-196.	5.7	19
24	The N-glycans of Chlorella sorokiniana and a related strain contain arabinose but have strikingly different structures. Glycobiology, 2020, 30, 663-676.	2.5	19
25	A subcellular proteome atlas of the yeast <i>Komagataella phaffii</i> . FEMS Yeast Research, 2020, 20, .	2.3	16
26	Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology. Plant Molecular Biology, 2020, 103, 597-608.	3.9	4
27	Distinct Fcα receptor N-glycans modulate the binding affinity to immunoglobulin A (IgA) antibodies. Journal of Biological Chemistry, 2019, 294, 13995-14008.	3.4	29
28	A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nature Communications, 2019, 10, 3701.	12.8	25
29	Impact of temperature and pH on recombinant human IgM quality attributes and productivity. New Biotechnology, 2019, 50, 20-26.	4.4	12
30	Peptidoglycan-type analysis of the N-acetylmuramic acid auxotrophic oral pathogen Tannerella forsythia and reclassification of the peptidoglycan-type of Porphyromonas gingivalis. BMC Microbiology, 2019, 19, 200.	3.3	8
31	N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Scientific Reports, 2019, 9, 331.	3.3	37
32	The Golgi Localization of GnTI Requires a Polar Amino Acid Residue within Its Transmembrane Domain. Plant Physiology, 2019, 180, 859-873.	4.8	13
33	LC-MS Analysis of (Glyco-)Proteins of Pichia pastoris. Methods in Molecular Biology, 2019, 1923, 351-360.	0.9	1
34	In Planta Glycan Engineering and Functional Activities of IgE Antibodies. Frontiers in Bioengineering and Biotechnology, 2019, 7, 242.	4.1	19
35	Cytokine-Like 1 Is a Novel Proangiogenic Factor Secreted by and Mediating Functions of Endothelial Progenitor Cells. Circulation Research, 2019, 124, 243-255.	4.5	25
36	An oligosaccharyltransferase from <i>Leishmania major</i> increases the Nâ€glycan occupancy on recombinant glycoproteins produced in <i>Nicotiana benthamiana</i> . Plant Biotechnology Journal, 2018, 16, 1700-1709.	8.3	54

#	Article	IF	CITATIONS
37	Reductive Alkaline Release of Nâ€Glycans Generates a Variety of Unexpected, Useful Products. Proteomics, 2018, 18, 1700330.	2.2	5
38	ImmunoCAP cellulose displays cross-reactive carbohydrate determinant (CCD) epitopes and can cause false-positive test results in patients with high anti-CCD IgE antibody levels. Journal of Allergy and Clinical Immunology, 2018, 141, 372-381.e3.	2.9	52
39	Oligomannosidic glycans at Asn-110 are essential for secretion of human diamine oxidase. Journal of Biological Chemistry, 2018, 293, 1070-1087.	3.4	9
40	Processing of the Terminal Alpha-1,2-Linked Mannose Residues From Oligomannosidic N-Glycans Is Critical for Proper Root Growth. Frontiers in Plant Science, 2018, 9, 1807.	3.6	13
41	Production of a recombinant peroxidase in different glyco-engineered Pichia pastoris strains: a morphological and physiological comparison. Microbial Cell Factories, 2018, 17, 183.	4.0	27
42	A General Protein O-Glycosylation Gene Cluster Encodes the Species-Specific Glycan of the Oral Pathogen Tannerella forsythia: O-Glycan Biosynthesis and Immunological Implications. Frontiers in Microbiology, 2018, 9, 2008.	3.5	23
43	Exopolysaccharide from Bifidobacterium longum subsp. longum 35624â,"¢ modulates murine allergic airway responses. Beneficial Microbes, 2018, 9, 761-773.	2.4	35
44	<i>Tannerella forsythia</i> strains display different cell-surface nonulosonic acids: biosynthetic pathway characterization and first insight into biological implications. Glycobiology, 2017, 27, 342-357.	2.5	21
45	Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient <i>Pichia pastoris</i> . Biotechnology Journal, 2017, 12, 1600584.	3.5	37
46	Recombinant plant-derived human IgE glycoproteomics. Journal of Proteomics, 2017, 161, 81-87.	2.4	16
47	Determination of true ratios of different N-glycan structures in electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 2519-2530.	3.7	40
48	Exploring Site-Specific N-Glycosylation of HEK293 and Plant-Produced Human IgA Isotypes. Journal of Proteome Research, 2017, 16, 2560-2570.	3.7	41
49	Letter to the Editor regarding "Analysis of recombinant human follicle-stimulating hormone by mass spectrometric approaches― Analytical and Bioanalytical Chemistry, 2017, 409, 3899-3900.	3.7	0
50	A pseudaminic acid or a legionaminic acid derivative transferase is strain-specifically implicated in the general protein O-glycosylation system of the periodontal pathogen Tannerella forsythia. Glycobiology, 2017, 27, 555-567.	2.5	22
51	IgG subclass and vaccination stimulus determine changes in antigen specific antibody glycosylation in mice. European Journal of Immunology, 2017, 47, 2070-2079.	2.9	41
52	Glycan profile of CHO derived IgM purified by highly efficient single step affinity chromatography. Analytical Biochemistry, 2017, 539, 162-166.	2.4	16
53	Reduced paucimannosidic <i>N</i> â€glycan formation by suppression of a specific βâ€hexosaminidase from <i>Nicotiana benthamiana</i> . Plant Biotechnology Journal, 2017, 15, 197-206.	8.3	46
54	Inhibition of cross-reactive carbohydrate determinants (CCDs) enhances the selectivity of in vitro allergy diagnosis. Allergologie Select, 2017, 1, 141-149.	3.1	10

