Massimo Morbidelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2448175/publications.pdf

Version: 2024-02-01

333 papers 10,983 citations

52 h-index 80 g-index

351 all docs

351 docs citations

351 times ranked

7701 citing authors

#	Article	IF	CITATIONS
1	Functional-Hybrid modeling through automated adaptive symbolic regression for interpretable mathematical expressions. Chemical Engineering Journal, 2022, 430, 133032.	12.7	13
2	Synthesis and Application of Hydrophilic Polymer Nanoparticles for Water Shut-Off. Energy & Samp; Fuels, 2022, 36, 1874-1881.	5.1	2
3	Continuous countercurrent chromatographic twinâ€column purification of oligonucleotides: The role of the displacement effect. Biotechnology and Bioengineering, 2022, 119, 1861-1872.	3.3	5
4	Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation. Trends in Pharmacological Sciences, 2021, 42, 151-165.	8.7	94
5	Analysis and optimal design of batch and twoâ€eolumn continuous chromatographic frontal processes for monoclonal antibody purification. Biotechnology and Bioengineering, 2021, 118, 3420-3434.	3.3	9
6	Process Intensification for the Purification of Peptidomimetics: The Case of Icatibant through Multicolumn Countercurrent Solvent Gradient Purification (MCSGP). Industrial & Engineering Chemistry Research, 2021, 60, 6826-6834.	3.7	13
7	Experimental Design of the Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Unit for the Separation of PEGylated Proteins. Industrial & Engineering Chemistry Research, 2021, 60, 10764-10776.	3.7	13
8	Hybrid Models Based on Machine Learning and an Increasing Degree of Process Knowledge: Application to Capture Chromatographic Step. Industrial & Engineering Chemistry Research, 2021, 60, 10466-10478.	3.7	29
9	Hybrid Models for the simulation and prediction of chromatographic processes for protein capture. Journal of Chromatography A, 2021, 1650, 462248.	3.7	40
10	Design of Biopharmaceutical Formulations Accelerated by Machine Learning. Molecular Pharmaceutics, 2021, 18, 3843-3853.	4.6	25
11	Hybrid modeling — a key enabler towards realizing digital twins in biopharma?. Current Opinion in Chemical Engineering, 2021, 34, 100715.	7.8	25
12	Bioprocessing in the Digital Age: The Role of Process Models. Biotechnology Journal, 2020, 15, e1900172.	3.5	147
13	Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography. Journal of Chromatography A, 2020, 1616, 460789.	3.7	14
14	Process intensification by frontal chromatography: Performance comparison of resin and membrane adsorber for monovalent antibody aggregate removal. Biotechnology and Bioengineering, 2020, 117, 662-672.	3.3	19
15	Understanding mAb aggregation during low pH viral inactivation and subsequent neutralization. Biotechnology and Bioengineering, 2020, 117, 687-700.	3.3	32
16	Modern trends in downstream processing of biotherapeutics through continuous chromatography: The potential of Multicolumn Countercurrent Solvent Gradient Purification. TrAC - Trends in Analytical Chemistry, 2020, 132, 116051.	11.4	29
17	Perfusion Mammalian Cell Culture for Recombinant Protein Manufacturing. , 2020, , 1-19.		O
18	Perfusion Bioreactors:The Set-Up and Process Characterisation. , 2020, , 20-45.		0

#	Article	IF	CITATIONS
19	Scale-Down Models and Sensors for Process Development. , 2020, , 46-66.		O
20	Design and Optimisation of Mammalian Cell Perfusion Cultures. , 2020, , 67-99.		1
21	Clinical- and Commercial-Scale Reactors. , 2020, , 100-137.		0
22	Mechanistic and Statistical Modelling of Bioprocesses. , 2020, , 138-173.		0
23	Readily Adsorbable Thermoresponsive Polymers for the Preparation of Smart Cell-Culturing Surfaces on Site. ACS Biomaterials Science and Engineering, 2020, 6, 5337-5345.	5.2	8
24	Encapsulation of octenidine hydrochloride into bioresorbable polyesters for extended antimicrobial activity. European Polymer Journal, 2020, 138, 109987.	5.4	5
25	Cell culture process metabolomics together with multivariate data analysis tools opens new routes for bioprocess development and glycosylation prediction. Biotechnology Progress, 2020, 36, e3012.	2.6	23
26	Model based strategies towards protein A resin lifetime optimization and supervision. Journal of Chromatography A, 2020, 1625, 461261.	3.7	14
27	Monitoring Parallel Robotic Cultivations with Online Multivariate Analysis. Processes, 2020, 8, 582.	2.8	10
28	From batch to continuous chromatographic purification of a therapeutic peptide through multicolumn countercurrent solvent gradient purification. Journal of Chromatography A, 2020, 1625, 461304.	3.7	19
29	Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates. Biotechnology Advances, 2020, 42, 107582.	11.7	61
30	Processâ€wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnology and Bioengineering, 2020, 117, 1367-1380.	3.3	73
31	Design space and robustness analysis of batch and counter-current frontal chromatography processes for the removal of antibody aggregates. Journal of Chromatography A, 2020, 1619, 460943.	3.7	22
32	Oligonucleotides: Current Trends and Innovative Applications in the Synthesis, Characterization, and Purification. Biotechnology Journal, 2020, 15, e1900226.	3.5	32
33	Hybridâ€EKF: Hybrid model coupled with extended Kalman filter for realâ€ŧime monitoring and control of mammalian cell culture. Biotechnology and Bioengineering, 2020, 117, 2703-2714.	3.3	48
34	Development of Mammalian Cell Perfusion Cultures at Lab Scale: From Orbitally Shaken Tubes to Benchtop Bioreactors. Methods in Molecular Biology, 2020, 2095, 125-140.	0.9	3
35	Maltodextrin as stabilizer for emulsion polymerization: Adsorption and grafting behavior. Journal of Polymer Science, 2020, 58, 1642-1654.	3.8	3
36	Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition. Biotechnology Journal, 2019, 14, e1700722.	3.5	43

