Lars Bertram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2446129/publications.pdf

Version: 2024-02-01

213 27,277 64 154
papers citations h-index g-index

261 261 261 39780 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
2	Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nature Genetics, 2014, 46, 989-993.	9.4	1,685
3	Twenty Years of the Alzheimer's Disease Amyloid Hypothesis: A Genetic Perspective. Cell, 2005, 120, 545-555.	13.5	1,644
4	Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature Genetics, 2007, 39, 17-23.	9.4	1,626
5	Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimer's and Dementia, 2016, 12, 292-323.	0.4	1,318
6	Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 2016, 533, 539-542.	13.7	1,204
7	Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nature Genetics, 2008, 40, 827-834.	9.4	961
8	Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 2016, 48, 624-633.	9.4	870
9	The Genetics of Alzheimer Disease: Back to the Future. Neuron, 2010, 68, 270-281.	3.8	728
10	Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nature Reviews Neuroscience, 2008, 9, 768-778.	4.9	664
11	Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nature Genetics, 2019, 51, 245-257.	9.4	536
12	The genetic epidemiology of neurodegenerative disease. Journal of Clinical Investigation, 2005, 115, 1449-1457.	3.9	518
13	Comprehensive Research Synopsis and Systematic Meta-Analyses in Parkinson's Disease Genetics: The PDGene Database. PLoS Genetics, 2012, 8, e1002548.	1.5	495
14	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	5.8	484
15	New Frontiers in Alzheimer's Disease Genetics. Neuron, 2001, 32, 181-184.	3.8	447
16	Genome-wide Association Analysis Reveals Putative Alzheimer's Disease Susceptibility Loci in Addition to APOE. American Journal of Human Genetics, 2008, 83, 623-632.	2.6	423
17	The Genetics of Alzheimer's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 79-100.	0.9	412
18	Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimer's and Dementia, 2010, 6, 265-273.	0.4	378

#	Article	IF	CITATIONS
19	Results of a high-resolution genome screen of 437 Alzheimer's Disease families. Human Molecular Genetics, 2003, 12, 23-32.	1.4	304
20	PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2017, 5, 97-105.	5 . 5	298
21	Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 2016, 48, 1462-1472.	9.4	284
22	New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nature Communications, 2016, 7, 10495.	5.8	245
23	Partial Loss-of-Function Mutations in Insulin-Degrading Enzyme that Induce Diabetes also Impair Degradation of Amyloid β-Protein. American Journal of Pathology, 2004, 164, 1425-1434.	1.9	233
24	Family-Based Association between Alzheimer's Disease and Variants in UBQLN1. New England Journal of Medicine, 2005, 352, 884-894.	13.9	232
25	Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature, 2013, 504, 432-436.	13.7	230
26	<scp>N</scp> omenclature of genetic movement disorders: <scp>R</scp> ecommendations of the international <scp>P</scp> arkinson and movement disorder society task force. Movement Disorders, 2016, 31, 436-457.	2.2	228
27	Genome-wide association studies in Alzheimer's disease. Human Molecular Genetics, 2009, 18, R137-R145.	1.4	219
28	Genotypeâ€Phenotype Relations for the Parkinson's Disease Genes <i>Parkin</i> , <i>PINK1</i> , <i>DJ1:</i> MDSGene Systematic Review. Movement Disorders, 2018, 33, 730-741.	2.2	215
29	Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 2022, 54, 437-449.	9.4	215
30	Cohort Profile: The Berlin Aging Study II (BASE-II)â€. International Journal of Epidemiology, 2014, 43, 703-712.	0.9	213
31	Somatic Mutation Profiles of MSI and MSS Colorectal Cancer Identified by Whole Exome Next Generation Sequencing and Bioinformatics Analysis. PLoS ONE, 2010, 5, e15661.	1.1	205
32	The future of Alzheimer's disease: The next 10 years. Progress in Neurobiology, 2011, 95, 718-728.	2.8	190
33	Alzheimer's disease: one disorder, too many genes?. Human Molecular Genetics, 2004, 13, 135R-141.	1.4	177
34	Directional dominance on stature and cognition inÂdiverse human populations. Nature, 2015, 523, 459-462.	13.7	173
35	Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging and Behavior, 2014, 8, 183-207.	1.1	161
36	The role of <i>TREM2</i> R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease. Alzheimer's and Dementia, 2015, 11, 1407-1416.	0.4	152

