
Kai Schledzewski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2445675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ALK1 controls hepatic vessel formation, angiodiversity, and angiocrine functions in hereditary hemorrhagic telangiectasia of the liver. Hepatology, 2023, 77, 1211-1227.	7.3	5
2	Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment. Journal of Translational Medicine, 2022, 20, 62.	4.4	7
3	Exploring the transcriptomic network of multi-ligand scavenger receptor Stabilin-1- and Stabilin-2-deficient liver sinusoidal endothelial cells. Gene, 2021, 768, 145284.	2.2	16
4	Endothelial GATA4 controls liver fibrosis and regeneration by preventing a pathogenic switch in angiocrine signaling. Journal of Hepatology, 2021, 74, 380-393.	3.7	81
5	Imbalanced Activation of Wnt-/β-Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation. Frontiers in Physiology, 2021, 12, 722394.	2.8	4
6	Bone marrow sinusoidal endothelium controls terminal erythroid differentiation and reticulocyte maturation. Nature Communications, 2021, 12, 6963.	12.8	14
7	Slâ€CLP inhibits the growth of mouse mammary adenocarcinoma by preventing recruitment of tumorâ€essociated macrophages. International Journal of Cancer, 2020, 146, 1396-1408.	5.1	18
8	Angiocrine Hepatocyte Growth Factor Signaling Controls Physiological Organ and Body Size and Dynamic Hepatocyte Proliferation to Prevent Liver Damage during Regeneration. American Journal of Pathology, 2020, 190, 358-371.	3.8	24
9	ADP secreted by dying melanoma cells mediates chemotaxis and chemokine secretion of macrophages via the purinergic receptor P2Y12. Cell Death and Disease, 2019, 10, 760.	6.3	18
10	Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Research, 2019, 79, 598-610.	0.9	41
11	GPR182 is a novel marker for sinusoidal endothelial differentiation with distinct GPCR signaling activity inÂvitro. Biochemical and Biophysical Research Communications, 2018, 497, 32-38.	2.1	21
12	Angiocrine Wnt signaling controls liver growth and metabolic maturation in mice. Hepatology, 2018, 68, 707-722.	7.3	73
13	The novel immunoglobulin super family receptor SLAMF9 identified in TAM of murine and human melanoma influences pro-inflammatory cytokine secretion and migration. Cell Death and Disease, 2018, 9, 939.	6.3	16
14	The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity. Journal of Clinical Investigation, 2018, 128, 4057-4073.	8.2	67
15	Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood, 2017, 129, 415-419.	1.4	125
16	GATA4 and LMO3 balance angiocrine signaling and autocrine inflammatory activation by BMP2 in liver sinusoidal endothelial cells. Gene, 2017, 627, 491-499.	2.2	17
17	GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. Journal of Clinical Investigation, 2017, 127, 1099-1114.	8.2	102
18	The shedded ectodomain of Lyve-1 expressed on M2-like tumor-associated macrophages inhibits melanoma cell proliferation. Oncotarget, 2017, 8, 103682-103692.	1.8	30