#	Article	IF	CITATIONS
55	Flagellin glycosylation in <i>Paenibacillus alvei</i> CCM 2051 ^T . Glycobiology, 2016, 26, cwv087.	2.5	9
56	The S-Layer Protein of the Anammox Bacterium Kuenenia stuttgartiensis Is Heavily O-Glycosylated. Frontiers in Microbiology, 2016, 7, 1721.	3.5	19
57	Genome Analysis and Characterisation of the Exopolysaccharide Produced by Bifidobacterium longum subsp. longum 35624â,,¢. PLoS ONE, 2016, 11, e0162983.	2.5	76
58	Transient Clyco-Engineering to Produce Recombinant IgA1 with Defined N- and O-Clycans in Plants. Frontiers in Plant Science, 2016, 7, 18.	3.6	63
59	Isotypeâ€specific glycosylation analysis of mouse IgG by LCâ€MS. Proteomics, 2016, 16, 1321-1330.	2.2	23
60	Characterization of recombinant human diamine oxidase (rhDAO) produced in Chinese Hamster Ovary (CHO) cells. Journal of Biotechnology, 2016, 227, 120-130.	3.8	21
61	Monoclonal antibody therapy for Junin virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4458-4463.	7.1	50
62	"Hypermethylation―of anthranilic acid-labeled sugars confers the selectivity required for liquid chromatography-mass spectrometry. Analytical Biochemistry, 2016, 514, 24-31.	2.4	12
63	Engineering of complex protein sialylation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9498-9503.	7.1	88
64	The Surface-Associated Exopolysaccharide of Bifidobacterium longum 35624 Plays an Essential Role in Dampening Host Proinflammatory Responses and Repressing Local T _H 17 Responses. Applied and Environmental Microbiology, 2016, 82, 7185-7196.	3.1	126
65	Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo Journal, 2016, 25, 18-25.	0.1	2
66	Coping with cross-reactive carbohydrate determinants in allergy diagnosis. Allergo Journal International, 2016, 25, 98-105.	2.0	76
67	Antibody-mediated neutralization of myelin-associated EphrinB3 accelerates CNS remyelination. Acta Neuropathologica, 2016, 131, 281-298.	7.7	37
68	Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chemical Communications, 2016, 52, 4381-4384.	4.1	91
69	Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconjugate Journal, 2016, 33, 387-397.	2.7	19
70	Rice endosperm produces an underglycosylated and potent form of the <scp>HIV</scp> â€neutralizing monoclonal antibody 2G12. Plant Biotechnology Journal, 2016, 14, 97-108.	8.3	58
71	Regulatory approval and a firstâ€inâ€human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnology Journal, 2015, 13, 1106-1120.	8.3	205
72	Outer membrane vesicles of <i>Tannerella forsythia</i> : biogenesis, composition, and virulence. Molecular Oral Microbiology, 2015, 30, 451-473.	2.7	45

#	Article	IF	CITATIONS
73	Systems-level organization of yeast methylotrophic lifestyle. BMC Biology, 2015, 13, 80.	3.8	118
74	Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris. International Journal of Molecular Sciences, 2015, 16, 23127-23142.	4.1	11
75	Transgenic Production of an Anti HIV Antibody in the Barley Endosperm. PLoS ONE, 2015, 10, e0140476.	2.5	41
76	Multistep processing of the secretion leader of the extracellular protein Epx1 in Pichia pastoris and implications for protein localization. Microbiology (United Kingdom), 2015, 161, 1356-1368.	1.8	20
77	Characterization of plants expressing the human \hat{l}^2 1,4-galactosyltrasferase gene. Plant Physiology and Biochemistry, 2015, 92, 39-47.	5.8	32
78	Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase. Microbial Cell Factories, 2015, 14, 1.	4.0	198
79	Glycan modulation and sulfoengineering of anti–HIV-1 monoclonal antibody PG9 in plants. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12675-12680.	7.1	44
80	Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon. Methods in Molecular Biology, 2015, 1321, 427-435.	0.9	43
81	Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation. MAbs, 2015, 7, 863-870.	5.2	50
82	Isolation and Characterization of a Thionin Proprotein-processing Enzyme from Barley. Journal of Biological Chemistry, 2015, 290, 18056-18067.	3.4	22
83	Site-Specific Glycosylation Profiling Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS). Methods in Molecular Biology, 2015, 1321, 407-415.	0.9	9
84	Detailed functional characterization of glycosylated and nonglycosylated variants of malaria vaccine candidate <i>Pf</i> <scp>AMA</scp> 1 produced in <i>Nicotiana benthamiana</i> and analysis of growth inhibitory responses in rabbits. Plant Biotechnology Journal, 2015, 13, 222-234.	8.3	32
85	Influence of Elastin-Like Polypeptide and Hydrophobin on Recombinant Hemagglutinin Accumulations in Transgenic Tobacco Plants. PLoS ONE, 2014, 9, e99347.	2.5	38
86	A context-independent <i>N</i> -glycan signal targets the misfolded extracellular domain of <i>Arabidopsis</i> STRUBBELIG to endoplasmic-reticulum-associated degradation. Biochemical Journal, 2014, 464, 401-411.	3.7	23
87	<i>Arabidopsis</i> Class I α-Mannosidases MNS4 and MNS5 Are Involved in Endoplasmic Reticulum–Associated Degradation of Misfolded Glycoproteins. Plant Cell, 2014, 26, 1712-1728.	6.6	60
88	The transmembrane domain of <i>N</i> –acetylglucosaminyltransferaseÂl is the key determinant for its Golgi subcompartmentation. Plant Journal, 2014, 80, 809-822.	5.7	22
89	Proteolytic and <i>N</i> -Glycan Processing of Human <i>α</i> 1-Antitrypsin Expressed in <i>Nicotiana benthamiana</i> Â Â Â Â. Plant Physiology, 2014, 166, 1839-1851.	4.8	55
90	Expression of human butyrylcholinesterase with an engineered glycosylation profile resembling the plasmaâ€derived orthologue. Biotechnology Journal, 2014, 9, 501-510.	3.5	39