#	Article	IF	CITATIONS
37	Synthesis of Strong Cation Exchange Macroporous Polymer Cluster for Convective Protein Chromatography. Macromolecular Materials and Engineering, 2019, 304, 1900311.	3.6	4
38	A two-step procedure for the design of perfusion bioreactors. Biochemical Engineering Journal, 2019, 151, 107295.	3.6	19
39	Aggregation of stable colloidal dispersion under short high-shear microfluidic conditions. Chemical Engineering Journal, 2019, 378, 122225.	12.7	6
40	Recovery of Mineral Oil from Underground Electrical Cables. International Journal of Environmental Research and Public Health, 2019, 16, 2357.	2.6	2
41	A new generation of predictive models: The added value of hybrid models for manufacturing processes of therapeutic proteins. Biotechnology and Bioengineering, 2019, 116, 2540-2549.	3.3	82
42	Monitoring of antibody glycosylation pattern based on microarray MALDI-TOF mass spectrometry. Journal of Biotechnology, 2019, 302, 77-84.	3.8	5
43	Expansion processes for cell-based therapies. Biotechnology Advances, 2019, 37, 107455.	11.7	15
44	Macroporous Polymer–Protein Hybrid Materials for Antibody Purification by Combination of Reactive Gelation and Click-Chemistry. Materials, 2019, 12, 1580.	2.9	7
45	Perfusion cell culture for the production of conjugated recombinant fusion proteins reduces clipping and quality heterogeneity compared to batch-mode processes. Journal of Biotechnology, 2019, 302, 26-31.	3.8	35
46	Microcapsules: Reactive Gelation Synthesis of Monodisperse Polymeric Capsules Using Dropletâ€Based Microfluidics (Adv. Mater. Technol. 6/2019). Advanced Materials Technologies, 2019, 4, 1970032.	5.8	1
47	Process for Continuous Fab Production by Digestion of IgG. Biotechnology Journal, 2019, 14, e1800677.	3.5	11
48	Ziegler–Natta catalyst sonofragmentation for controlling size and size distribution of the produced polymer particles. AICHE Journal, 2019, 65, e16676.	3.6	3
49	A new flow cell and chemometric protocol for implementing inâ€line Raman spectroscopy in chromatography. Biotechnology Progress, 2019, 35, e2847.	2.6	42
50	Reactive Gelation Synthesis of Monodisperse Polymeric Capsules Using Dropletâ€Based Microfluidics. Advanced Materials Technologies, 2019, 4, 1900092.	5.8	9
51	Transcriptome and proteome analysis of steadyâ€state in a perfusion CHO cell culture process. Biotechnology and Bioengineering, 2019, 116, 1959-1972.	3.3	11
52	Process design and development of a mammalian cell perfusion culture in shakeâ€tube and benchtop bioreactors. Biotechnology and Bioengineering, 2019, 116, 1973-1985.	3.3	25
53	Decision Treeâ€PLS (DTâ€PLS) algorithm for the development of process: Specific local prediction models. Biotechnology Progress, 2019, 35, e2818.	2.6	29
54	Experimental Evaluation of the Impact of Intrinsic Process Parameters on the Performance of a Continuous Chromatographic Polishing Unit (MCSGP). Biotechnology Journal, 2019, 14, e1800732.	3.5	17

#	Article	IF	CITATIONS
55	Guaiacol hydrodeoxygenation as a model for lignin upgrading. Role of the support surface features on Ni-based alumina-silica catalysts. Fuel, 2019, 243, 501-508.	6.4	47
56	Semiâ€continuous scaleâ€down models for clone and operating parameter screening in perfusion bioreactors. Biotechnology Progress, 2019, 35, e2790.	2.6	25
57	Combining Mechanistic Modeling and Raman Spectroscopy for Monitoring Antibody Chromatographic Purification. Processes, 2019, 7, 683.	2.8	27
58	<i>110th Anniversary</i> : Fast and Easy-to-Use Method for Coating Tissue Culture Polystyrene Surfaces with Nonfouling Copolymers To Prevent Cell Adhesion. Industrial & Engineering Chemistry Research, 2019, 58, 22290-22298.	3.7	8
59	Control of Small-Scale Chromatographic Systems Under Disturbances. Computer Aided Chemical Engineering, 2019, 47, 269-274.	0.5	4
60	Insight into the Synthesis Process of an Industrial Ziegler–Natta Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 886-896.	3.7	22
61	Modelâ€assisted process characterization and validation for a continuous twoâ€column protein A capture process. Biotechnology and Bioengineering, 2019, 116, 87-98.	3.3	28
62	Purification of Human Monoclonal Antibodies and Their Fragments. Methods in Molecular Biology, 2019, 1904, 163-188.	0.9	8
63	Readily prepared biodegradable nanoparticles to formulate poorly water soluble drugs improving their pharmacological properties: The example of trabectedin. Journal of Controlled Release, 2018, 276, 140-149.	9.9	12
64	The Effect of Residence Time Distribution on the Slurryâ€Phase Catalytic Ethylene Polymerization: An Experimental and Computational Study. Macromolecular Reaction Engineering, 2018, 12, 1700058.	1.5	8
65	Preparation of perfusive chromatographic materials via shear-induced reactive gelation. Journal of Chromatography A, 2018, 1538, 25-33.	3.7	7
66	Control of Pore Structure in Polymeric Monoliths Prepared from Colloidal Dispersions. Macromolecular Materials and Engineering, 2018, 303, 1700417.	3.6	8
67	Experimental and CFD physical characterization of animal cell bioreactors: From micro- to production scale. Biochemical Engineering Journal, 2018, 131, 84-94.	3.6	73
68	Sequential Multivariate Cell Culture Modeling at Multiple Scales Supports Systematic Shaping of a Monoclonal Antibody Toward a Quality Target. Biotechnology Journal, 2018, 13, e1700461.	3.5	47
69	Continuous integrated manufacturing of therapeutic proteins. Current Opinion in Biotechnology, 2018, 53, 76-84.	6.6	99
70	Proteomic analysis of micro-scale bioreactors as scale-down model for a mAb producing CHO industrial fed-batch platform. Journal of Biotechnology, 2018, 279, 27-36.	3.8	18
71	Incorporation and distribution of noble metal atoms in polyacrylonitrile colloidal particles using different polymerization strategies. Polymer, 2018, 145, 41-53.	3.8	3
72	Polyacrylonitrile Nanoparticleâ€Derived Hierarchical Structure for CO ₂ Capture. Energy Technology, 2018, 6, 718-727.	3.8	16