#	Article	IF	CITATIONS
19	Leda-1/Pianp is targeted to the basolateral plasma membrane by a distinct intracellular juxtamembrane region and modulates barrier properties and E-Cadherin processing. Biochemical and Biophysical Research Communications, 2016, 475, 342-349.	2.1	7
20	Sézary syndrome: old enigmas, new targets. JDDG - Journal of the German Society of Dermatology, 2016, 14, 256-264.	0.8	23
21	Sézary‧yndrom: von ungelösten Fragen zu neuen TherapieansÃæen. JDDG - Journal of the German Society of Dermatology, 2016, 14, 256-265.	0.8	6
22	Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget, 2016, 7, 31097-31110.	1.8	50
23	Counter-regulation of the ligand-receptor pair Leda-1/Pianp and Pilrα during the LPS-mediated immune response of murine macrophages. Biochemical and Biophysical Research Communications, 2015, 464, 1078-1083.	2.1	10
24	Der metastatische Zyklus: metastatische Nischen und Tumorzellâ€Dissemination. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1012-1020.	0.8	0
25	The metastatic cycle: metastatic niches and cancer cell dissemination. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1012-1019.	0.8	5
26	Abstract 1668: Stabilin-1 is expressed on tumor-associated macrophages in breast cancer and supports tumor growth in animal model of breast adenocarcinoma by clearance of SPARC. , 2014, , .		0
27	Expression of stabilin-1 in M2 macrophages in human granulomatous disease and melanocytic lesions. International Journal of Clinical and Experimental Pathology, 2014, 7, 1625-34.	0.5	12
28	Proteolytic cleavage of LEDA-1/PIANP by furin-like proprotein convertases precedes its plasma membrane localization. Biochemical and Biophysical Research Communications, 2013, 434, 22-27.	2.1	5
29	Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilinâ€2 expression in periâ€ŧumourous liver correlates with increased survival. Liver International, 2013, 33, 1428-1440.	3.9	49
30	The <scp>CD</scp> 20 homolog <scp>M</scp> s4a8a integrates pro―and antiâ€inflammatory signals in novel <scp>M</scp> 2â€like macrophages and is expressed in parasite infection. European Journal of Immunology, 2012, 42, 2971-2982.	2.9	14
31	Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids. PLoS ONE, 2012, 7, e34206.	2.5	54
32	Differentiation and gene expression profile of tumor-associated macrophages. Seminars in Cancer Biology, 2012, 22, 289-297.	9.6	207
33	Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. Vascular Pharmacology, 2012, 56, 347.	2.1	0
34	Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2â€like tumorâ€associated macrophages expressing the novel CD20 homolog MS4A8A. International Journal of Cancer, 2011, 129, 122-132.	5.1	33
35	Deficiency of liver sinusoidal scavenger receptors stabilin-1 and -2 in mice causes glomerulofibrotic nephropathy via impaired hepatic clearance of noxious blood factors. Journal of Clinical Investigation, 2011, 121, 703-714.	8.2	133
36	Liver sinusoidal endothelium: A microenvironment-dependent differentiation program in rat including the novel junctional protein liver endothelial differentiation-associated protein-1. Hepatology, 2010, 52, 313-326.	7.3	87

KAI SCHLEDZEWSKI

#	Article	IF	CITATIONS
37	Identification of liver sinusoidal endothelial cells in the human liver. Liver International, 2010, 30, 773-776.	3.9	4
38	Knockout of HIF-1Â in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis, 2010, 31, 1863-1872.	2.8	142
39	Cleverâ€1/Stabilinâ€1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. European Journal of Immunology, 2009, 39, 3477-3487.	2.9	78
40	<i>Ex vivo</i> expanded haematopoietic progenitor cells improve dermal wound healing by paracrine mechanisms. Experimental Dermatology, 2009, 18, 445-453.	2.9	17
41	Endocytosis of Advanced Glycation End-Products in Bovine Choriocapillaris Endothelial Cells. Microcirculation, 2009, 16, 640-655.	1.8	20
42	Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology, 2008, 47, 1018-1031.	7.3	89
43	Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood, 2006, 107, 3221-3228.	1.4	183
44	Differential expression of a gene signature for scavenger/lectin receptors by endothelial cells and macrophages in human lymph node sinuses, the primary sites of regional metastasis. Vascular Pharmacology, 2006, 45, e24.	2.1	0
45	Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Experimental Cell Research, 2005, 303, 160-173.	2.6	127
46	Stabilin-1 localizes to endosomes and the trans-Golgi network in human macrophages and interacts with GGA adaptors. Journal of Leukocyte Biology, 2004, 76, 1151-1161.	3.3	77
47	Expression of stabilin-2, a novel fasciclin-like hyaluronan receptor protein, in murine sinusoidal endothelia, avascular tissues, and at solid/liquid interfaces. Histochemistry and Cell Biology, 2003, 120, 361-369.	1.7	120
48	Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochemical Journal, 2002, 362, 155.	3.7	200
49	Stabilin-1 and â^'2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochemical Journal, 2002, 362, 155-164.	3.7	248
50	Alternatively Activated Antigen-Presenting Cells: Molecular Repertoire, Immune Regulation, and Healing. Skin Pharmacology and Physiology, 2001, 14, 272-279.	2.5	66
51	Alternative versus Classical Activation of Macrophages. Pathobiology, 1999, 67, 222-226.	3.8	306