#	Article	IF	CITATIONS
91	UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase from the snail Biomphalaria glabrata – substrate specificity and preference of glycosylation sites. Glycoconjugate Journal, 2014, 31, 661-670.	2.7	6
92	Glyco-variant library of the versatile enzyme horseradish peroxidase. Glycobiology, 2014, 24, 852-863.	2.5	21
93	Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs, 2014, 6, 1585-1597.	5.2	47
94	The lipidome and proteome of microsomes from the methylotrophic yeast Pichia pastoris. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 215-226.	2.4	34
95	Protein O-glucosylation in Lactobacillus buchneri. Glycoconjugate Journal, 2014, 31, 117-131.	2.7	25
96	Expression and glycoengineering of functionally active heteromultimeric IgM in plants. Proceedings of the United States of America, 2014, 111, 6263-6268.	7.1	77
97	Controlled glycosylation of plant-produced recombinant proteins. Current Opinion in Biotechnology, 2014, 30, 95-100.	6.6	88
98	Self-processing of a barley subtilase expressed in E. coli. Protein Expression and Purification, 2014, 101, 76-83.	1.3	8
99	Reduced quenching and extraction time for mammalian cells using filtration and syringe extraction. Journal of Biotechnology, 2014, 182-183, 97-103.	3.8	15
100	Immunocap Cellulose Displays Cross-Reactive Carbohydrate Epitopes and Can Cause False-Positive Test Results in Patients with Anti-CCD IgE Antibodies. Journal of Allergy and Clinical Immunology, 2014, 133, AB398.	2.9	2
101	Site-specific analysis of the O-glycosylation of bovine fetuin by electron-transfer dissociation mass spectrometry. Journal of Proteomics, 2014, 108, 258-268.	2.4	57
102	Inhibition kreuzreaktiver Kohlenhydratdeterminanten (CCDs) erhöht die Treffsicherheit der In-vitro-Allergiediagnostik. Allergologie, 2014, 37, 46-54.	0.1	6
103	Plant species and organ influence the structure and subcellular localization of recombinant glycoproteins. Plant Molecular Biology, 2013, 83, 105-117.	3.9	37
104	RhamnogalacturonanÂ <scp>II</scp> structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant Journal, 2013, 76, 61-72.	5.7	76
105	Expression of functionally active sialylated human erythropoietin in plants. Biotechnology Journal, 2013, 8, 371-382.	3.5	46
106	Inhibition of <scp>I</scp> g <scp>E</scp> binding to crossâ€reactive carbohydrate determinants enhances diagnostic selectivity. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1269-1277.	5.7	79
107	"Cross-glycosylation―of proteins in Bacteroidales species. Glycobiology, 2013, 23, 568-577.	2.5	29
108	Production, characterization, and antigen specificity of recombinant 62â€71â€3, a candidate monoclonal antibody for rabies prophylaxis in humans. FASEB Journal, 2013, 27, 2055-2065.	0.5	48

