
## Dario Domenico Lofrumento

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2445293/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Neurons with Cat's Eyes: A Synthetic Strain of α-Synuclein Fibrils Seeding Neuronal Intranuclear<br>Inclusions. Biomolecules, 2022, 12, 436.                                                                                        | 4.0  | 8         |
| 2  | New Promising Therapeutic Avenues of Curcumin in Brain Diseases. Molecules, 2022, 27, 236.                                                                                                                                          | 3.8  | 37        |
| 3  | Tapered fibertrodes for optoelectrical neural interfacing in small brain volumes with reduced artefacts. Nature Materials, 2022, 21, 826-835.                                                                                       | 27.5 | 18        |
| 4  | Formyl Peptide Receptor (FPR)1 Modulation by Resveratrol in an LPS-Induced Neuroinflammatory<br>Animal Model. Nutrients, 2021, 13, 1418.                                                                                            | 4.1  | 15        |
| 5  | Influence of the anatomical features of different brain regions on the spatial localization of fiber photometry signals. Biomedical Optics Express, 2021, 12, 6081.                                                                 | 2.9  | 5         |
| 6  | Inflammatory Response Modulation by Vitamin C in an MPTP Mouse Model of Parkinson's Disease.<br>Biology, 2021, 10, 1155.                                                                                                            | 2.8  | 17        |
| 7  | Microglia Mediated Neuroinflammation: Focus on PI3K Modulation. Biomolecules, 2020, 10, 137.                                                                                                                                        | 4.0  | 94        |
| 8  | Chemosensory Event-Related Potentials and Power Spectrum Could Be a Possible Biomarker in 3M<br>Syndrome Infants?. Brain Sciences, 2020, 10, 201.                                                                                   | 2.3  | 3         |
| 9  | The multiple roles of exosomes in Parkinson's disease: an overview. Immunopharmacology and Immunotoxicology, 2019, 41, 469-476.                                                                                                     | 2.4  | 43        |
| 10 | Curcumin Regulates Anti-Inflammatory Responses by JAK/STAT/SOCS Signaling Pathway in BV-2<br>Microglial Cells. Biology, 2019, 8, 51.                                                                                                | 2.8  | 77        |
| 11 | Formyl-methionyl-leucyl-phenylalanine Induces Apoptosis in Murine Neurons: Evidence for NO-Dependent Caspase-9 Activation. Biology, 2019, 8, 4.                                                                                     | 2.8  | 12        |
| 12 | Radio Electric Asymmetric Conveyer Technology Modulates Neuroinflammation in a Mouse Model of Neurodegeneration. Neuroscience Bulletin, 2018, 34, 270-282.                                                                          | 2.9  | 16        |
| 13 | Vitamin D Treatment Attenuates Neuroinflammation and Dopaminergic Neurodegeneration in an<br>Animal Model of Parkinson's Disease, Shifting M1 to M2 Microglia Responses. Journal of NeuroImmune<br>Pharmacology, 2017, 12, 327-339. | 4.1  | 114       |
| 14 | Abnormal distribution of AQP4 in minor salivary glands of primary Sjögren's syndrome patients.<br>Autoimmunity, 2017, 50, 202-210.                                                                                                  | 2.6  | 17        |
| 15 | Highly Selective Cyclooxygenase-1 Inhibitors P6 and Mofezolac Counteract Inflammatory State both In<br>Vitro and In Vivo Models of Neuroinflammation. Frontiers in Neurology, 2017, 8, 251.                                         | 2.4  | 33        |
| 16 | Stimulation by pro-apoptotic valinomycin of cytosolic NADH/cytochrome c electron transport<br>pathway—Effect of SH reagents. International Journal of Biochemistry and Cell Biology, 2016, 76, 12-18.                               | 2.8  | 2         |
| 17 | Downstream activation of NF-κB in the EDA-A1/EDAR signalling in Sjögren's syndrome and its regulation<br>by the ubiquitin-editing enzyme A20. Clinical and Experimental Immunology, 2016, 184, 183-196.                             | 2.6  | 14        |
| 18 | Uterine Wound Healing: A Complex Process Mediated by Proteins and Peptides. Current Protein and Peptide Science, 2016, 18, 125-128.                                                                                                 | 1.4  | 30        |

| #  | Article                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selective Cyclooxygenase-1 Inhibition by P6 and Gastrotoxicity: Preliminary Investigation.<br>Pharmacology, 2015, 95, 22-28.                                                                                                                                                   | 2.2 | 24        |