#	Article	IF	CITATIONS
73	Effect of the charge interactions on the composition behavior of acrylamide/acrylic acid copolymerization in aqueous medium. European Polymer Journal, 2018, 98, 302-312.	5.4	8
74	Research Update: Distribution and stabilization of Pd catalysts in porous carbon-based supports by aggregation of pre-doped colloidal particles. APL Materials, 2018, 6, 100704.	5.1	1
75	Accelerated Bioprocess Development of Endopolygalacturonase-Production with Saccharomyces cerevisiae Using Multivariate Prediction in a 48 Mini-Bioreactor Automated Platform. Bioengineering, 2018, 5, 101.	3.5	19
76	Effect of SiO2 Nanoparticles on the Performance of PVdF-HFP/Ionic Liquid Separator for Lithium-Ion Batteries. Nanomaterials, 2018, 8, 926.	4.1	25
77	Glycosylation Flux Analysis of Immunoglobulin G in Chinese Hamster Ovary Perfusion Cell Culture. Processes, 2018, 6, 176.	2.8	14
78	Continuous and Integrated Expression and Purification of Recombinant Antibodies. Methods in Molecular Biology, 2018, 1850, 147-178.	0.9	7
79	Current status and future challenges in continuous biochromatography. Current Opinion in Chemical Engineering, 2018, 22, 138-144.	7.8	38
80	Core-Shell Morphology of Redispersible Powders in Polymer-Cement Waterproof Mortars. Polymers, 2018, 10, 1122.	4.5	16
81	Model assisted comparison of Protein A resins and multi-column chromatography for capture processes. Journal of Biotechnology, 2018, 285, 64-73.	3.8	34
82	Calixarene-immobilized monolithic cryogels for preparative protein chromatography. Journal of Chromatography A, 2018, 1558, 59-68.	3.7	18
83	Reaction kinetics and simulations of ring-opening polymerization for the synthesis of polybutylene terephthalate. Polymer, 2018, 146, 120-132.	3.8	12
84	Synthesis of Cyclic (Ethylene Furanoate) Oligomers via Cyclodepolymerization. Macromolecular Reaction Engineering, 2018, 12, 1800018.	1.5	14
85	Development of a shake tubeâ€based scaleâ€down model for perfusion cultures. Biotechnology and Bioengineering, 2018, 115, 2703-2713.	3.3	35
86	Selfâ€Assembling PCLâ€Based Nanoparticles as PTX Solubility Enhancer Excipients. Macromolecular Bioscience, 2018, 18, e1800164.	4.1	9
87	Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nature Communications, 2018, 9, 2701.	12.8	145
88	Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnology Advances, 2018, 36, 1328-1340.	11.7	171
89	Intensified Production of Recombinant Proteins. RSC Green Chemistry, 2018, , 327-343.	0.1	0
90	Effects of Coalescence on Shear-Induced Gelation of Colloids. Langmuir, 2017, 33, 1180-1188.	3.5	4

#	Article	IF	CITATIONS
91	Ion Exclusion Chromatography: Model Development and Experimental Evaluation. Industrial & Engineering Chemistry Research, 2017, 56, 1621-1632.	3.7	12
92	Intelligent, model-based control towards the intensification of downstream processes. Computers and Chemical Engineering, 2017, 105, 173-184.	3.8	18
93	Modulation and modeling of monoclonal antibody Nâ€linked glycosylation in mammalian cell perfusion reactors. Biotechnology and Bioengineering, 2017, 114, 1978-1990.	3.3	72
94	Why Wasn't My Manuscript Sent Out for Review?. Industrial & Engineering Chemistry Research, 2017, 56, 7109-7111.	3.7	5
95	Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality. Biotechnology Progress, 2017, 33, 1368-1380.	2.6	54
96	Relating saturation capacity to charge density in strong cation exchangers. Journal of Chromatography A, 2017, 1507, 95-103.	3.7	6
97	Recovery of monosaccharides from lignocellulosic hydrolysates by ion exclusion chromatography. Journal of Chromatography A, 2017, 1496, 25-36.	3.7	13
98	Experimental design of a twin-column countercurrent gradient purification process. Journal of Chromatography A, 2017, 1492, 19-26.	3.7	58
99	Intracellular CHO Cell Metabolite Profiling Reveals Steadyâ€State Dependent Metabolic Fingerprints in Perfusion Culture. Biotechnology Progress, 2017, 33, 879-890.	2.6	44
100	Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS. Molecular Pharmaceutics, 2017, 14, 124-134.	4.6	20
101	Adsorption Behavior of Charge Isoforms of Monoclonal Antibodies on Strong Cation Exchangers. Biotechnology Journal, 2017, 12, 1700123.	3.5	3
102	Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDIâ€TOFâ€MS. Biotechnology Progress, 2017, 33, 1630-1639.	2.6	28
103	Reactive separation processes for the production of PEGylated proteins. Current Opinion in Colloid and Interface Science, 2017, 31, 86-91.	7.4	7
104	Thermoresponsive Stability of Colloids in Butyl Acetate/Ethanol Binary Solvent Realized by Grafting Linear Acrylate Copolymers. Langmuir, 2017, 33, 9687-9693.	3.5	1
105	Design and operation of a continuous integrated monoclonal antibody production process. Biotechnology Progress, 2017, 33, 1303-1313.	2.6	106
106	NMR Metabolomics for Stem Cell type discrimination. Scientific Reports, 2017, 7, 15808.	3.3	14
107	Equilibrium Theory Based Design Space for the Multicolumn Countercurrent Solvent Gradient Purification Process. Industrial & Engineering Chemistry Research, 2017, 56, 13482-13489.	3.7	24
108	Influence of protein/glycan interaction on siteâ€specific glycan heterogeneity. FASEB Journal, 2017, 31, 4623-4635.	0.5	37

#	Article	IF	CITATIONS
109	Diffusion (DOSY) 1H NMR as an Alternative Method for Molecular Weight Determination of Poly(ethylene furanoate) (PEF) Polyesters. Macromolecular Chemistry and Physics, 2017, 218, 1600436.	2.2	28
110	Process performance and product quality in an integrated continuous antibody production process. Biotechnology and Bioengineering, 2017, 114, 298-307.	3.3	115
111	Modeling of Polyolefin Polymerization in Semibatch Slurry Reactors: Experiments and Simulations. Macromolecular Reaction Engineering, 2017, 11, 1600036.	1.5	10
112	Robust factor selection in early cell culture process development for the production of a biosimilar monoclonal antibody. Biotechnology Progress, 2017, 33, 181-191.	2.6	33
113	Tracking of Fluorescently Labeled Polymer Particles Reveals Surface Effects during Shear-Controlled Aggregation. Langmuir, 2017, 33, 14038-14044.	3.5	8
114	The Generalized Stability Model and Its Applications in Polymer Colloids. Advances in Polymer Science, 2017, , 79-104.	0.8	0
115	Controlling the time evolution of mAb Nâ€linked glycosylation, Part I: Microbioreactor experiments. Biotechnology Progress, 2016, 32, 1123-1134.	2.6	43
116	Controlling the time evolution of mAb Nâ€linked glycosylation ―Part II: Modelâ€based predictions. Biotechnology Progress, 2016, 32, 1135-1148.	2.6	53
117	Model-based high-throughput design of ion exchange protein chromatography. Journal of Chromatography A, 2016, 1459, 67-77.	3.7	17
118	Small interfering RNA delivery through positively charged polymer nanoparticles. Nanotechnology, 2016, 27, 125102.	2.6	10
119	Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids. Soft Matter, 2016, 12, 5313-5324.	2.7	18
120	Pilot-scale verification of maximum tolerable hydrodynamic stress for mammalian cell culture. Applied Microbiology and Biotechnology, 2016, 100, 3489-3498.	3.6	24
121	Model based adaptive control of a continuous capture process for monoclonal antibodies production. Journal of Chromatography A, 2016, 1444, 50-56.	3.7	89
122	Introduction to "Fundamentals of Preparative and Nonlinear Chromatography―by G. Guiochon, A. Felinger, D.G. Shirazi [Elsevier, Amsterdam, 2nd ed., 2006, Ch. 1]. Journal of Chromatography A, 2016, 1446, 10.	3.7	4
123	A reactive continuous chromatographic process for protein PEGylation. Reaction Chemistry and Engineering, 2016, 1, 218-228.	3.7	10
124	Protein adsorption on ion exchange resins and monoclonal antibody charge variant modulation. Journal of Chromatography A, 2016, 1447, 82-91.	3.7	43
125	High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. Journal of Biotechnology, 2016, 229, 3-12.	3.8	35
126	Effect of Dispersed Polymeric Nanoparticles on the Bulk Polymerization of Methyl Methacrylate. Macromolecules, 2016, 49, 7758-7766.	4.8	8