#	Article	IF	CITATIONS
109	Generation of hypoallergenic neoglycoconjugates for dendritic cell targeted vaccination: A novel tool for specific immunotherapy. Journal of Controlled Release, 2013, 165, 101-109.	9.9	36
110	Glycophenotyping of osteoarthritic cartilage and chondrocytes by RT-qPCR, mass spectrometry, histochemistry with plant/human lectins and lectin localization with a glycoprotein. Arthritis Research and Therapy, 2013, 15, R147.	3.5	38
111	Characterizing the Link between Glycosylation State and Enzymatic Activity of the Endo-β1,4-glucanase KORRIGAN1 from Arabidopsis thaliana. Journal of Biological Chemistry, 2013, 288, 22270-22280.	3.4	45
112	Knockout of an endogenous mannosyltransferase increases the homogeneity of glycoproteins produced in Pichia pastoris. Scientific Reports, 2013, 3, 3279.	3.3	62
113	A gene responsible for prolyl-hydroxylation of moss-produced recombinant human erythropoietin. Scientific Reports, 2013, 3, 3019.	3.3	50
114	Generation of Biologically Active Multi-Sialylated Recombinant Human EPOFc in Plants. PLoS ONE, 2013, 8, e54836.	2.5	66
115	Isomeric analysis of oligomannosidic N-glycans and their dolichol-linked precursors. Glycobiology, 2012, 22, 389-399.	2.5	56
116	Glycan profiles of the 27 N-glycosylation sites of the HIV envelope protein CN54gp140. Biological Chemistry, 2012, 393, 719-730.	2.5	61
117	Engineering of Sialylated Mucin-type O-Glycosylation in Plants. Journal of Biological Chemistry, 2012, 287, 36518-36526.	3.4	77
118	Determination of site-specific glycan heterogeneity on glycoproteins. Nature Protocols, 2012, 7, 1285-1298.	12.0	170
119	Growth, productivity and protein glycosylation in a CHO EpoFc producer cell line adapted to glutamine-free growth. Journal of Biotechnology, 2012, 157, 295-303.	3.8	45
120	Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry, 2012, 84, 24-30.	2.9	22
121	O-Clycosylation of snails. Clycoconjugate Journal, 2012, 29, 189-198.	2.7	16
122	Mossâ€based production of asialoâ€erythropoietin devoid of Lewis A and other plantâ€ŧypical carbohydrate determinants. Plant Biotechnology Journal, 2012, 10, 851-861.	8.3	74
123	Intracellular interactome of secreted antibody Fab fragment in Pichia pastoris reveals its routes of secretion and degradation. Applied Microbiology and Biotechnology, 2012, 93, 2503-2512.	3.6	33
124	N-Glycosylation engineering of plants for the biosynthesis of glycoproteins with bisected and branched complex N-glycans. Glycobiology, 2011, 21, 813-823.	2.5	120
125	Silencing ?1,2-xylosyltransferase in Transgenic Tomato Fruits Reveals xylose as Constitutive Component of Ige-Binding Epitopes. Frontiers in Plant Science, 2011, 2, 42.	3.6	19
126	Inconsistent Results of Diagnostic Tools Hamper the Differentiation between Bee and Vespid Venom Allergy. PLoS ONE, 2011, 6, e20842.	2.5	66

#	Article	IF	CITATIONS
127	Biochemical, molecular and preclinical characterization of a doubleâ€virusâ€reduced human butyrylcholinesterase preparation designed for clinical use. Vox Sanguinis, 2011, 100, 285-297.	1.5	30
128	Arabidopsis thaliana alpha1,2â€glucosyltransferase (ALG10) is required for efficient Nâ€glycosylation and leaf growth. Plant Journal, 2011, 68, 314-325.	5.7	58
129	The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels. Plant Molecular Biology, 2011, 77, 275-284.	3.9	22
130	Analysis of recombinant human follicle-stimulating hormone (FSH) by mass spectrometric approaches. Analytical and Bioanalytical Chemistry, 2011, 400, 2427-2438.	3.7	48
131	Glycan analysis by modern instrumental methods. Proteomics, 2011, 11, 631-643.	2.2	137
132	The Alg5 ortholog Wollknäel is essential for correct epidermal differentiation during Drosophila late embryogenesis. Glycobiology, 2011, 21, 743-756.	2.5	13
133	β-N-Acetylhexosaminidases HEXO1 and HEXO3 Are Responsible for the Formation of Paucimannosidic N-Glycans in Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 10793-10802.	3.4	69
134	Discovery and Structural Characterization of Fucosylated Oligomannosidic N-Glycans in Mushrooms. Journal of Biological Chemistry, 2011, 286, 5977-5984.	3.4	32
135	Characterization and Scope of S-layer Protein O-Clycosylation in Tannerella forsythia. Journal of Biological Chemistry, 2011, 286, 38714-38724.	3.4	82
136	Rapid High Yield Production of Different Glycoforms of Ebola Virus Monoclonal Antibody. PLoS ONE, 2011, 6, e26040.	2.5	61
137	Analytical and Functional Aspects of Antibody Sialylation. Journal of Clinical Immunology, 2010, 30, 15-19.	3.8	59
138	Phenotype-related differential α-2,6- or α-2,3-sialylation of glycoprotein N-glycans in human chondrocytes. Osteoarthritis and Cartilage, 2010, 18, 240-248.	1.3	45
139	The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics, 2010, 11, 207.	2.8	74
140	Optimal nitrogen supply as a key to increased and sustained production of a monoclonal fullâ€size antibody in BYâ€2 suspension culture. Biotechnology and Bioengineering, 2010, 107, 278-289.	3.3	74
141	IL-1β and TNF-α alter the glycophenotype of primary human chondrocytes in vitro. Carbohydrate Research, 2010, 345, 1389-1393.	2.3	41
142	Basophil activation test is better but not good enough for the diagnosis of hymenoptera venom allergy: the problem of crossâ€reactive carbohydrate determinants. Clinical and Experimental Allergy, 2010, 40, 1290-1292.	2.9	7
143	Protein tyrosine O-glycosylation–A rather unexplored prokaryotic glycosylation system. Glycobiology, 2010, 20, 787-798.	2.5	62
144	The Changing Fate of a Secretory Glycoprotein in Developing Maize Endosperm Â. Plant Physiology, 2010, 153, 693-702.	4.8	40