#	Article	IF	CITATIONS
37	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	5.8	147
38	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	1.2	147
39	Inflammatory biomarkers in Alzheimer's disease plasma. Alzheimer's and Dementia, 2019, 15, 776-787.	0.4	134
40	Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Science Advances, 2016, 2, e1501678.	4.7	133
41	The pursuit of susceptibility genes for Alzheimer's disease: progress and prospects. Trends in Genetics, 2010, 26, 84-93.	2.9	122
42	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.5	119
43	The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Human Molecular Genetics, 2010, 19, 526-534.	1.4	118
44	Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity. Nature Communications, 2017, 8, 910.	5.8	118
45	Serum Iron Levels and the Risk of Parkinson Disease: A Mendelian Randomization Study. PLoS Medicine, 2013, 10, e1001462.	3.9	116
46	The current status of Alzheimer?s disease genetics: what do we tell the patients?. Pharmacological Research, 2004, 50, 385-396.	3.1	111
47	Genetic variants linked to education predict longevity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13366-13371.	3.3	110
48	Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimer's and Dementia, 2019, 15, 1468-1477.	0.4	106
49	Perspective on future role of biological markers in clinical therapy trials of Alzheimer's disease: A long-range point of view beyond 2020. Biochemical Pharmacology, 2014, 88, 426-449.	2.0	105
50	Editorial. Gerontology, 2016, 62, 311-315.	1.4	98
51	NeuroX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiology of Aging, 2015, 36, 1605.e7-1605.e12.	1.5	96
52	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	1.5	94
53	Comprehensive Field Synopsis and Systematic Meta-analyses of Genetic Association Studies in Cutaneous Melanoma. Journal of the National Cancer Institute, 2011, 103, 1227-1235.	3.0	92
54	Ubiquilin 1 Modulates Amyloid Precursor Protein Trafficking and AÎ ² Secretion. Journal of Biological Chemistry, 2006, 281, 32240-32253.	1.6	90

#	Article	IF	Citations
55	Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum. Alzheimer's and Dementia, 2019, 15, 644-654.	0.4	90
56	Decreased Catalytic Activity of the Insulin-degrading Enzyme in Chromosome 10-Linked Alzheimer Disease Families. Journal of Biological Chemistry, 2007, 282, 7825-7832.	1.6	89
57	Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics. Brain, 2020, 143, 3776-3792.	3.7	89
58	Association of GSK3B With Alzheimer Disease and Frontotemporal Dementia. Archives of Neurology, 2008, 65, 1368-74.	4.9	86
59	Metaâ€analyses identify differentially expressed microRNAs in Parkinson's disease. Annals of Neurology, 2019, 85, 835-851.	2.8	84
60	The Role of Clusterin, Complement Receptor 1, and Phosphatidylinositol Binding Clathrin Assembly Protein in Alzheimer Disease Risk and Cerebrospinal Fluid Biomarker Levels. Archives of General Psychiatry, 2011, 68, 207.	13.8	83
61	Keeping up with genetic discoveries in amyotrophic lateral sclerosis: The ALSoD and ALSGene databases. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2011, 12, 238-249.	2.3	82
62	Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nature Communications, 2021, 12, 654.	5.8	75
63	New insights into the genetics of X-linked dystonia-parkinsonism (XDP, DYT3). European Journal of Human Genetics, 2015, 23, 1334-1340.	1.4	73
64	Individual variations in †brain age' relate to early-life factors more than to longitudinal brain change. ELife, 2021, 10, .	2.8	71
65	A metaboliteâ€based machine learning approach to diagnose Alzheimerâ€type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 933-938.	1.8	70
66	Alzheimer's Diseaseâ€Associated Ubiquilinâ€1 Regulates Presenilinâ€1 Accumulation and Aggresome Formation. Traffic, 2011, 12, 330-348.	1.3	69
67	Evidence of Altered Posteromedial Cortical fMRI Activity in Subjects at Risk for Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2010, 24, 28-36.	0.6	68
68	Alzheimer disease risk genes: 29 and counting. Nature Reviews Neurology, 2019, 15, 191-192.	4.9	68
69	Genetic association of Alzheimer's disease with multiple polymorphisms in alpha-2-macroglobulin. Human Molecular Genetics, 2003, 12, 2765-2776.	1.4	67
70	Assessment of Alzheimer's disease case–control associations using family-based methods. Neurogenetics, 2009, 10, 19-25.	0.7	65
71	MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study. Alzheimer's Research and Therapy, 2018, 10, 100.	3.0	64
72	Systematic Analysis of Candidate Genes for Alzheimer's Disease in a French, Genome-Wide Association Study. Journal of Alzheimer's Disease, 2010, 20, 1181-1188.	1.2	63