| 20 | Modulation of pro-inflammatory response in a mouse model of Parkinson's disease by non-invasive physical approach. , 2015, , .                                                                                                                                                 |     | 1         |
| 21 | Co-culture system of human salivary gland epithelial cells and immune cells from primary Sjögren's<br>syndrome patients: an in vitro approach to study the effects of Rituximab on the activation of the<br>Raf-1/ERK1/2 pathway. International Immunology, 2015, 27, 183-194. | 4.0 | 10        |
| 22 | IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells.<br>International Immunopharmacology, 2015, 24, 369-376.                                                                                                                   | 3.8 | 107       |
| 23 | The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren's syndrome. Clinical and Experimental Medicine, 2015, 15, 215-225.                                                                | 3.6 | 16        |
| 24 | Neovascularization is prominent in the chronic inflammatory lesions of Sjögren's syndrome.<br>International Journal of Experimental Pathology, 2014, 95, 131-137.                                                                                                              | 1.3 | 24        |
| 25 | Rituximabâ€mediated Raf kinase inhibitor protein induction modulates NFâ€ <i>κ</i> B in Sjögren syndrome.<br>Immunology, 2014, 143, 42-51.                                                                                                                                     | 4.4 | 16        |
| 26 | Chronic inflammation enhances NGF-β/TrkA system expression via EGFR/MEK/ERK pathway activation in<br>Sjögren's syndrome. Journal of Molecular Medicine, 2014, 92, 523-37.                                                                                                      | 3.9 | 14        |
| 27 | Transient Covalent Interactions of Newly Synthesized Thyroglobulin with Oxidoreductases of the Endoplasmic Reticulum. Journal of Biological Chemistry, 2014, 289, 11488-11496.                                                                                                 | 3.4 | 27        |
| 28 | Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson's-like disease: Possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immunity, 2014, 20, 249-260.                                                                                 | 2.4 | 118       |
| 29 | A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 266-270.                | 2.8 | 135       |
| 30 | Salivary gland expression level of lκBα regulatory protein in Sjögren's syndrome. Journal of Molecular<br>Histology, 2013, 44, 447-454.                                                                                                                                        | 2.2 | 14        |
| 31 | A potential role of the CRO-α/CXCR2 system in Sjögren's syndrome: regulatory effects of pro-inflammatory cytokines. Histochemistry and Cell Biology, 2013, 139, 371-379.                                                                                                       | 1.7 | 18        |
| 32 | Emerging avenues linking inflammation, angiogenesis and Sjögren's syndrome. Cytokine, 2013, 61,<br>693-703.                                                                                                                                                                    | 3.2 | 28        |
| 33 | GRO-α/CXCR2 System and ADAM17 Correlated Expression in Sjögren's Syndrome. Inflammation, 2013, 36, 759-766.                                                                                                                                                                    | 3.8 | 9         |
| 34 | Quality and Efficacy of Tribulus terrestris as an Ingredient for Dermatological Formulations. Open<br>Dermatology Journal, 2013, 7, 1-7.                                                                                                                                       | 0.3 | 6         |
| 35 | Sjögren's syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-κB. Laboratory Investigation, 2012, 92, 615-624.                                                                                | 3.7 | 57        |
| 36 | Sjögren's syndrome pathological neovascularization is regulated by VEGF-A-stimulated<br>TACE-dependent crosstalk between VEGFR2 and NF-κB. Genes and Immunity, 2012, 13, 411-420.                                                                                              | 4.1 | 40        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Altered IkBα expression promotes NF-kB activation in monocytes from primary Sjögren's syndrome<br>patients. Pathology, 2012, 44, 557-561.                                                                                        | 0.6 | 33        |