#	Article	IF	Citations
127	Optimal modelâ€based design of the twinâ€column CaptureSMB process improves capacity utilization and productivity in protein A affinity capture. Biotechnology Journal, 2016, 11, 135-145.	3.5	96
128	Continuous counterâ€current chromatography for capture and polishing steps in biopharmaceutical production. Biotechnology Journal, 2016, 11, 1126-1141.	3.5	117
129	Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries. Scientific Reports, 2016, 6, 32800.	3.3	17
130	Protein adsorption in polyelectrolyte brush type cation-exchangers. Journal of Chromatography A, 2016, 1471, 126-137.	3.7	5
131	Modeling the Kinetics of Protein Conjugation Reactions. Chemie-Ingenieur-Technik, 2016, 88, 1598-1608.	0.8	15
132	Comparison of batch and continuous multiâ€column protein A capture processes by optimal design. Biotechnology Journal, 2016, 11, 920-931.	3.5	120
133	Integrated process for high conversion and high yield protein PEGylation. Biotechnology and Bioengineering, 2016, 113, 1711-1718.	3.3	23
134	Uniform distribution of graphene oxide sheets into a poly-vinylidene fluoride nanoparticle matrix through shear-driven aggregation. Soft Matter, 2016, 12, 5876-5882.	2.7	5
135	A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11481-11490.	10.3	7
136	Advanced control strategies for the multicolumn countercurrent solvent gradient purification process. AICHE Journal, 2016, 62, 2341-2357.	3.6	56
137	PEGylated Nanoparticles Obtained through Emulsion Polymerization as Paclitaxel Carriers. Molecular Pharmaceutics, 2016, 13, 40-46.	4.6	31
138	Shear-driven aggregation of binary colloids for randomly distributing nanoparticles in a matrix. Soft Matter, 2016, 12, 3696-3702.	2.7	5
139	Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions. Journal of Physical Chemistry B, 2016, 120, 3267-3280.	2.6	40
140	A continuum theory for multicomponent chromatography modeling. Journal of Chromatography A, 2016, 1446, 50-58.	3.7	14
141	Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochemical Engineering Journal, 2016, 110, 17-26.	3.6	126
142	Competitive Adsorption of Xanthates with Different Chain Lengths on Chalcopyrite Particles. Industrial & Different Chain Lengths on Chalcopyrite Particles.	3.7	6
143	Fate of PLA and PCL-Based Polymeric Nanocarriers in Cellular and Animal Models of Triple-Negative Breast Cancer. Biomacromolecules, 2016, 17, 744-755.	5.4	19
144	Microarray-based MALDI-TOF mass spectrometry enables monitoring of monoclonal antibody production in batch and perfusion cell cultures. Methods, 2016, 104, 33-40.	3.8	25

#	Article	IF	CITATIONS
145	Model-based development of an on-column PEGylation process. Reaction Chemistry and Engineering, 2016, 1, 204-217.	3.7	20
146	Shear-Induced Reactive Gelation. Langmuir, 2015, 31, 12727-12735.	3.5	13
147	A multiscale view of therapeutic protein aggregation: A colloid science perspective. Biotechnology Journal, 2015, 10, 367-378.	3 . 5	65
148	Fingerprint detection and process prediction by multivariate analysis of fedâ€batch monoclonal antibody cell culture data. Biotechnology Progress, 2015, 31, 1633-1644.	2.6	37
149	Synthesis and Ring-Opening Polymerization of Cyclic Butylene 2,5-Furandicarboxylate. Macromolecular Chemistry and Physics, 2015, 216, 2141-2146.	2.2	36
150	Synthesis of Water-Based Dispersions of Polymer/TiO2 Hybrid Nanospheres. Nanomaterials, 2015, 5, 1454-1468.	4.1	23
151	A control strategy for periodic systems – application to the twin-column MCSGP. Computer Aided Chemical Engineering, 2015, 37, 1505-1510.	0.5	6
152	Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide. Biomacromolecules, 2015, 16, 3792-3801.	5.4	15
153	Mass transfer coefficients determination from linear gradient elution experiments. Journal of Chromatography A, 2015, 1375, 42-48.	3.7	7
154	Highâ€throughput nucleoside phosphate monitoring in mammalian cell fedâ€batch cultivation using quantitative matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry. Biotechnology Journal, 2015, 10, 190-198.	3 . 5	13
155	Insights into pHâ€induced metabolic switch by flux balance analysis. Biotechnology Progress, 2015, 31, 347-357.	2.6	46
156	Kinetics and Cluster Morphology Evolution of Shear-Driven Aggregation of Well-Stabilized Colloids. Langmuir, 2015, 31, 1113-1119.	3.5	12
157	Experimental determination of maximum effective hydrodynamic stress in multiphase flow using shear sensitive aggregates. AICHE Journal, 2015, 61, 1735-1744.	3.6	36
158	Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture. Journal of Biotechnology, 2015, 194, 100-109.	3.8	62
159	Twin-column CaptureSMB: A novel cyclic process for protein A affinity chromatography. Journal of Chromatography A, 2015, 1389, 85-95.	3.7	138
160	Application of polymeric macroporous supports for temperature-responsive chromatography of pharmaceuticals. Journal of Chromatography A, 2015, 1407, 90-99.	3.7	16
161	Model-based description of peptide retention on doped reversed-phase media. Journal of Chromatography A, 2015, 1407, 169-175.	3.7	17
162	Experimental and Modeling Study of Acrylamide Copolymerization with Quaternary Ammonium Salt in Aqueous Solution. Macromolecules, 2015, 48, 5076-5087.	4.8	19

