Jianfeng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2445244/publications.pdf Version: 2024-02-01

IMNEENC XU

#	Article	IF	CITATIONS
1	High yield secretion of human erythropoietin from tobacco cells for ex vivo differentiation of hematopoietic stem cells towards red blood cells. Journal of Biotechnology, 2022, 355, 10-20.	3.8	1
2	Plant cell-secreted stem cell factor stimulates expansion and differentiation of hematopoietic stem cells. Process Biochemistry, 2021, 100, 39-48.	3.7	11
3	Cellular engineering of plant cells for improved therapeutic protein production. Plant Cell Reports, 2021, 40, 1087-1099.	5.6	21
4	Macromolecular crowding effects on transcription and translation are regulated by free magnesium ion. Biotechnology and Applied Biochemistry, 2020, 67, 117-122.	3.1	4
5	Production of thermostable endo-1,5-α-l-arabinanase in Pichia pastoris for enzymatically releasing functional oligosaccharides from sugar beet pulp. Applied Microbiology and Biotechnology, 2020, 104, 1595-1607.	3.6	9
6	In Vitro Biocompatibility of Decellularized Cultured Plant Cell-Derived Matrices. ACS Biomaterials Science and Engineering, 2020, 6, 822-832.	5.2	25
7	Engineering hydroxyproline―O â€glycosylated biopolymers to reconstruct the plant cell wall for improved biomass processability. Biotechnology and Bioengineering, 2020, 117, 945-958.	3.3	3
8	Enhanced secretion of human α1-antitrypsin expressed with a novel glycosylation module in tobacco BY-2 cell culture. Bioengineered, 2019, 10, 87-97.	3.2	14
9	Engineering â€~designer' glycomodules for boosting recombinant protein secretion in tobacco hairy root culture and studying hydroxyprolineâ€ <i>O</i> â€glycosylation process in plants. Plant Biotechnology Journal, 2019, 17, 1130-1141.	8.3	19
10	Platforms for Plant-Based Protein Production. Reference Series in Phytochemistry, 2018, , 509-548.	0.4	22
11	Dramatic secretion of recombinant protein expressed in tobacco cells with a designer glycopeptide tag is highly impacted by medium composition. Plant Cell Reports, 2016, 35, 2513-2522.	5.6	15
12	Highâ€yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development. Biotechnology Journal, 2016, 11, 497-506.	3.5	12
13	Improved antibiotic production and silent gene activation in Streptomyces diastatochromogenes by ribosome engineering. Journal of Antibiotics, 2016, 69, 406-410.	2.0	23
14	Platforms for Plant-Based Protein Production. , 2016, , 1-40.		7
15	On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect. Pharmaceutical Bioprocessing, 2014, 2, 499-518.	0.8	85
16	Hydroxyproline-O-glycosylated peptide tags enhance recombinant protein yields in tobacco transient expression. Process Biochemistry, 2014, 49, 490-495.	3.7	7
17	Ethanol fermentation of energy beets by self-flocculating and non-flocculating yeasts. Bioresource Technology, 2014, 155, 189-197.	9.6	12
18	Advances in Transformed Root Cultures for Root Biofactory and Phytoremediation Research. Soil Biology, 2014, , 387-405.	0.8	1

JIANFENG XU

#	Article	IF	CITATIONS
19	Genetically transformed roots: from plant disease to biotechnological resource. Trends in Biotechnology, 2012, 30, 528-537.	9.3	186
20	Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnology Advances, 2012, 30, 1171-1184.	11.7	168
21	Eastern gamagrass as an alternative cellulosic feedstock for bioethanol production. Process Biochemistry, 2012, 47, 335-339.	3.7	32
22	A Novel Plant Cell Bioproduction Platform for High-Yield Secretion of Recombinant Proteins. Methods in Molecular Biology, 2012, 824, 483-500.	0.9	5
23	Cell-Free Protein Expression under Macromolecular Crowding Conditions. PLoS ONE, 2011, 6, e28707.	2.5	93
24	Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnology Advances, 2011, 29, 278-299.	11.7	186
25	Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnology Journal, 2011, 6, 66-73.	3.5	46
26	Enhanced accumulation of secreted human growth hormone by transgenic tobacco cells correlates with the introduction of an N-glycosylation site. Journal of Biotechnology, 2011, 154, 54-59.	3.8	5
27	Novel Fusion Proteins of Interferon α2b Cause Growth Inhibition and Induce JAK-STAT Signaling in Melanoma. Journal of Immunotherapy, 2010, 33, 461-466.	2.4	3
28	Bench to batch: advances in plant cell culture for producing useful products. Applied Microbiology and Biotechnology, 2010, 85, 1339-1351.	3.6	155
29	Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Research, 2010, 19, 849-867.	2.4	72
30	Plant O-Hydroxyproline Arabinogalactans Are Composed of Repeating Trigalactosyl Subunits with Short Bifurcated Side Chains. Journal of Biological Chemistry, 2010, 285, 24575-24583.	3.4	98
31	The O-Hyp glycosylation code in tobacco and Arabidopsis and a proposed role of Hyp-glycans in secretion. Phytochemistry, 2008, 69, 1631-1640.	2.9	83
32	High-yields and extended serum half-life of human interferon α2b expressed in tobacco cells as arabinogalactan-protein fusions. Biotechnology and Bioengineering, 2007, 97, 997-1008.	3.3	93
33	Production of recombinant plant gum with tobacco cell culture in bioreactor and gum characterization. Biotechnology and Bioengineering, 2005, 90, 578-588.	3.3	28