Alexandrina F Mendes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/244716/publications.pdf

Version: 2024-02-01

59 papers 2,983 citations

279798 23 h-index 223800 46 g-index

70 all docs

70 docs citations

70 times ranked

4253 citing authors

#	Article	IF	CITATIONS
1	Bio-electrospraying assessment toward in situ chondrocyte-laden electrospun scaffold fabrication. Journal of Tissue Engineering, 2022, 13, 204173142110693.	5.5	4
2	Multi-layered electrospinning and electrospraying approach: Effect of polymeric supplements on chondrocyte suspension. Journal of Biomaterials Applications, 2022, 36, 1629-1640.	2.4	3
3	Monoterpenes as Sirtuin-1 Activators: Therapeutic Potential in Aging and Related Diseases. Biomolecules, 2022, 12, 921.	4.0	5
4	Common risk factors and therapeutic targets in obstructive sleep apnea and osteoarthritis: An unexpectable link?. Pharmacological Research, 2021, 164, 105369.	7.1	5
5	Expression and function of GPR30 in human chondrocytes. Osteoarthritis and Cartilage, 2021, 29, S119.	1.3	0
6	Elucidation of the Mechanism Underlying the Anti-Inflammatory Properties of (S)-(+)-Carvone Identifies a Novel Class of Sirtuin-1 Activators in a Murine Macrophage Cell Line. Biomedicines, 2021, 9, 777.	3.2	10
7	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /O	verlock 10) Tf 50 502 To
8	Standardised comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Scientific Reports, 2020, 10, 7199.	3.3	19
9	Expression and function of the nonclassical estrogen receptor, GPR30, in human cartilage and chondrocytes. Journal of Cellular Physiology, 2020, 235, 8486-8494.	4.1	10
10	Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases. Trends in Pharmacological Sciences, 2019, 40, 1021-1039.	8.7	24
11	The importance of determining circadian parameters in pharmacological studies. British Journal of Pharmacology, 2019, 176, 2827-2847.	5.4	30
12	The "Journal of Functional Morphology and Kinesiology―Journal Club Series: Highlights on Recent Papers in Exercise-Induced Immune Response. Journal of Functional Morphology and Kinesiology, 2018, 3, 42.	2.4	0
13	Editorial: The Physiology of Inflammationâ€"The Final Common Pathway to Disease. Frontiers in Physiology, 2018, 9, 1741.	2.8	14
14	AB0096â€Expression and function of neuropeptide y receptors in human articular cartilage: influence of gender and osteoarthritis. , 2018, , .		0
15	Assessment of cell line competence for studies of pharmacological GPR30 modulation. Journal of Receptor and Signal Transduction Research, 2017, 37, 181-188.	2.5	9
16	Hyperglycemia and Hyperinsulinemia-Like Conditions Independently Induce Inflammatory Responses in Human Chondrocytes. Journal of Functional Morphology and Kinesiology, 2017, 2, 15.	2.4	2
17	The "Journal of Functional Morphology and Kinesiologyâ€Journal Club Series: Highlights on Recent Papers in Articular Cartilage Tissue Engineering and Mechanical Stimulation. Journal of Functional Morphology and Kinesiology, 2016, 1, 162-166.	2.4	0
18	Diabetes-accelerated experimental osteoarthritis is prevented by autophagy activation. Osteoarthritis and Cartilage, 2016, 24, 2116-2125.	1.3	47

