M João Carmezim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2447098/publications.pdf Version: 2024-02-01

M IOÃEO CARMEZIM

#	Article	IF	CITATIONS
1	3D-printed platform multi-loaded with bioactive, magnetic nanoparticles and an antibiotic for re-growing bone tissue. International Journal of Pharmaceutics, 2021, 593, 120097.	5.2	19
2	Cerium phosphate-based inhibitor for smart corrosion protection of WE43 magnesium alloy. Electrochimica Acta, 2021, 365, 137368.	5.2	35
3	Effect of the topology on the mechanical properties of porous iron immersed in body fluids. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1066-1076.	1.1	1
4	An Impedimetric Sensor for Levothyroxine Detection towards Point of Care Applications. , 2021, , .		0
5	Surface and mechanical properties of a nanostructured citrate hydroxyapatite coating on pure titanium. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 108, 103794.	3.1	9
6	Citrate zinc hydroxyapatite nanorods with enhanced cytocompatibility and osteogenesis for bone regeneration. Materials Science and Engineering C, 2020, 115, 111147.	7.3	35
7	Direct electrodeposition of hydrogenated reduced graphene oxide from unsonicated solution and its electrochemical response. Diamond and Related Materials, 2020, 104, 107740.	3.9	8
8	Novel smart and self-healing cerium phosphate-based corrosion inhibitor for AZ31 magnesium alloy. Corrosion Science, 2020, 170, 108648.	6.6	85
9	Pseudocapacitive behaviour of FeSx grown on stainless steel up to 1.8â€V in aqueous electrolyte. Journal of Energy Storage, 2019, 26, 100949.	8.1	12
10	Production of bioactive hydroxyapatite coating by coblast process for orthopedic implants. , 2019, , .		1
11	Reduced graphene oxide nanoplatform loaded with nickel-cobalt oxide nanoparticles: Controllable synthesis and physical chemical properties. Materials and Design, 2018, 142, 66-73.	7.0	4
12	Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corrosion Science, 2018, 142, 12-21.	6.6	134
13	Pseudocapacitive response of hydrothermally grown MoS2 crumpled nanosheet on carbon fiber. Materials Chemistry and Physics, 2018, 216, 413-420.	4.0	11
14	NixCo1-x(OH)2 nanosheets on carbon nanofoam paper as high areal capacity electrodes for hybrid supercapacitors. Energy, 2017, 126, 208-216.	8.8	69
15	Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Scientific Reports, 2017, 7, 39980.	3.3	126
16	Electrodeposited MoO x films as negative electrode materials for redox supercapacitors. Electrochimica Acta, 2017, 225, 19-28.	5.2	37
17	Electrodeposition: a versatile, efficient, binder-free and room temperature one-step process to produce MnO ₂ electrochemical capacitor electrodes. RSC Advances, 2017, 7, 32038-32043.	3.6	24