#	Article	IF	CITATIONS
73	The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics. Alzheimer's Research and Therapy, 2018, 10, 64.	3.0	62
74	Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort. Alzheimer's and Dementia, 2019, 15, 817-827.	0.4	62
75	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782.	3.7	60
76	PLD3 gene variants and Alzheimer's disease. Nature, 2015, 520, E7-E8.	13.7	60
77	Towards Unveiling the Genetics of Neurodegenerative Diseases. Seminars in Neurology, 2011, 31, 531-541.	0.5	56
78	Toward modernizing the systematic review pipeline in genetics: efficient updating via data mining. Genetics in Medicine, 2012, 14, 663-669.	1.1	56
79	Chapter 9 Alzheimer's Disease Genetics. International Review of Neurobiology, 2009, 84, 167-184.	0.9	55
80	Gene-environment interactions linking air pollution and inflammation in Parkinson's disease. Environmental Research, 2016, 151, 713-720.	3.7	55
81	The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease: a Meta-Analysis Study. Journal of Alzheimer's Disease, 2010, 22, 247-255.	1.2	54
82	Launching the movement disorders society genetic mutation database (MDSGene). Movement Disorders, 2016, 31, 607-609.	2.2	54
83	No Association between CALHM1 and Alzheimer's Disease Risk. Cell, 2008, 135, 993-994.	13.5	53
84	Aging magnifies the effects of dopamine transporter and D2 receptor genes on backward serial memory. Neurobiology of Aging, 2013, 34, 358.e1-358.e10.	1.5	53
85	Healthy minds 0–100 years: Optimising the use of European brain imaging cohorts ("Lifebrainâ€). European Psychiatry, 2018, 50, 47-56.	0.1	53
86	Genome-wide linkage analysis of 723 affected relative pairs with late-onset Alzheimer's disease. Human Molecular Genetics, 2007, 16, 2703-2712.	1.4	52
87	A QTL genome scan of the metabolic syndrome and its component traits. BMC Genetics, 2003, 4, S96.	2.7	50
88	Wholeâ€genome sequencing reveals new Alzheimer's disease–associated rare variants in loci related to synaptic function and neuronal development. Alzheimer's and Dementia, 2021, 17, 1509-1527.	0.4	50
89	Quantifying Selective Reporting and the Proteus Phenomenon for Multiple Datasets with Similar Bias. PLoS ONE, 2011, 6, e18362.	1.1	50
90	MicroRNA-138 is a potential regulator of memory performance in humans. Frontiers in Human Neuroscience, 2014, 8, 501.	1.0	49

#	Article	IF	CITATIONS
91	Educational attainment does not influence brain aging. Proceedings of the National Academy of Sciences of the United States of America, 2021, $118, \ldots$	3.3	49
92	Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay. Alzheimer's and Dementia, 2019, 15, 1478-1488.	0.4	46
93	Emerging role of Alzheimer's disease-associated ubiquilin-1 in protein aggregation. Biochemical Society Transactions, 2010, 38, 150-155.	1.6	42
94	Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset. Translational Psychiatry, 2020, 10, 403.	2.4	42
95	Genetic Research in Schizophrenia: New Tools and Future Perspectives. Schizophrenia Bulletin, 2008, 34, 806-812.	2.3	40
96	Evaluation of the Potential Excess of Statistically Significant Findings in Published Genetic Association Studies: Application to Alzheimer's Disease. American Journal of Epidemiology, 2008, 168, 855-865.	1.6	40
97	New light on an old CLU. Nature Reviews Neurology, 2010, 6, 11-13.	4.9	40
98	The rare <i>TREM2</i> R47H variant exerts only a modest effect on Alzheimer disease risk. Neurology, 2014, 83, 1353-1358.	1.5	40
99	Insulin-degrading enzyme is genetically associated with Alzheimer's disease in the Finnish population. Journal of Medical Genetics, 2007, 44, 606-608.	1.5	39
100	Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus, 2013, 23, 919-930.	0.9	38
101	Impact of Parkinson's disease risk loci on age at onset. Movement Disorders, 2015, 30, 847-850.	2.2	38
102	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	2.2	38
103	GAB2 as an Alzheimer Disease Susceptibility Gene. Archives of Neurology, 2009, 66, 250-4.	4.9	37
104	Alzheimer's Genetics in the GWAS Era: A Continuing Story of  Replications and Refutations'. Current Neurology and Neuroscience Reports, 2011, 11, 246-253.	2.0	36
105	Distinguishing true from false positives in genomic studies: p values. European Journal of Epidemiology, 2013, 28, 131-138.	2.5	36
106	Dopaminergic Gene Polymorphisms Affect Long-term Forgetting in Old Age: Further Support for the Magnification Hypothesis. Journal of Cognitive Neuroscience, 2013, 25, 571-579.	1.1	35
107	Gene-Environment Interaction in Parkinson's Disease: Coffee, <i>ADORA2A</i> , and <i>CYP1A2</i> . Neuroepidemiology, 2016, 47, 192-200.	1.1	35
108	Genome-wide significant association of ANKRD 55rs 6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	1.5	34