#	Article	IF	CITATIONS
163	Kinetic modeling of protein PEGylation. Chemical Engineering Science, 2015, 137, 816-827.	3.8	28
164	Analysis of site-specific $i>N-glycan$ remodeling in the endoplasmic reticulum and the Golgi. Glycobiology, 2015, 25, 1335-1349.	2.5	60
165	A Colloidal Description of Intermolecular Interactions Driving Fibril–Fibril Aggregation of a Model Amphiphilic Peptide. Langmuir, 2015, 31, 7590-7600.	3.5	16
166	Impact of aggregate formation on the viscosity of protein solutions. Soft Matter, 2015, 11, 5513-5522.	2.7	69
167	Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel. Journal of Chromatography A, 2015, 1386, 13-21.	3.7	28
168	Fragmentation of Amyloid Fibrils Occurs in Preferential Positions Depending on the Environmental Conditions. Journal of Physical Chemistry B, 2015, 119, 4644-4652.	2.6	49
169	Doping reversed-phase media for improved peptide purification. Journal of Chromatography A, 2015, 1397, 11-18.	3.7	10
170	Effect of polyol sugars on the stabilization of monoclonal antibodies. Biophysical Chemistry, 2015, 197, 40-46.	2.8	34
171	A two level hierarchical model of protein retention in ion exchange chromatography. Journal of Chromatography A, 2015, 1411, 50-62.	3.7	12
172	Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation. Physical Chemistry Chemical Physics, 2015, 17, 24392-24402.	2.8	20
173	Snapshotted glass and gel transitions of stable colloidal dispersions after shear-driven aggregation in a microchannel. Soft Matter, 2015, 11, 981-986.	2.7	4
174	Linear isotherm determination from linear gradient elution experiments. Journal of Chromatography A, 2015, 1375, 33-41.	3.7	22
175	Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts. Chemical Papers, 2014, 68, .	2.2	1
176	Perfusive ion-exchange chromatographic materials with high capacity. Journal of Chromatography A, 2014, 1374, 180-188.	3.7	30
177	Investigation of size, surface charge, PEGylation degree and concentration on the cellular uptake of polymer nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 123, 639-647.	5.0	50
178	Integrated multiplatform method for <i>in vitro</i> quantitative assessment of cellular uptake for fluorescent polymer nanoparticles. Nanotechnology, 2014, 25, 045102.	2.6	19
179	Dispersion of single-walled carbon nanotubes by intense turbulent shear in micro-channels. Carbon, 2014, 68, 610-618.	10.3	10
180	Process for protein PEGylation. Journal of Controlled Release, 2014, 180, 134-149.	9.9	163

#	Article	IF	Citations
181	Macroporous Polymer Particles via Reactive Gelation under Shear: Effect of Primary Particle Properties and Operating Parameters. Langmuir, 2014, 30, 13970-13978.	3.5	13
182	Synthesis of Hetero-nanoclusters: The Case of Polymer–Magnetite Systems. Langmuir, 2014, 30, 2266-2273.	3.5	9
183	Modeling of Molecular Weight Distribution in Ring-Opening Polymerization of <scp> </scp> , <scp> <scp> </scp>,<scp> <scp> <sc< td=""><td>3.7</td><td>41</td></sc<></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp></scp>	3.7	41
184	Kinetic Analysis of the Multistep Aggregation Mechanism of Monoclonal Antibodies. Journal of Physical Chemistry B, 2014, 118, 10595-10606.	2.6	43
185	Evaluating the impact of cell culture process parameters on monoclonal antibody N-glycosylation. Journal of Biotechnology, 2014, 188, 88-96.	3.8	98
186	Role of Cosolutes in the Aggregation Kinetics of Monoclonal Antibodies. Journal of Physical Chemistry B, 2014, 118, 11921-11930.	2.6	18
187	Synthesis of Macroporous Polymer Particles Using Reactive Gelation under Shear. Langmuir, 2014, 30, 6946-6953.	3.5	20
188	Adaptation for survival: Phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. Journal of Biotechnology, 2014, 189, 94-103.	3.8	39
189	An integrated approach for the systematic evaluation of polymeric nanoparticles in healthy and diseased organisms. Journal of Nanoparticle Research, $2014, 16, 1$.	1.9	12
190	Gelation of polymeric nanoparticles. Particuology, 2014, 14, 1-11.	3.6	15
191	Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. Journal of Controlled Release, 2014, 174, 15-26.	9.9	100
192	Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography. Journal of Chromatography A, 2014, 1354, 18-25.	3.7	15
193	Purification of Human Monoclonal Antibodies and Their Fragments. Methods in Molecular Biology, 2014, 1060, 331-351.	0.9	6
194	Kinetics of Free-Radical Cross-Linking Polymerization: Comparative Experimental and Numerical Study. Macromolecules, 2013, 46, 5831-5841.	4.8	22
195	Synthesis of surfactant free PCL–PEG brushed nanoparticles with tunable degradation kinetics. International Journal of Pharmaceutics, 2013, 453, 551-559.	5.2	45
196	Stabilization of polymer colloid dispersions with pH-sensitive poly-acrylic acid brushes. Colloid and Polymer Science, 2013, 291, 1659-1667.	2.1	35
197	Role of tentacles and protein loading on pore accessibility and mass transfer in cation exchange materials for proteins. Journal of Chromatography A, 2013, 1285, 48-56.	3.7	36
198	Distributed pore model for bio-molecule chromatography. Journal of Chromatography A, 2013, 1298, 26-34.	3.7	33