#	Article	IF	CITATIONS
145	In Planta Protein Sialylation through Overexpression of the Respective Mammalian Pathway. Journal of Biological Chemistry, 2010, 285, 15923-15930.	3.4	193
146	Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development in <i>Arabidopsis thaliana</i> Â Â Â. Plant Cell, 2010, 21, 3850-3867.	6.6	172
147	A New Allergen from Ragweed (Ambrosia artemisiifolia) with Homology to Art ν 1 from Mugwort. Journal of Biological Chemistry, 2010, 285, 27192-27200.	3.4	77
148	Reassessing the role of hyaluronidase in yellow jacket venom allergy. Journal of Allergy and Clinical Immunology, 2010, 125, 184-190.e1.	2.9	86
149	Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon. Analytical Chemistry, 2010, 82, 9782-9788.	6.5	117
150	Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 2009, 132, 465-481.	7.6	176
151	CHO-recombinant human growth hormone as a protease sensitive reporter protein. Applied Microbiology and Biotechnology, 2009, 84, 693-699.	3.6	Ο
152	A close look at human IgG sialylation and subclass distribution after lectin fractionation. Proteomics, 2009, 9, 4143-4153.	2.2	89
153	<i>Trichomonas vaginalis</i> : metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance. Molecular Microbiology, 2009, 72, 518-536.	2.5	125
154	Plant glycosidases acting on protein-linked oligosaccharides. Phytochemistry, 2009, 70, 318-324.	2.9	8
155	Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Analytical Biochemistry, 2009, 384, 263-273.	2.4	139
156	The Effect of Temperature on the Proteome of Recombinant <i>Pichia pastoris</i> . Journal of Proteome Research, 2009, 8, 1380-1392.	3.7	170
157	Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microbial Cell Factories, 2009, 8, 29.	4.0	189
158	Improved Virus Neutralization by Plant-produced Anti-HIV Antibodies with a Homogeneous β1,4-Galactosylated N-Glycan Profile. Journal of Biological Chemistry, 2009, 284, 20479-20485.	3.4	156
159	Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta, 2008, 227, 649-658.	3.2	20
160	Glycoproteomic characterization of butyrylcholinesterase from human plasma. Proteomics, 2008, 8, 254-263.	2.2	73
161	Analysis of immunoglobulin glycosylation by LCâ€ESIâ€MS of glycopeptides and oligosaccharides. Proteomics, 2008, 8, 2858-2871.	2.2	294
162	Identification of an Arabidopsis gene encoding a GH95 alpha1,2-fucosidase active on xyloglucan oligo- and polysaccharides. Phytochemistry, 2008, 69, 1983-1988.	2.9	36

#	Article	IF	CITATIONS
163	Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIVâ€1 and contains predominantly singleâ€GlcNAc <i>N</i> â€glycans. Plant Biotechnology Journal, 2008, 6, 189-201.	8.3	166
164	Dissecting individual steps of nitrogen transcription factor cooperation in the <i>Aspergillus nidulans</i> nitrate cluster. Molecular Microbiology, 2008, 69, 1385-1398.	2.5	78
165	Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. Journal of Allergy and Clinical Immunology, 2008, 121, 185-190.e2.	2.9	97
166	Influence of Electrosorption, Solvent, Temperature, and Ion Polarity on the Performance of LC-ESI-MS Using Graphitic Carbon for Acidic Oligosaccharides. Analytical Chemistry, 2008, 80, 7534-7542.	6.5	132
167	Construction of a Functional CMP-Sialic Acid Biosynthesis Pathway in Arabidopsis. Plant Physiology, 2008, 147, 331-339.	4.8	74
168	Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3727-3732.	7.1	154
169	Expression and Characterization of an Iron-Regulated Hemin-Binding Protein, HbpA, from Leptospira interrogans Serovar Lai. Infection and Immunity, 2007, 75, 4582-4591.	2.2	58
170	Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1430-1435.	7.1	116
171	Nitroimidazole Action in Entamoeba histolytica: A Central Role for Thioredoxin Reductase. PLoS Biology, 2007, 5, e211.	5.6	135
172	Enzymatic Properties and Subcellular Localization of Arabidopsis Î ² -N-Acetylhexosaminidases. Plant Physiology, 2007, 145, 5-16.	4.8	104
173	A Unique β1,3-Galactosyltransferase Is Indispensable for the Biosynthesis of <i>N</i> -Glycans Containing Lewis a Structures in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2278-2292.	6.6	157
174	A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology, 2007, 18, 235-241.	2.5	105
175	The Role of Protein Glycosylation in Allergy. International Archives of Allergy and Immunology, 2007, 142, 99-115.	2.1	349
176	Mass + Retention Time = Structure:Â A Strategy for the Analysis ofN-Glycans by Carbon LC-ESI-MS and Its Application to FibrinN-Glycans. Analytical Chemistry, 2007, 79, 5051-5057.	6.5	193
177	Adaptation of the "inâ€gel release method―to <i>N</i> â€glycome analysis of lowâ€milligram amounts of material. Electrophoresis, 2007, 28, 4484-4492.	2.4	28
178	A proteomic study of the major allergens from yellow jacket venoms. Proteomics, 2007, 7, 1615-1623.	2.2	33
179	High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella ?-fuc-t ?-xyl-t mutant. Plant Biotechnology Journal, 2007, 5, 389-401.	8.3	113
180	In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnology Journal, 2007, 2, 700-708.	3.5	88