#	Article	IF	CITATIONS
109	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	1.5	34
110	Lower baseline performance but greater plasticity of working memory for carriers of the val allele of the COMT Val¹âµâ,Met polymorphism Neuropsychology, 2015, 29, 247-254.	1.0	33
111	Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy–Weinberg equilibrium. European Journal of Human Genetics, 2009, 17, 1676-1682.	1.4	32
112	Updated Field Synopsis and Systematic Meta-Analyses of Genetic Association Studies in Cutaneous Melanoma: The MelGene Database. Journal of Investigative Dermatology, 2015, 135, 1074-1079.	0.3	32
113	Dancing in the Dark? The Status of Late-Onset Alzheimer's Disease Genetics. Journal of Molecular Neuroscience, 2001, 17, 127-136.	1.1	31
114	The latest suspect. Nature, 2008, 454, 707-708.	13.7	31
115	Closing the case of <i>APOE</i> i>in multiple sclerosis: no association with disease risk in over 29â€000 subjects: Figure 1. Journal of Medical Genetics, 2012, 49, 558-562.	1.5	31
116	COMT polymorphism and memory dedifferentiation in old age Psychology and Aging, 2014, 29, 374-383.	1.4	31
117	Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson's disease. Parkinsonism and Related Disorders, 2016, 32, 25-30.	1.1	31
118	Identification of Novel Alzheimer's Disease Loci Using Sex-Specific Family-Based Association Analysis of Whole-Genome Sequence Data. Scientific Reports, 2020, 10, 5029.	1.6	31
119	Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 27.	4.4	30
120	Of replications and refutations: The status of Alzheimer's disease genetic research. Current Neurology and Neuroscience Reports, 2001, 1, 442-450.	2.0	29
121	No evidence for genetic association or linkage of the cathepsin D (CTSD) exon 2 polymorphism and Alzheimer disease. Annals of Neurology, 2001, 49, 114-116.	2.8	29
122	Cysteine 27 Variant of the δ-Opioid Receptor Affects Amyloid Precursor Protein Processing through Altered Endocytic Trafficking. Molecular and Cellular Biology, 2011, 31, 2326-2340.	1.1	29
123	Genetic risk for Alzheimer disease predicts hippocampal volume through the human lifespan. Neurology: Genetics, 2020, 6, e506.	0.9	29
124	Genomic mechanisms in Alzheimer's disease. Brain Pathology, 2020, 30, 966-977.	2.1	29
125	Effects of Ubiquilin 1 on the Unfolded Protein Response. Journal of Molecular Neuroscience, 2009, 38, 19-30.	1.1	28
126	Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiology of Aging, 2014, 35, 1213.e3-1213.e8.	1.5	28