#	Article	IF	Citations
199	Flow-Induced Aggregation and Breakup of Particle Clusters Controlled by Surface Nanoroughness. Langmuir, 2013, 29, 14386-14395.	3.5	24
200	Selective Nanovector Mediated Treatment of Activated Proinflammatory Microglia/Macrophages in Spinal Cord Injury. ACS Nano, 2013, 7, 9881-9895.	14.6	136
201	Shear-stability and gelation of inverse latexes. Soft Matter, 2013, 9, 10866.	2.7	9
202	Modeling of mixed-mode chromatography of peptides. Journal of Chromatography A, 2013, 1283, 46-52.	3.7	19
203	Model-based design space determination of peptide chromatographic purification processes. Journal of Chromatography A, 2013, 1284, 80-87.	3.7	27
204	Model-based design of peptide chromatographic purification processes. Journal of Chromatography A, 2013, 1284, 69-79.	3.7	18
205	Simulation of porosity decrease with protein adsorption using the distributed pore model. Journal of Chromatography A, 2013, 1314, 77-85.	3.7	8
206	Development of a Scale-Down Model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. Journal of Biotechnology, 2013, 164, 41-49.	3.8	81
207	Kinetics of colloidal gelation and scaling of the gelation point. Soft Matter, 2013, 9, 4437.	2.7	14
208	Aggregation Mechanism of an IgG2 and two IgG1 Monoclonal Antibodies at low pH: From Oligomers to Larger Aggregates. Pharmaceutical Research, 2013, 30, 641-654.	3.5	102
209	Separation of Lanthanides by Continuous Chromatography. Industrial & Engineering Chemistry Research, 2013, 52, 8880-8886.	3.7	25
210	Model-based prediction of monoclonal antibody retention in ion-exchange chromatography. Journal of Chromatography A, 2013, 1298, 17-25.	3.7	25
211	Dependence of fractal dimension of DLCA clusters on size of primary particles. Advances in Colloid and Interface Science, 2013, 195-196, 41-49.	14.7	43
212	Biocompatible fluorescent nanoparticles for <i>in vivo</i> stem cell tracking. Nanotechnology, 2013, 24, 245603.	2.6	29
213	multifraction separation in countercurrent chromatography (MCSGP). Biotechnology and Bioengineering, 2013, 110, 2436-2444.	3.3	59
214	Synthesis of Fluorescent PMMAâ€Based Nanoparticles. Macromolecular Materials and Engineering, 2013, 298, 771-778.	3.6	28
215	Bioactive polyacrylamide hydrogels with gradients in mechanical stiffness. Biotechnology and Bioengineering, 2013, 110, 1508-1519.	3.3	26
216	Population Balance Modeling of Antibodies Aggregation Kinetics. Journal of Physical Chemistry B, 2012, 116, 7066-7075.	2.6	84

#	Article	IF	Citations
217	Stability and gelation behavior of bovine serum albumin pre-aggregates in the presence of calcium chloride. Physical Chemistry Chemical Physics, 2012, 14, 4906.	2.8	21
218	Shear-induced gelation of soft strawberry-like particles in the presence of polymeric P(BA-b-AA) surfactants. Physical Chemistry Chemical Physics, 2012, 14, 14374.	2.8	5
219	Modeling of ion-pairing effect in peptide reversed-phase chromatography. Journal of Chromatography A, 2012, 1249, 92-102.	3.7	11
220	Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. Journal of Chromatography A, 2012, 1253, 32-43.	3.7	52
221	Controlled PEGylation of PLAâ€Based Nanoparticles. Macromolecular Chemistry and Physics, 2012, 213, 2012-2018.	2.2	25
222	Macromol. Chem. Phys. 19/2012. Macromolecular Chemistry and Physics, 2012, 213, 2011-2011.	2.2	0
223	PLAâ€based nanoparticles with tunable hydrophobicity and degradation kinetics. Journal of Polymer Science Part A, 2012, 50, 5191-5200.	2.3	36
224	End-to-End Self-Assembly of RADA 16-I Nanofibrils in Aqueous Solutions. Biophysical Journal, 2012, 102, 1617-1626.	0.5	48
225	On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Biophysical Chemistry, 2012, 168-169, 19-27.	2.8	73
226	In Vitro Aggregation Behavior of a Non-Amyloidogenic λ Light Chain Dimer Deriving from U266 Multiple Myeloma Cells. PLoS ONE, 2012, 7, e33372.	2.5	21
227	Kinetics of the ringâ€opening polymerization of <scp>D</scp> , <scp>L</scp> â€lactide using zinc (II) octoate as catalyst. Polymer International, 2012, 61, 265-273.	3.1	19
228	Colloidal stability of polymeric nanoparticles in biological fluids. Journal of Nanoparticle Research, 2012, 14, 920.	1.9	126
229	Monitoring coalescence behavior of soft colloidal particles in water by small-angle light scattering. Colloid and Polymer Science, 2012, 290, 1033-1040.	2.1	8
230	Time evolution of amyloid fibril length distribution described by a population balance model. Chemical Engineering Science, 2012, 78, 21-32.	3.8	46
231	Copolymerization of VDF and HFP in Supercritical Carbon Dioxide: A Robust Approach for Modeling Precipitation and Dispersion Kinetics. Macromolecular Reaction Engineering, 2012, 6, 24-44.	1.5	10
232	Longitudinal Tracking of Human Fetal Cells Labeled with Super Paramagnetic Iron Oxide Nanoparticles in the Brain of Mice with Motor Neuron Disease. PLoS ONE, 2012, 7, e32326.	2.5	28
233	Effect of Primary Particle Size and Salt Concentration on the Structure of Colloidal Gels. Journal of Physical Chemistry C, 2011, 115, 931-936.	3.1	8
234	Effect of Surfactants on Shear-Induced Gelation and Gel Morphology of Soft Strawberry-like Particles. Langmuir, 2011, 27, 7168-7175.	3.5	8

#	Article	IF	Citations
235	Kinetics of Ring-Opening Polymerization of <scp>l</scp> , <scp>l</scp> -Lactide. Industrial & Engineering Chemistry Research, 2011, 50, 7927-7940.	3.7	88
236	\hat{l} μ-Caprolactone-Based Macromonomers Suitable for Biodegradable Nanoparticles Synthesis through Free Radical Polymerization. Macromolecules, 2011, 44, 9205-9212.	4.8	90
237	Crowding, Intermolecular Interactions, and Shear Flow Effects in the Diffusion Model of Chemical Reactions. Journal of Physical Chemistry B, 2011, 115, 7383-7396.	2.6	13
238	Precipitation Copolymerization of Vinylâ€imidazole and Vinylâ€pyrrolidone, 2 – Kinetic Model. Macromolecular Reaction Engineering, 2011, 5, 501-517.	1.5	8
239	Precipitation Copolymerization of Vinyl″midazole and Vinylâ€Pyrrolidone, 1 – Experimental Analysis. Macromolecular Reaction Engineering, 2011, 5, 490-500.	1.5	8
240	Minimizing hydrodynamic stress in mammalian cell culture through the lobed Taylorâ€Couette bioreactor. Biotechnology Journal, 2011, 6, 1504-1515.	3.5	33
241	Aggregation Stability of a Monoclonal Antibody During Downstream Processing. Pharmaceutical Research, 2011, 28, 1884-1894.	3.5	90
242	Influence of the pore size of reversed phase materials on peptide purification processes. Journal of Chromatography A, 2011, 1218, 2912-2922.	3.7	14
243	The rate of polymerization in two loci reaction systems: VDFâ€HFP precipitation copolymerization in supercritical carbon dioxide. Polymer Engineering and Science, 2011, 51, 2093-2102.	3.1	8
244	Strong cation exchange monoliths for HPLC by Reactive Gelation. Journal of Separation Science, 2011, 34, 2159-2163.	2.5	7
245	Effect of repulsive interactions on the rate of doublet formation of colloidal nanoparticles in the presence of convective transport. Journal of Colloid and Interface Science, 2011, 355, 42-53.	9.4	11
246	Shear-Driven Solidification of Dilute Colloidal Suspensions. Physical Review Letters, 2011, 106, 138301.	7.8	49
247	Behavior of human serum albumin on strong cation exchange resins: II. Model analysis. Journal of Chromatography A, 2010, 1217, 5492-5500.	3.7	18
248	Effect of Temperature on High Shear-Induced Gelation of Charge-Stabilized Colloids without Adding Electrolytes. Langmuir, 2010, 26, 2761-2768.	3.5	32
249	The role of ion-pairing in peak deformations in overloaded reversed-phase chromatography of peptides. Journal of Chromatography A, 2010, 1217, 7065-7073.	3.7	15
250	Effect of flow field heterogeneity in coagulators on aggregate size and structure. AICHE Journal, 2010, 56, 2573-2587.	3.6	21
251	Characterization of Lowâ€Molecularâ€Weight PLA using HPLC. Macromolecular Materials and Engineering, 2010, 295, 58-66.	3.6	41
252	Multi-rate optimizing control of simulated moving beds. Journal of Process Control, 2010, 20, 490-505.	3.3	14