#	Article	IF	CITATIONS
181	Structural analysis of the glycoprotein allergen Hev b 4 from natural rubber latex by mass spectrometry. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 715-720.	2.4	31
182	Comprehensive glyco-proteomic analysis of human $\hat{l}\pm 1$ -antitrypsin and its charge isoforms. Proteomics, 2006, 6, 3369-3380.	2.2	149
183	Biochemical, molecular characterization, and glycoproteomic analyses of ?1-proteinase inhibitor products used for replacement therapy. Transfusion, 2006, 46, 1959-1977.	1.6	66
184	Molecular cloning and characterization of a plant $\hat{l}\pm 1,3/4$ -fucosidase based on sequence tags from almond fucosidase I. Phytochemistry, 2006, 67, 641-648.	2.9	37
185	Molecular cloning and heterologous expression of β1,2-xylosyltransferase and core α1,3-fucosyltransferase from maize. Phytochemistry, 2006, 67, 2215-2224.	2.9	18
186	Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta, 2006, 224, 222-227.	3.2	84
187	Corrigendum to "Molecular cloning and characterization of a plant α1,3/4-fucosidase based on sequence tags from almond fucosidase l―[Phytochemistry 67 (2006) 641–648]. Phytochemistry, 2006, 67, 1399.	2.9	0
188	Immunoglobulin G specifically binding plant N-glycans with high affinity could be generated in rabbits but not in mice. Glycobiology, 2006, 16, 349-357.	2.5	52
189	Identification and Characterization of a Major Cell Wall-Associated Iron-Regulated Envelope Protein (Irep-28) in Mycobacterium tuberculosis. Vaccine Journal, 2006, 13, 1137-1142.	3.1	28
190	The Intracellular Fate of a Recombinant Protein Is Tissue Dependent. Plant Physiology, 2006, 141, 578-586.	4.8	77
191	The Drosophila fused lobes Gene Encodes an N-Acetylglucosaminidase Involved in N-Glycan Processing. Journal of Biological Chemistry, 2006, 281, 4867-4875.	3.4	142
192	Arabidopsis thaliana β1,2-xylosyltransferase: an unusual glycosyltransferase with the potential to act at multiple stages of the plant N-glycosylation pathway. Biochemical Journal, 2005, 388, 515-525.	3.7	57
193	Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS Journal, 2005, 272, 4295-4305.	4.7	62
194	The Nâ€glycans of yellow jacket venom hyaluronidases and the protein sequence of its major isoform in <i>Vespula vulgaris</i> . FEBS Journal, 2005, 272, 5182-5190.	4.7	82
195	Molecular basis of N-acetylglucosaminyltransferase I deficiency in Arabidopsis thaliana plants lacking complex N-glycans. Biochemical Journal, 2005, 387, 385-391.	3.7	89
196	Two Novel Types of O-Glycans on the Mugwort Pollen Allergen Art v 1 and Their Role in Antibody Binding. Journal of Biological Chemistry, 2005, 280, 7932-7940.	3.4	106
197	Plants as bioreactors: A comparative study suggests that Medicago truncatula is a promising production system. Journal of Biotechnology, 2005, 120, 121-134.	3.8	55
198	Localisation and distribution of the major allergens in apple fruits. Plant Science, 2005, 169, 387-394.	3.6	111

FRIEDRICH ALTMANN

#	Article	IF	CITATIONS
199	Unexpected Deposition Patterns of Recombinant Proteins in Post-Endoplasmic Reticulum Compartments of Wheat Endosperm. Plant Physiology, 2004, 136, 3457-3466.	4.8	101
200	Carbohydrate moieties can induce mediator release: a detailed characterization of two major timothy grass pollen allergens. Biological Chemistry, 2004, 385, 397-407.	2.5	38
201	Specificity of IgG and IgE antibodies against plant and insect glycoprotein glycans determined with artificial glycoforms of human transferrin. Glycobiology, 2004, 14, 457-466.	2.5	109
202	Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnology Journal, 2004, 2, 517-523.	8.3	221
203	Unaltered complex N-glycan profiles in Nicotiana benthamiana despite drastic reduction of Â1,2-N-acetylglucosaminyltransferase I activity. Glycoconjugate Journal, 2004, 21, 275-282.	2.7	22
204	A genetic and structural analysis of the -glycosylation capabilities. Plant Molecular Biology, 2004, 55, 631-644.	3.9	44
205	Generation of Arabidopsis thaliana plants with complex N -glycans lacking β1,2-linked xylose and core α1,3-linked fucose. FEBS Letters, 2004, 561, 132-136.	2.8	281
206	Hazelnut (<i>Corylus avellana</i>) vicilin Cor a 11: molecular characterization of a glycoprotein and its allergenic activity. Biochemical Journal, 2004, 383, 327-334.	3.7	104
207	Nâ€Glycosylation in the Moss <i>Physcomitrella patens</i> is Organized Similarly to that in Higher Plants. Plant Biology, 2003, 5, 582-591.	3.8	46
208	Schistosome Nâ€glycans containing core α3â€fucose and core β2â€xylose epitopes are strong inducers of Th2 responses in mice. European Journal of Immunology, 2003, 33, 1271-1281.	2.9	110
209	Molecular characterization and allergenic activity of Lyc e 2 (β ructofuranosidase), a glycosylated allergen of tomato. FEBS Journal, 2003, 270, 1327-1337.	0.2	103
210	Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie, 2003, 85, 413-422.	2.6	42
211	Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensinâ€like and a hydroxyprolineâ€rich domain. FASEB Journal, 2003, 17, 106-108.	0.5	121
212	The Drosophila melanogaster brainiac Protein Is a Glycolipid-specific β1,3N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2002, 277, 32417-32420.	3.4	50
213	Carrot allergy: Double-blinded, placebo-controlled food challenge and identification of allergens. Journal of Allergy and Clinical Immunology, 2001, 108, 301-307.	2.9	153
214	Antibody binding to venom carbohydrates is a frequent cause for double positivity to honeybee and yellow jacket venom in patients with stinging-insect allergy. Journal of Allergy and Clinical Immunology, 2001, 108, 1045-1052.	2.9	152
215	Cloning and expression of cDNAs encoding α1,3-fucosyltransferase homologues from Arabidopsis thaliana1The cDNA sequences referred to in this publication have been deposited with the EMBL database under the numbers AJ404860 (FucTA), AJ404861 (FucTB) and AJ404862 (FucTC).1. Biochimica Et Biophysica Acta - General Subjects. 2001. 1527. 88-96.	2.4	77
216	Genetic model organisms in the study of N-glycans. Biochimie, 2001, 83, 703-712.	2.6	100