#	Article	IF	CITATIONS
127	APOE ε4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease. Alzheimer's Research and Therapy, 2020, 12, 65.	3.0	28
128	Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Randomization Approach. Movement Disorders, 2021, 36, 2264-2272.	2.2	28
129	The Val/Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene predicts decline in perceptual speed in older adults Psychology and Aging, 2014, 29, 384-392.	1.4	27
130	Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia, 2013, 51, 2757-2769.	0.7	26
131	Relationship between genetic risk factors and markers for Alzheimer's disease pathology. Biomarkers in Medicine, 2012, 6, 477-495.	0.6	25
132	Prediction of Melanoma Risk in a Southern European Population Based on a Weighted Genetic Risk Score. Journal of Investigative Dermatology, 2016, 136, 690-695.	0.3	25
133	The role of genetics for biomarker development in neurodegeneration. Progress in Neurobiology, 2011, 95, 501-504.	2.8	24
134	Lack of Replication of the GRIN2A-by-Coffee Interaction in Parkinson Disease. PLoS Genetics, 2014, 10, e1004788.	1.5	24
135	Cohort profile: follow-up of a Berlin Aging Study II (BASE-II) subsample as part of the GendAge study. BMJ Open, 2021, 11, e045576.	0.8	24
136	Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials. Neuropsychologia, 2013, 51, 1649-1661.	0.7	23
137	TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer's disease biomarker levels. Alzheimer's and Dementia, 2021, 17, 1628-1640.	0.4	23
138	Clinico-genetic findings in 509 frontotemporal dementia patients. Molecular Psychiatry, 2021, 26, 5824-5832.	4.1	23
139	Elucidation of the BACE1 Regulating Factor GGA3 in Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 37, 217-232.	1.2	22
140	Association between lipoprotein(a) level and type 2 diabetes: no evidence for a causal role of lipoprotein(a) and insulin. Acta Diabetologica, 2017, 54, 1031-1038.	1.2	22
141	Independent replication of STAT3 association with multiple sclerosis risk in a large German case–control sample. Neurogenetics, 2012, 13, 83-86.	0.7	21
142	Association of UBQLN1 mutation with Brown–Vialetto–Van Laere syndrome but not typical ALS. Neurobiology of Disease, 2012, 48, 391-398.	2.1	20
143	Genome-Wide Association Study of Alzheimer's Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Dataset. Frontiers in Aging Neuroscience, 2022, 14, 840651.	1.7	20
144	Assessment of microRNA-related SNP effects in the $3\hat{a} \in \mathbb{R}^2$ untranslated region of the IL22RA2 risk locus in multiple sclerosis. Neurogenetics, 2014, 15, 129-134.	0.7	19

#	Article	IF	Citations
145	Evidence against association of the FE65 gene (APBB1) intron 13 polymorphism in Alzheimer's patients. Neuroscience Letters, 2000, 296, 17-20.	1.0	18
146	Family-based association test for time-to-onset data with time-dependent differences between the hazard functions. Genetic Epidemiology, 2006, 30, 124-132.	0.6	18
147	Next Generation Sequencing in Alzheimer's Disease. Methods in Molecular Biology, 2016, 1303, 281-297.	0.4	18
148	Is Â-T catenin (VR22) an Alzheimer's disease risk gene?. Journal of Medical Genetics, 2006, 44, e63-e63.	1.5	17
149	Relationship Between 5 Epigenetic Clocks, Telomere Length, and Functional Capacity Assessed in Older Adults: Cross-Sectional and Longitudinal Analyses. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1724-1733.	1.7	17
150	Exploring candidate gene associations with neuropsychological performance. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 987-991.	1.1	15
151	Evidence for a potential role of miR-1908-5p and miR-3614-5p in autoimmune disease risk using integrative bioinformatics. Journal of Autoimmunity, 2018, 94, 83-89.	3.0	15
152	Vitamin D supplementation is associated with slower epigenetic aging. GeroScience, 2022, 44, 1847-1859.	2.1	15
153	The LDLR locus in alzheimer's disease: A family-based study and meta-analysis of case-control data. Neurobiology of Aging, 2007, 28, 18.e1-18.e4.	1.5	14
154	Ubiquilin-1 Modulates γ-Secretase-Mediated Îμ-Site Cleavage in Neuronal Cells. Biochemistry, 2013, 52, 3899-3912.	1.2	14
155	Alzheimer's disease pathology explains association between dementia with Lewy bodies and APOEâ€Îµ4/TOMM40 long polyâ€₹ repeat allele variants. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 814-824.	1.8	14
156	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	0.8	13
157	Mutation spectrum and polygenic score in German patients with familial hypercholesterolemia. Clinical Genetics, 2020, 98, 457-467.	1.0	13
158	Validation of Plasma Proteomic Biomarkers Relating to Brain Amyloid Burden in the EMIF-Alzheimer's Disease Multimodal Biomarker Discovery Cohort. Journal of Alzheimer's Disease, 2020, 74, 213-225.	1.2	13
159	Self-reported Sleep Problems Related to Amyloid Deposition in Cortical Regions with High HOMER1 Gene Expression. Cerebral Cortex, 2020, 30, 2144-2156.	1.6	13
160	Replication study of plasma proteins relating to Alzheimer's pathology. Alzheimer's and Dementia, 2021, 17, 1452-1464.	0.4	13
161	Single-Nucleotide Polymorphism rs498055 on Chromosome 10q24 Is Not Associated with Alzheimer Disease in Two Independent Family Samples. American Journal of Human Genetics, 2006, 79, 180-183.	2.6	11
162	Follow-up mapping supports the evidence for linkage in the candidate region at 9q22 in the NIMH Alzheimer's disease Genetics Initiative cohort. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 220-227.	1.1	11