#	Article	IF	CITATIONS
253	Optimizing model predictive control of the chromatographic multi-column solvent gradient purification (MCSGP) process. Journal of Process Control, 2010, 20, 618-629.	3.3	73
254	Effect of high pH column regeneration on the separation performances in reversed phase chromatography of peptides. Journal of Chromatography A, 2010, 1217, 3531-3537.	3.7	4
255	Experimental implementation of automatic â€~cycle to cycle' control to a nonlinear chiral simulated moving bed separation. Journal of Chromatography A, 2010, 1217, 2013-2021.	3.7	24
256	Role of the ligand density in cation exchange materials for the purification of proteins. Journal of Chromatography A, 2010, 1217, 2216-2225.	3.7	49
257	Application of mixed mode resins for the purification of antibodies. Journal of Chromatography A, 2010, 1217, 5753-5760.	3.7	46
258	Behavior of human serum albumin on strong cation exchange resins: I. Experimental analysis. Journal of Chromatography A, 2010, 1217, 5484-5491.	3.7	25
259	Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. Journal of Chromatography A, 2010, 1217, 5610-5621.	3.7	49
260	Application of Asymmetric Flow-Field Flow Fractionation to the Characterization of Colloidal Dispersions Undergoing Aggregation. Langmuir, 2010, 26, 7062-7071.	3.5	7
261	Structure and Kinetics of Shear Aggregation in Turbulent Flows. I. Early Stage of Aggregation. Langmuir, 2010, 26, 13142-13152.	3.5	18
262	Reduction of Surface Charges during Coalescence of Elastomer Particles. Journal of Physical Chemistry B, 2010, 114, 8838-8845.	2.6	6
263	Copolymerization of VDF and HFP in Supercritical Carbon Dioxide: Experimental Analysis of the Reaction Loci. Macromolecules, 2010, 43, 9714-9723.	4.8	20
264	Aggregate Breakup in a Contracting Nozzle. Langmuir, 2010, 26, 10-18.	3.5	73
265	Effect of Primary Particle Morphology on the Structure of Gels Formed in Intense Turbulent Shear. Langmuir, 2010, 26, 6643-6649.	3.5	9
266	Experimental Optimizing Control of the Simulated Moving Bed Separation of Tröger's Base Enantiomers. Industrial & Engineering Chemistry Research, 2010, 49, 11996-12003.	3.7	9
267	Coalescence Control of Elastomer Clusters by Fixed Surface Charges. Journal of Physical Chemistry B, 2010, 114, 1562-1567.	2.6	12
268	Shear-induced reaction-limited aggregation kinetics of Brownian particles at arbitrary concentrations. Journal of Chemical Physics, 2010, 132, 134903.	3.0	42
269	Criticality for shear-induced gelation of charge-stabilized colloids. Soft Matter, 2010, 6, 2692.	2.7	42
270	Performance of C18 Derivatized Silica Gels: A Structure-Performance Study. Separation Science and Technology, 2009, 44, 2471-2490.	2.5	2

#	Article	IF	CITATIONS
271	Breakup of dense colloidal aggregates under hydrodynamic stresses. Physical Review E, 2009, 79, 061401.	2.1	92
272	Role of Cleaning-in-Place in the Purification of mAb Supernatants Using Continuous Cation Exchange Chromatography. Separation Science and Technology, 2009, 44, 1-26.	2.5	41
273	Dependence of initial cluster aggregation kinetics on shear rate for particles of different sizes under turbulence. AICHE Journal, 2009, 55, 3076-3087.	3.6	18
274	Induction of mammalian cell death by simple shear and extensional flows. Biotechnology and Bioengineering, 2009, 104, 360-370.	3.3	83
275	Implementation of an automated on-line high-performance liquid chromatography monitoring system for â€̃cycle to cycle' control of simulated moving beds. Journal of Chromatography A, 2009, 1216, 8806-8815.	3.7	14
276	Peptide pore accessibility in reversed-phase chromatography. Journal of Chromatography A, 2009, 1216, 933-940.	3.7	7
277	Foreword. Journal of Chromatography A, 2009, 1216, 8677.	3.7	1
278	High Shear-Induced Gelation of Charge-Stabilized Colloids in a Microchannel without Adding Electrolytes. Langmuir, 2009, 25, 4715-4723.	3.5	27
279	Role of Counterion Association in Colloidal Stability. Langmuir, 2009, 25, 2696-2702.	3.5	55
280	Aggregation Kinetics of Coalescing Polymer Colloids. Langmuir, 2009, 25, 9703-9713.	3.5	23
281	Control of Coalescence in Clusters of Elastomer Colloids through Manipulation of Polymer Composition. Macromolecules, 2009, 42, 9103-9110.	4.8	12
282	Effect of Surface Properties of Elastomer Colloids on Their Coalescence and Aggregation Kinetics. Langmuir, 2009, 25, 12073-12083.	3.5	19
283	Ring-Opening Polymerization of <scp> </scp> , <scp> </scp> -Lactide: Kinetic and Modeling Study. Macromolecules, 2009, 42, 8187-8197.	4.8	74
284	Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. Physical Review E, 2009, 80, 051404.	2.1	110
285	Novel Anisotropic Porous Materials through Self-Assembly of Super-Paramagnetic Particles. Chimia, 2009, 63, 78.	0.6	1
286	Swelling Deswelling Behavior of PSâ€PNIPAAM Copolymer Particles and PNIPAAM Brushes Grafted from Polystyrene Particles & Monoliths. Macromolecular Materials and Engineering, 2008, 293, 491-502.	3.6	11
287	Dendronized Polymers via Macromonomer Route in Supercritical Carbon Dioxide. Macromolecular Rapid Communications, 2008, 29, 1609-1613.	3.9	15
288	A semicontinuous 3â€column countercurrent solvent gradient purification (MCSGP) process. Biotechnology and Bioengineering, 2008, 99, 728-733.	3.3	78