FRIEDRICH ALTMANN

#	Article	IF	CITATIONS
217	Tomato (Lycopersicon esculentum) allergens in pollen-allergic patients. European Food Research and Technology, 2001, 213, 259-266.	3.3	50
218	Identification of Core α1,3-Fucosylated Glycans and Cloning of the Requisite Fucosyltransferase cDNA from Drosophila melanogaster. Journal of Biological Chemistry, 2001, 276, 28058-28067.	3.4	147
219	Tissues of the clawed frog Xenopus laevis contain two closely related forms of UDP-ClcNAc:Â3-D-mannoside Â-1,2-N-acetylglucosaminyltransferase I. Clycobiology, 2001, 11, 769-778.	2.5	13
220	Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core Â1,3-linked fucose and xylose substitutions. Glycobiology, 2001, 11, 261-274.	2.5	231
221	N-Glycan Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Electrophoretically Separated Nonmammalian Proteins: Application to Peanut Allergen Ara h 1 and Olive Pollen Allergen Ole e 1. Analytical Biochemistry, 2000, 285, 64-75.	2.4	154
222	Allergens in raw and roasted hazelnuts (Corylus avellana) and their cross-reactivity to pollen. European Food Research and Technology, 2000, 212, 2-12.	3.3	55
223	Molecular cloning and functional expression of β1,2-xylosyltransferase cDNA from Arabidopsis thaliana 1. FEBS Letters, 2000, 472, 105-108.	2.8	104
224	Glycosylation of the capsid proteins of cowpea mosaic virus: a reinvestigation shows the absence of sugar residues. Journal of General Virology, 2000, 81, 1111-1114.	2.9	12
225	Molecular cloning and characterization of cDNA coding for Â1,2N-acetylglucosaminyltransferase I (ClcNAc-TI) from Nicotiana tabacum. Clycobiology, 1999, 9, 779-785.	2.5	81
226	Purification, cDNA Cloning, and Expression of GDP-l-Fuc:Asn-linked GlcNAc α1,3-Fucosyltransferase from Mung Beans. Journal of Biological Chemistry, 1999, 274, 21830-21839.	3.4	102
227	Insect cells as hosts for the expression of recombinant glycoproteins. , 1999, , 29-43.		3
228	Involvement of Carbohydrate Epitopes in the IgE Response of Celery–Allergic Patients. International Archives of Allergy and Immunology, 1999, 120, 30-42.	2.1	107
229	Structural characterization of the N-linked oligosaccharides from tomato fruit. Phytochemistry, 1999, 51, 199-210.	2.9	29
230	Purification and characterization of a hydroperoxidase from the cyanobacteriumSynechocystisPCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	31
231	Molecular cloning of cDNA encoding N-acetylglucosaminyltransferase II from Arabidopsis thaliana. Glycoconjugate Journal, 1999, 16, 787-791.	2.7	50
232	Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconjugate Journal, 1999, 16, 109-123.	2.7	300
233	Fucose in N-glycans: from plant to man. Biochimica Et Biophysica Acta - General Subjects, 1999, 1473, 216-236.	2.4	197
234	Purification and characterization of a hydroperoxidase from the cyanobacterium Synechocystis PCC 6803: identification of its gene by peptide mass mapping using matrix assisted laser desorption ionization time-of-flight mass spectrometry. FEMS Microbiology Letters, 1999, 170, 1-12.	1.8	2