18 Electrolytes in Metal Oxide Supercapacitors. , 2017, , 49-78.

2

M JOãO CARMEZIM

#	Article	IF	CITATIONS
19	Current transient and in situ AFM studies of initial growth stages of electrochemically deposited nickel cobalt hydroxide nanosheet films. Physical Chemistry Chemical Physics, 2016, 18, 12368-12374.	2.8	9
20	Copper-cobalt foams as active and stable catalysts for hydrogen release by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2016, 41, 8438-8448.	7.1	41
21	Hydrothermally grown Ni0.7Zn0.3O directly on carbon fiber paper substrate as an electrode material for energy storage applications. International Journal of Hydrogen Energy, 2016, 41, 9876-9884.	7.1	9
22	Hydrogen bubbling-induced micro/nano porous MnO 2 films prepared by electrodeposition for pseudocapacitor electrodes. Electrochimica Acta, 2016, 202, 166-174.	5.2	30
23	Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications. Applied Surface Science, 2016, 382, 34-40.	6.1	22
24	One-step process to form a nickel-based/carbon nanofoam composite supercapacitor electrode using Na ₂ SO ₄ as an eco-friendly electrolyte. RSC Advances, 2016, 6, 15920-15928.	3.6	21
25	Nanostructured â€~Anastacia' flowers for Zn coating by electrodepositing ZnO at room temperature. Applied Surface Science, 2015, 332, 152-158.	6.1	8
26	ELECTROCHEMICAL RESPONSE OF 70Co–30Ni HIGHLY BRANCHED 3D-DENDRITIC STRUCTURES FOR CHARGE STORAGE ELECTRODES. Electrochimica Acta, 2015, 167, 13-19.	5.2	13
27	Hybrid nickel manganese oxide nanosheet–3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage. Nanoscale, 2015, 7, 12452-12459.	5.6	34
28	α-Co(OH) 2 /carbon nanofoam composite as electrochemical capacitor electrode operating at 2ÂV in aqueous medium. Journal of Power Sources, 2015, 288, 234-242.	7.8	40
29	"ln-vitro―corrosion behaviour of the magnesium alloy with Al and Zn (AZ31) protected with a biodegradable polycaprolactone coating loaded with hydroxyapatite and cephalexin. Electrochimica Acta, 2015, 179, 431-440.	5.2	59
30	Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants. Applied Surface Science, 2015, 345, 387-393.	6.1	29
31	Morphological changes and electrochemical response of mixed nickel manganese oxides as charge storage electrodes. Journal of Materials Chemistry A, 2015, 3, 10875-10882.	10.3	35
32	Structural evolution, magnetic properties and electrochemical response of MnCo ₂ O ₄ nanosheet films. RSC Advances, 2015, 5, 27844-27852.	3.6	42
33	Fabrication of electrochemically reduced graphene oxide/cobalt oxide composite for charge storage electrodes. Journal of Electroanalytical Chemistry, 2015, 755, 151-157.	3.8	13
34	Cathodic electrodeposition and electrochemical response of manganese oxide pseudocapacitor electrodes. International Journal of Hydrogen Energy, 2015, 40, 16355-16364.	7.1	25
35	Characterisation and electrochemical behaviour of electrodeposited Cu–Fe foams applied as pseudocapacitor electrodes. Journal of Electroanalytical Chemistry, 2015, 737, 85-92.	3.8	23
36	Electrodeposition and isothermal aging of Co and Mn layers on stainless steel for interconnectors: Initial stages of spinel phase formation. Journal of Power Sources, 2014, 255, 251-259.	7.8	29

M JOãO CARMEZIM

#	Article	IF	CITATIONS
37	Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors. Journal of Applied Electrochemistry, 2014, 44, 455-465.	2.9	86
38	Titania Films Obtained by Powerful Pulsed Discharge Oxidation in Phosphoric Acid Electrolytes. Journal of the Electrochemical Society, 2014, 161, D73-D78.	2.9	6
39	Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank's solution. Surface and Coatings Technology, 2012, 206, 4368-4375.	4.8	103
40	Fabrication of Three-Dimensional Dendritic Ni–Co Films By Electrodeposition on Stainless Steel Substrates. Journal of Physical Chemistry C, 2012, 116, 22425-22431.	3.1	47
41	The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution. Electrochimica Acta, 2011, 56, 1535-1545.	5.2	65
42	The electrochemical behaviour of stainless steel AISI 304 in alkaline solutions with different pH in the presence of chlorides. Electrochimica Acta, 2011, 56, 5280-5289.	5.2	213
43	A two-step surface treatment, combining anodisation and silanisation, for improved corrosion protection of the Mg alloy WE54. Progress in Organic Coatings, 2010, 69, 143-149.	3.9	31
44	Passive behavior of magnesium alloys (Mg–Zr) containing rare-earth elements in alkaline media. Electrochimica Acta, 2010, 55, 2482-2489.	5.2	38
45	The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study. Electrochimica Acta, 2010, 55, 6174-6181.	5.2	220
46	Study of passive films formed on mild steel in alkaline media by the application of anodic potentials. Materials Chemistry and Physics, 2009, 114, 962-972.	4.0	125
47	Corrosion behaviour of NiTi alloy. Electrochimica Acta, 2009, 54, 921-926.	5.2	162
48	Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion. Applied Surface Science, 2008, 254, 1806-1814.	6.1	99
49	Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection. Applied Surface Science, 2007, 253, 6922-6931.	6.1	190
50	The influence of copper and chromium on the semiconducting behaviour of passive films formed on weathering steels. Thin Solid Films, 2006, 515, 2167-2172.	1.8	11
51	Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corrosion Science, 2005, 47, 581-591.	6.6	288
52	Manganese and Iron Speciation in Chromium Oxide Films over Steel. Key Engineering Materials, 2002, 230-232, 311-314.	0.4	1
53	Electrochemical behaviour of thermally treated Cr-oxide films deposited on stainless steel. Corrosion Science, 2002, 44, 451-465.	6.6	63
54	Corrosion resistant coloured chromium oxide coatings on stainless steel. Pigment and Resin Technology, 1998, 27, 243-246.	0.9	2

#	Article	IF	CITATIONS
55	Improving the passivating efficiency of conversion films on stainless steel by thermal treatment. Thin Solid Films, 1995, 258, 194-197.	1.8	7
56	Chemical study of passivating chromium oxide films by soft X-ray absorption spectroscopy. Analyst, The, 1994, 119, 609.	3.5	12