#	Article	IF	Citations
289	Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP). Biotechnology and Bioengineering, 2008, 100, 1166-1177.	3.3	114
290	Mechanically stirred singleâ€stage column for continuous gelation of colloidal systems. AICHE Journal, 2008, 54, 3106-3115.	3.6	1
291	Effect of shear rate on aggregate size and morphology investigated under turbulent conditions in stirred tank. Journal of Colloid and Interface Science, 2008, 319, 577-589.	9.4	142
292	Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part II: Adsorption modelling. Journal of Chromatography A, 2008, 1214, 71-80.	3.7	36
293	Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization. Journal of Chromatography A, 2008, 1214, 59-70.	3.7	39
294	PNIPAAM Grafted Polymeric Monoliths Synthesized by the Reactive Gelation Process and their Swelling/Deswelling Characteristics. Macromolecular Reaction Engineering, 2008, 2, 215-221.	1.5	6
295	Dependence of Aggregate Strength, Structure, and Light Scattering Properties on Primary Particle Size under Turbulent Conditions in Stirred Tank. Langmuir, 2008, 24, 3070-3081.	3.5	73
296	Arvind Varma: Educator, Researcher and Leader. Industrial & Engineering Chemistry Research, 2008, 47, 8957-8959.	3.7	0
297	Investigation of the Porosity Variation during Chromatographic Experiments. Industrial & Engineering Chemistry Research, 2008, 47, 9133-9140.	3.7	11
298	Modelling the breakup of solid aggregates in turbulent flows. Journal of Fluid Mechanics, 2008, 612, 261-289.	3.4	50
299	Modeling of the Chromatographic Solvent Gradient Reversed Phase Purification of a Multicomponent Polypeptide Mixture. Separation Science and Technology, 2008, 43, 1310-1337.	2.5	8
300	Multi-rate optimizing control of simulated moving beds. , 2008, , .		1
301	Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide: Control of Molecular Weight Distribution by Adjusting Particle Surface Area. Macromolecular Symposia, 2007, 259, 218-225.	0.7	15
302	Master Curves for Aggregation and Gelation:Â Effects of Cluster Structure and Polydispersity. Industrial & Description of Chemistry Research, 2007, 46, 1709-1720.	3.7	11
303	Modeling Polycondensation of Lactic Acid. Macromolecular Symposia, 2007, 259, 116-123.	0.7	9
304	RAFT Polymerization in Bulk and Emulsion. Macromolecular Symposia, 2007, 248, 168-181.	0.7	3
305	A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnology and Bioengineering, 2007, 98, 1043-1055.	3.3	173
306	Parametric study of a 6-column countercurrent solvent gradient purification (MCSGP) unit. Biotechnology and Bioengineering, 2007, 98, 1029-1042.	3.3	60

#	Article	lF	Citations
307	Taylor-Couette unit with a lobed inner cylinder cross section. AICHE Journal, 2007, 53, 1109-1120.	3.6	20
308	Microgel Formation in Emulsion Polymerization. Macromolecular Theory and Simulations, 2007, 16, 441-457.	1.4	14
309	Analysis of the aggregation–fragmentation population balance equation with application to coagulation. Journal of Colloid and Interface Science, 2007, 316, 428-441.	9.4	24
310	Heterogeneous Polymerization in Supercritical Carbon Dioxide. , 2006, , 105-138.		1
311	Sorption and swelling of semicrystalline polymers in supercritical CO2. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1531-1546.	2.1	67
312	Modeling Focused Beam Reflectance Measurement and its Application to Sizing of Particles of Variable Shape. Particle and Particle Systems Characterization, 2006, 23, 360-373.	2.3	20
313	Sizing Polydisperse Dispersions by Focused Beam Reflectance and Small Angle Static Light Scattering. Particle and Particle Systems Characterization, 2006, 23, 438-447.	2.3	10
314	A continuous, counter-current multi-column chromatographic process incorporating modifier gradients for ternary separations. Journal of Chromatography A, 2006, 1126, 338-346.	3.7	100
315	Production of Polymeric Materials with Controlled Pore Structure: the "Reactive Gelation―Process. Macromolecular Materials and Engineering, 2005, 290, 221-229.	3.6	38
316	Epoxy-Layered Silicate Nanocomposites and Their Gas Permeation Properties. Macromolecules, 2004, 37, 7250-7257.	4.8	156
317	A discretization method for computing chain length distributions. Macromolecular Symposia, 2004, 206, 481-494.	0.7	15
318	Role of Sedimentation and Buoyancy on the Kinetics of Diffusion Limited Colloidal Aggregation. Langmuir, 2003, 19, 10710-10718.	3.5	41
319	A simple model for the structure of fractal aggregates. Journal of Colloid and Interface Science, 2003, 268, 106-120.	9.4	153
320	Ultrasound Attenuation in Polystyrene Latexes. Langmuir, 2003, 19, 3953-3957.	3.5	10
321	Estimation of Fractal Dimension in Colloidal Gels. Langmuir, 2003, 19, 6312-6316.	3.5	55
322	Characterization of Particle Interaction Energy through Incipient Turbulent Aggregation. Journal of Colloid and Interface Science, 2002, 256, 304-313.	9.4	12
323	Optimal operation of simulated moving bed units for nonlinear chromatographic separations. Journal of Chromatography A, 1997, 769, 3-24.	3.7	537
324	Continuous Chromatography for the Purification of Monoclonal Antibodies., 0,, 223-238.		1

#	Article	IF	CITATIONS
325	Introduction to Biopharmaceutical Processes. , 0, , 1-26.		O
326	Countercurrrent Separation Processes. , 0, , 84-109.		0
327	Countercurrent Chromatography for the Capture Step. , 0, , 110-152.		O
328	Countercurrent Chromatography for the Polishing Steps. , 0, , 153-202.		0
329	Protein Conjugation., 0,, 203-246.		O
330	Protein Aggregation in Biopharmaceutical Processes., 0,, 247-298.		0
331	Fundamentals of Protein Chromatography. , 0, , 27-83.		0
332	PVdF-HFP and Ionic-Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .	5.1	19
333	RAFT Polymerization in Bulk and Emulsion. , 0, , 168-181.		О