#	Article	IF	CITATIONS
235	Concanavalin A binding and endoglycosidase D resistance of beta1,2-xylosylated and alpha1,3-fucosylated plant and insect oligosaccharides. , 1998, 15, 203-206.		16
236	Structures of the N-linked carbohydrate of ascorbic acid oxidase from zucchini. , 1998, 15, 79-82.		25
237	HPLC method for the determination of Fuc to Asn-linked GlcNAc fucosyltransferases. Glycoconjugate Journal, 1998, 15, 89-91.	2.7	16
238	Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: core alpha1,3-linked fucose and xylose present in all pollens examined. Glycoconjugate Journal, 1998, 15, 1055-1070.	2.7	86
239	IgE antibodies specific for carbohydrates in a patient allergic to gum Arabic (Acacia Senegal). Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 1043-1051.	5.7	33
240	Characterisation of peptideâ€ <i>N</i> ⁴ â€(<i>N</i> â€acetylâ€Î²â€glucosaminyl)asparagine amidase and its Nâ€glycans. FEBS Journal, 1998, 252, 118-123.	A 0.2	58
241	Core Â1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology, 1998, 8, 651-661.	2.5	205
242	More than silk and honey–or, can insect cells serve in the production of therapeutic glycoproteins?. Glycoconjugate Journal, 1997, 14, 643-646.	2.7	28
243	A Capillary Electrophoretic Study on the Specificity of β-Galactosidases fromAspergillus oryzae, Escherichia coli, Streptococcus pneumoniae,andCanavalia ensiformis(Jack Bean). Analytical Biochemistry, 1997, 246, 96-101.	2.4	58
244	N-Glycosylation in Insects Revisited Trends in Glycoscience and Glycotechnology, 1996, 8, 101-114.	0.1	24
245	Carbohydrateâ€dependent, HLA class Ilâ€restricted, human T cell response to the bee venom allergen phospholipase A2 in allergic patients. European Journal of Immunology, 1995, 25, 538-542.	2.9	73
246	The $\hat{l}\pm$ -d-mannan core of a complex cell-wall heteroglycan ofTrichoderma reesei is responsible for \hat{l}^2 -glucosidase activation. Archives of Microbiology, 1995, 164, 414-419.	2.2	13
247	Functional purification and characterization of a GDP-fucose: ?-N-acetylglucosamine (Fuc to Asn) Tj ETQq1 1 0.784	1314 rgBT 2.7	/Overlock 1 46
248	Processing of asparagine-linked oligosaccharides in insect cells: evidence for ?-mannosidase II. Glycoconjugate Journal, 1995, 12, 150-155.	2.7	52
249	The asparagine-linked carbohydrate of honeybee venom hyaluronidase. Glycoconjugate Journal, 1995, 12, 77-83.	2.7	84
250	Kinetic comparison of peptide: N-glycosidases F and A reveals several differences in substrate specificity. Glycoconjugate Journal, 1995, 12, 84-93.	2.7	88
251	Chapter 10 Protein Glycosylation in Insects. New Comprehensive Biochemistry, 1995, 29, 543-563.	0.1	56
252	Insect Cells Contain an Unusual, Membrane-bound β-N-Acetylglucosaminidase Probably Involved in the Processing of Protein N-Glycans. Journal of Biological Chemistry, 1995, 270, 17344-17349.	3.4	200

#	Article	IF	CITATIONS
253	Structures of the N-Linked Oligosaccharides of the Membrane Glycoproteins from Three Lepidopteran Cell Lines (Sf-21, IZD-Mb-0503, Bm-N). Archives of Biochemistry and Biophysics, 1994, 308, 148-157.	3.0	137
254	Primary structures of the Nâ€linked carbohydrate chains from honeybee venom phospholipase A ₂ . FEBS Journal, 1993, 213, 1193-1204.	0.2	212
255	Processing of asparagine-linked oligosaccharides in insect cells. N-Acetylglucosaminyltransferase I and II activities in cultured lepidopteran cells. Clycobiology, 1993, 3, 619-625.	2.5	164
256	Fucose α1,3-Linked to the Core Region of Glycoprotein N-Glycans Creates an Important Epitope for IgE from Honeybee Venom Allergic Individuals. International Archives of Allergy and Immunology, 1993, 102, 259-266.	2.1	198
257	?1?6(?1?3)-Difucosylation of the asparagine-boundN-acetylglucosamine in honeybee venom phospholipase A2. Glycoconjugate Journal, 1992, 9, 82-85.	2.7	65
258	The structure of the fructan sinistrin from Urginea maritima. Carbohydrate Research, 1992, 235, 221-230.	2.3	41
259	Determination of amino sugars and amino acids in glycoconjugates using precolumn derivatization with o-phthalaldehyde. Analytical Biochemistry, 1992, 204, 215-219.	2.4	91
260	Characterization of the isoforms of phospholipase A2 from honeybee venom. Insect Biochemistry, 1991, 21, 467-472.	1.8	19
261	Peptideâ€ <i>N</i> ⁴ â€(<i>N</i> â€acetylâ€Î²â€glucosaminyl)asparagine amidase F cannot release gl with fucose attached α1 → 3 to the asparagineâ€linked <i>N</i> â€acetylglucosamine residue. FEBS Journal, 1991, 199, 647-652.	ycans 0.2	367
262	GDP-fucose: beta-N-acetylglucosamine (Fuc to (Fucalpha1 6GlcNAc)-Asn-peptide) alpha1 3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands. The difucosylation of asparagine-bound N-acetylglucosamine. FEBS Journal, 1991, 199, 745-751.	0.2	49
263	Bacteriophage-associated glycan hydrolases specific for Escherichia coli capsular serotype K12. FEBS Journal, 1990, 189, 307-312.	0.2	11
264	Two additional bacteriophage-associated glycan hydrolases cleaving ketosidic bonds of 3-deoxy-D-manno-octulosonic acid in capsular polysaccharides ofEscherichia coli. FEBS Letters, 1987, 221, 145-149.	2.8	13
265	A bacteriophage-associated glycanase cleaving β-pyranosidic linkages of 3-deoxy-D-manno-2-octulosonic acid (KDO). Biochemical and Biophysical Research Communications, 1986, 136, 329-335.	2.1	18
266	Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Evidence for the presence of terminal and fucose in an insect glycoprotein. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83, 321-324.	0.2	12
267	Glycosylation of Recombinant Proteins in Plan. , 0, , 345-374.		4