#	Article	IF	CITATIONS
19	OP0312â€Diabetes-Accelerated Experimental Osteoarthritis Is Prevented by Autophagy Activation. Annals of the Rheumatic Diseases, 2016, 75, 176.1-176.	0.9	0
20	Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis and Cartilage, 2016, 24, 731-739.	1.3	70
21	Diabetes-induced osteoarthritis: role of hyperglycemia in joint destruction. BMC Musculoskeletal Disorders, 2015, 16, .	1.9	6
22	Tissue Engineered Cartilage in Unconfined Compression: Biomechanical Analysis. Materials Today: Proceedings, 2015, 2, 355-364.	1.8	3
23	Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. European Journal of Pharmacology, 2015, 750, 141-150.	3.5	154
24	Differential effects of the essential oils of <i>Lavandula luisieri</i> and <i>Eryngium duriaei</i> subsp. <i>juresianum</i> in cell models of two chronic inflammatory diseases. Pharmaceutical Biology, 2015, 53, 1220-1230.	2.9	14
25	Resveratrol Modulates Cytokine-Induced JAK/STAT Activation More Efficiently than 5-Aminosalicylic Acid: An In Vitro Approach. PLoS ONE, 2014, 9, e109048.	2.5	46
26	A5.1â€Culture OF human chondrocytes in high glucose induces inflammatory markers and impairs autophagy. Annals of the Rheumatic Diseases, 2014, 73, A63.1-A63.	0.9	2
27	Anti-inflammatory and Chondroprotective Activity of (+)-α-Pinene: Structural and Enantiomeric Selectivity. Journal of Natural Products, 2014, 77, 264-269.	3.0	162
28	Hyperglycemia-like culture conditions induce IL-1B and TNF-α expression and impair autophagy in human chondrocytes. Osteoarthritis and Cartilage, 2014, 22, S165-S166.	1.3	0
29	Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: Possible role in glucose sensing. Journal of Cellular Biochemistry, 2013, 114, 1879-1889.	2.6	33
30	Physiology and pathophysiology of musculoskeletal aging: current research trends and future priorities. Frontiers in Physiology, 2013, 4, 73.	2.8	10
31	Potassium channels in articular chondrocytes. Channels, 2012, 6, 416-425.	2.8	47
32	The essential oil of Eryngium duriaei subsp. juresianum inhibits IL- $1\hat{l}^2$ induced NF-kB and MAPK activation in human chondrocytes. Osteoarthritis and Cartilage, 2012, 20, S290.	1.3	0
33	Changes in the Subcellular Distribution of the Rat Uterus Oestrogen Receptor as Induced by Oestradiol, Tamoxifen and ZD 182,780. Journal of Pharmacy and Pharmacology, 2011, 48, 302-305.	2.4	3
34	Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis and Cartilage, 2011, 19, 719-727.	1.3	76
35	501 SCREENING OF ESSENTIAL OILS AS POTENTIAL SOURCES OF NATURAL INHIBITORS OF INOS EXPRESSION AND NO PRODUCTION IN HUMAN CHONDROCYTES. Osteoarthritis and Cartilage, 2011, 19, S231-S232.	1.3	0
36	Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. Journal of Cellular Biochemistry, 2011, 112, 2813-2824.	2.6	70