#	Article	IF	CITATIONS
163	CALHM1 P86L polymorphism does not alter amyloid- \hat{l}^2 or tau in cerebrospinal fluid. Neuroscience Letters, 2010, 469, 265-267.	1.0	11
164	Genetic Burden Analyses of Phenotypes Relevant to Aging in the Berlin Aging Study II (BASE-II). Gerontology, 2016, 62, 316-322.	1.4	11
165	Relationship between Lipoprotein (a) and cognitive function – Results from the Berlin Aging Study II. Scientific Reports, 2020, 10, 10636.	1.6	11
166	Adjusting heterogeneous ascertainment bias for genetic association analysis with extended families. BMC Medical Genetics, 2015, 16, 62.	2.1	9
167	Field synopsis and systematic meta-analyses of genetic association studies in isolated dystonia. Parkinsonism and Related Disorders, 2018, 57, 50-57.	1.1	9
168	CSF Proteomic Alzheimer's Disease-Predictive Subtypes in Cognitively Intact Amyloid Negative Individuals. Proteomes, 2021, 9, 36.	1.7	9
169	Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation. Molecular Psychiatry, 2022, 27, 1990-1999.	4.1	9
170	Region-based analysis of rare genomic variants in whole-genome sequencing datasets reveal two novel Alzheimer's disease-associated genes: DTNB and DLG2. Molecular Psychiatry, 2022, 27, 1963-1969.	4.1	9
171	Obesity and the brain: a possible genetic link. Alzheimer's Research and Therapy, 2010, 2, 27.	3.0	8
172	A Web-based database of genetic association studies in cutaneous melanoma enhanced with network-driven data exploration tools. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau101-bau101.	1.4	7
173	Genome sequencing identifies a novel mutation in ATP1A3 in a family with dystonia in females only. Journal of Neurology, 2015, 262, 187-193.	1.8	7
174	Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning. Neurobiology of Aging, 2018, 61, 36-43.	1.5	7
175	Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2020, 77, 1353-1368.	1.2	7
176	Genetic risk scores and hallucinations in patients with Parkinson disease. Neurology: Genetics, 2020, 6, e492.	0.9	7
177	Sex-Specific Metabolic Pathways Were Associated with Alzheimer's Disease (AD) Endophenotypes in the European Medical Information Framework for AD Multimodal Biomarker Discovery Cohort. Biomedicines, 2021, 9, 1610.	1.4	7
178	Seven-CpG DNA Methylation Age Determined by Single Nucleotide Primer Extension and Illumina's Infinium MethylationEPIC Array Provide Highly Comparable Results. Frontiers in Genetics, 2021, 12, 759357.	1.1	7
179	Genome-wide analysis furthers decoding of Alzheimer disease genetics. Nature Reviews Neurology, 2022, 18, 387-388.	4.9	7
180	Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Communicative and Integrative Biology, 2011, 4, 428-432.	0.6	6