| 38 | Saponins from Tribulus terrestris L. protect human keratinocytes from UVB-induced damage. Journal of Photochemistry and Photobiology B: Biology, 2012, 117, 193-201.                                                             | 3.8 | 22        |
| 39 | Neuropilin-1 is upregulated in Sjögren's syndrome and contributes to pathological<br>neovascularization. Histochemistry and Cell Biology, 2012, 137, 669-677.                                                                    | 1.7 | 22        |
| 40 | Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an<br>extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway. Diabetologia,<br>2012, 55, 141-153. | 6.3 | 47        |
| 41 | A failure of TNFAIP3 negative regulation maintains sustained NF-κB activation in Sjögren's syndrome.<br>Histochemistry and Cell Biology, 2011, 135, 615-625.                                                                     | 1.7 | 47        |
| 42 | Advances in the understanding of the Fc gamma receptors-mediated autoantibodies uptake. Clinical and Experimental Medicine, 2011, 11, 1-10.                                                                                      | 3.6 | 22        |
| 43 | Valinomycin induced energy-dependent mitochondrial swelling, cytochrome c release, cytosolic<br>NADH/cytochrome c oxidation and apoptosis. Apoptosis: an International Journal on Programmed Cell<br>Death, 2011, 16, 1004-1013. | 4.9 | 16        |
| 44 | MPTP-Induced Neuroinflammation Increases the Expression of Pro-Inflammatory Cytokines and Their<br>Receptors in Mouse Brain. NeuroImmunoModulation, 2011, 18, 79-88.                                                             | 1.8 | 92        |
| 45 | Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren's syndrome salivary glands.<br>Histochemistry and Cell Biology, 2010, 134, 345-353.                                                                       | 1.7 | 34        |
| 46 | Regulation of mRNA caspase-8 levels by anti-nuclear autoantibodies. Clinical and Experimental<br>Medicine, 2010, 10, 199-203.                                                                                                    | 3.6 | 18        |
| 47 | Blockade of TNF-α signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by<br>anti-Ro/SSA autoantibodies. Laboratory Investigation, 2010, , .                                                         | 3.7 | 2         |
| 48 | TNF blocker drugs modulate human TNF-α-converting enzyme pro-domain shedding induced by<br>autoantibodies. Immunobiology, 2010, 215, 874-883.                                                                                    | 1.9 | 11        |
| 49 | Pro-inflammatory role of Anti-Ro/SSA autoantibodies through the activation of<br>Furin–TACE–amphiregulin axis. Journal of Autoimmunity, 2010, 35, 160-170.                                                                       | 6.5 | 44        |
| 50 | Ceramide-induced activation of cytosolic NADH/cytochrome c electron transport pathway: An<br>additional source of energy for apoptosis. Archives of Biochemistry and Biophysics, 2010, 504, 210-220.                             | 3.0 | 7         |
| 51 | Fibulin-6 expression and anoikis in human salivary gland epithelial cells: implications in Sjogren's syndrome. International Immunology, 2009, 21, 303-311.                                                                      | 4.0 | 13        |
| 52 | Induction of TNF-alpha-converting enzyme-ectodomain shedding by pathogenic autoantibodies.<br>International Immunology, 2009, 21, 1341-1349.                                                                                     | 4.0 | 13        |
| 53 | Modulation of the Fcγ receptors induced by anti-Ro and anti-La autoantibodies: observations in salivary<br>gland cells. Rheumatology International, 2008, 28, 943-948.                                                           | 3.0 | 11        |
| 54 | Expression of TLR4 and CD14 in the Central Nervous System (CNS) in a MPTP Mouse Model of<br>Parkinson's-Like Disease. Immunopharmacology and Immunotoxicology, 2008, 30, 729-740.                                                | 2.4 | 53        |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Autoantibodies from Sjögren's Syndrome Trigger Apoptosis in Salivary Gland Cell Line. Annals of the<br>New York Academy of Sciences, 2007, 1108, 418-425.                                                                                                       | 3.8 | 30        |
| 56 | Nitric oxide production by macrophages of dogs vaccinated with killed Leishmania infantum promastigotes. Comparative Immunology, Microbiology and Infectious Diseases, 2001, 24, 187-195.                                                                       | 1.6 | 41        |
| 57 | Inducible nitric oxide synthase and nitric oxide production inLeishmania infantum-infected human<br>macrophages stimulated with interferon-γ and bacterial lipopolysaccharide. International Journal of<br>Clinical and Laboratory Research, 1999, 29, 122-127. | 1.0 | 42        |