3

#	Article	IF	CITATIONS
37	195 ROLE OF HIGH EXTRACELLULAR GLUCOSE CONCENTRATIONS IN MODULATING ANABOLIC AND CATABOLIC GENE EXPRESSION IN NORMAL AND OSTEOARTHRITIC HUMAN CHONDROCYTES. Osteoarthritis and Cartilage, 2010, 18, S93.	1.3	O
38	214 ROLE OF K(ATP) CHANNELS IN MODULATING GLUT-1 CONTENT IN NORMAL AND OSTEOARTHRITIC HUMAN CHONDROCYTES. Osteoarthritis and Cartilage, 2010, 18, S101.	1.3	0
39	Screening of Five Essential Oils for Identification of Potential Inhibitors of IL-1-induced Nf- $\langle i \rangle$ $\hat{l}^{\circ} \langle i \rangle$ B Activation and NO Production in Human Chondrocytes: Characterization of the Inhibitory Activity of $\langle i \rangle$ $\hat{l} \pm \langle i \rangle$ -Pinene. Planta Medica, 2010, 76, 303-308.	1.3	38
40	Assessment of strategies to increase chondrocyte viability in cryopreserved human osteochondral allografts: evaluation of the glycosylated hydroquinone, arbutin. Osteoarthritis and Cartilage, 2009, 17, 1657-1661.	1.3	5
41	Regulation of catecholamine release and tyrosine hydroxylase in human adrenal chromaffin cells by interleukinâ€1β: role of neuropeptide Y and nitric oxide. Journal of Neurochemistry, 2009, 109, 911-922.	3.9	33
42	Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Research and Therapy, 2009, 11, R80.	3.5	143
43	546 DUAL INHIBITION OFII-1-INDUCED NF-κB ACTIVATION AND INOS ENZYME ACTIVITY IN HUMAN CHONDROCYTES BY NATURAL AND COMMERCIAL α-PINENE. Osteoarthritis and Cartilage, 2008, 16, \$231-\$232.	1.3	O
44	Facilitative Glucose Transporters in Articular Chondrocytes. Advances in Anatomy, Embryology and Cell Biology, 2008, , .	1.6	10
45	Nitric oxide synthase isoforms and NF-κB activity in normal and osteoarthritic human chondrocytes: Regulation by inducible nitric oxide. Nitric Oxide - Biology and Chemistry, 2008, 19, 276-283.	2.7	37
46	Does Arthritis Have a Nutritional Etiology?. Advances in Anatomy, Embryology and Cell Biology, 2008, , 13-17.	1.6	0
47	Articular Cartilage: Structure, Function, and Pathophysiology. Advances in Anatomy, Embryology and Cell Biology, 2008, , 5-13.	1.6	O
48	Metabolic Dysfunction in Arthritis. Advances in Anatomy, Embryology and Cell Biology, 2008, , 17-19.	1.6	0
49	Facilitative glucose transporters in articular chondrocytes. Expression, distribution and functional regulation of GLUT isoforms by hypoxia, hypoxia mimetics, growth factors and pro-inflammatory cytokines. Advances in Anatomy, Embryology and Cell Biology, 2008, 200, 1 p following vi, 1-84.	1.6	17
50	Chondrocyte Viability in Fresh and Frozen Large Human Osteochondral Allografts: Effect of Cryoprotective Agents. Transplantation Proceedings, 2007, 39, 2531-2534.	0.6	46
51	Hydrogen peroxide mediates interleukin- $1\hat{1}^2$ -induced AP-1 activation in articular chondrocytes: Implications for the regulation of iNOS expression. Cell Biology and Toxicology, 2003, 19, 203-214.	5.3	31
52	Differential roles of hydrogen peroxide and superoxide in mediating ILâ€1â€induced NFâ€iºB activation and iNOS expression in bovine articular chondrocytes. Journal of Cellular Biochemistry, 2003, 88, 783-793.	2.6	60
53	Dexamethasone-induced and estradiol-induced CREB activation and annexin 1 expression in CCRF-CEM lymphoblastic cells: evidence for the involvement of cAMP and p38 MAPK. Mediators of Inflammation, 2003, 12, 329-337.	3.0	20
54	Dexamethasone prevents interleukin-1β-induced nuclear factor-κB activation by upregulating IκB-α synthesis, in lymphoblastic cells. Mediators of Inflammation, 2003, 12, 37-46.	3.0	26

#	Article	IF	CITATIONS
55	Role of Mitogen-Activated Protein Kinases and Tyrosine Kinases on IL-1-Induced NF-κB Activation and iNOS Expression in Bovine Articular Chondrocytes. Nitric Oxide - Biology and Chemistry, 2002, 6, 35-44.	2.7	48
56	Role of nitric oxide in the activation of NF- \hat{l}^{P} B, AP-1 and NOS II expression in articular chondrocytes. Inflammation Research, 2002, 51, 369-375.	4.0	46
57	Diacerhein and Rhein Prevent Interleukin-1β-Induced Nuclear Factor-κB Activation by Inhibiting the Degradation of Inhibitor κB-α. Basic and Clinical Pharmacology and Toxicology, 2002, 91, 22-28.	0.0	55
58	Diphenyleneiodonium inhibits NF- $\hat{\mathbb{P}}$ B activation and iNOS expression induced by IL- $\hat{\mathbb{P}}$ 1: involvement of reactive oxygen species. Mediators of Inflammation, 2001, 10, 209-215.	3.0	37
59	Physiology and Pathophysiology of Musculoskeletal Aging. Frontiers Research Topics, 0, , .	0.2	0