#	Article	IF	Citations
181	On the Meta-Analysis of Genome-Wide Association Studies: A Robust and Efficient Approach to Combine Population and Family-Based Studies. Human Heredity, 2012, 73, 35-46.	0.4	6
182	Genetic variants in PSEN2 and correlation to CSF \hat{l}^2 -amyloid42 levels in AD. Neurobiology of Aging, 2012, 33, 201.e9-201.e18.	1.5	6
183	The hSNM1B/Apollo variant rs11552449 is associated with cellular sensitivity towards mitomycin C and ionizing radiation. DNA Repair, 2018, 72, 93-98.	1.3	6
184	Maximizing the Power of Genome-Wide Association Studies: A Novel Class of Powerful Family-Based Association Tests. Statistics in Biosciences, 2009, 1, 125-143.	0.6	5
185	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	0.7	5
186	Developing the "next generation―of genetic association databases for complex diseases. Human Mutation, 2012, 33, 1366-1372.	1.1	5
187	Self-reported sleep relates to microstructural hippocampal decline in ß-amyloid positive Adults beyond genetic risk. Sleep, 2021, 44, .	0.6	5
188	A common polymorphism in the dopamine transporter gene predicts working memory performance and in vivo dopamine integrity in aging. Neurolmage, 2021, 245, 118707.	2.1	5
189	Involvement of ubiquilin-1 transcript variants in protein degradation and accumulation. Communicative and Integrative Biology, 2011, 4, 428-32.	0.6	5
190	BDNF serum concentrations in 2053 participants of the Berlin Aging Study II. Neurobiology of Aging, 2021, 101, 221-223.	1.5	4
191	Effects of age, amyloid, sex, and <i>APOE</i> $\hat{l}\mu$ 4 on the CSF proteome in normal cognition. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2022, 14, e12286.	1.2	4
192	Cerebrospinal fluid proteomic profiling of individuals with mild cognitive impairment and suspected nonâ€Alzheimer's disease pathophysiology. Alzheimer's and Dementia, 2023, 19, 807-820.	0.4	4
193	Familyâ€Based Tests of Association in the Presence and Absence of Known Linkage. Genetic Epidemiology, 2001, 21, S292-7.	0.6	3
194	Databases for neurogenetics: Introduction, overview, and challenges. Human Mutation, 2012, 33, 1311-1314.	1.1	3
195	Probing the epigenome by EWAS: A new era in brain disease research. Movement Disorders, 2015, 30, 197-197.	2.2	3
196	Berlin Aging Study II (BASE-II)., 2019, , 1-8.		3
197	The genetics of Alzheimer's disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2008, 89, 223-232.	1.0	2
198	Correspondence to Sand et al. "Critical Reappraisal of a Catechol-O-Methyltransferase Transversion Variant in Schizophrenia― Biological Psychiatry, 2010, 67, e45-e48.	0.7	2

#	Article	IF	CITATIONS
199	Probing the Exome in Alzheimer Disease and Other Neurodegenerative Disorders. JAMA Neurology, 2015, 72, 389.	4.5	2
200	Taking genomics research to the next level: The Genotype‶issue expression project. Movement Disorders, 2018, 33, 1097-1097.	2.2	2
201	Genetic associations with learning over 100 days of practice. Npj Science of Learning, 2022, 7, 7.	1.5	2
202	Genetics of Alzheimer's disease., 2005,, 441-451.		1
203	Online-Datenbanken und systematische Metaanalysen komplex-genetischer Erkrankungen. Medizinische Genetik, 2010, 22, 235-241.	0.1	1
204	Genetic Risk Factors: Their Function and Comorbidities in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-2.	1.1	1
205	Genetics of Neurodegenerative Diseases. , 2012, , 719-736.		1
206	Reply letter to Jinnah "Locus pocus―and Albanese "Complex dystonia is not a category in the new 2013 consensus classification― Necessary evolution, no magic!. Movement Disorders, 2016, 31, 1760-1762.	2.2	1
207	Alzheimer's disease risk SNPs show no strong effect on miRNA expression in human lymphoblastoid cell lines. Neurobiology of Aging, 2020, 86, 202.e1-202.e3.	1.5	1
208	Effect of a common UMOD variant on kidney function, blood pressure, cognitive and physical function in a community-based cohort of older adults. Journal of Human Hypertension, 2022, 36, 983-988.	1.0	1
209	Erratum to "Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Approach― Movement Disorders, 2022, 37, 1282-1283.	2.2	1
210	O5-01-01: Biology meets bioinformatics: Validating the predicted role of Alzheimer's GWAS SNPs on micro-RNA function., 2013, 9, P828-P828.		0
211	F1â€02â€04: GENOMICS AND EPIGENOMICS ANALYSES IN THE EMIFâ€AD MULTIMODAL BIOMARKER DISCOVER STUDY. Alzheimer's and Dementia, 2018, 14, P204.	Y 0.4	0
212	The Genetics of Alzheimer's Disease. , 0, , 1-16.		0
213	Berlin Aging Study II (BASE-II)., 2021,, 649-656.		0