Luke A Galuska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443143/publications.pdf Version: 2024-02-01

LIKE A CALLISKA

#	Article	IF	CITATIONS
1	<scp>Waterâ€essisted</scp> mechanical testing of polymeric <scp>thinâ€films</scp> . Journal of Polymer Science, 2022, 60, 1108-1129.	3.8	23
2	Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability. Journal of Polymer Science, 2022, 60, 548-558.	3.8	7
3	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	12.2	8
4	Elucidating the Role of Hydrogen Bonds for Improved Mechanical Properties in a High-Performance Semiconducting Polymer. Chemistry of Materials, 2022, 34, 2259-2267.	6.7	30
5	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
6	Molecular Origin of Strainâ€Induced Chain Alignment in PDPPâ€Based Semiconducting Polymeric Thin Films. Advanced Functional Materials, 2021, 31, 2100161.	14.9	38
7	SMART transfer method to directly compare the mechanical response of water-supported and free-standing ultrathin polymeric films. Nature Communications, 2021, 12, 2347.	12.8	30
8	Directly Probing the Fracture Behavior of Ultrathin Polymeric Films. ACS Polymers Au, 2021, 1, 16-29.	4.1	16
9	Precise Control of Noncovalent Interactions in Semiconducting Polymers for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2021, 33, 8267-8277.	6.7	18
10	Influence of sideâ€chain isomerization on the isothermal crystallization kinetics of poly(3â€alkylthiophenes). Journal of Materials Research, 2021, 36, 191-202.	2.6	8
11	Strain-Induced Nanocavitation in Block Copolymer Thin Films for High Performance Filtration Membranes. ACS Applied Polymer Materials, 2021, 3, 5666-5673.	4.4	3
12	Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes). Journal of Materials Research, 2021, 36, 1-12.	2.6	2
13	The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polymer Chemistry, 2020, 11, 517-526.	3.9	33
14	Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers with Conjugation Break Spacers. Macromolecules, 2020, 53, 6032-6042.	4.8	63
15	Decoupling Poly(3-alkylthiophenes)' Backbone and Side-Chain Conformation by Selective Deuteration and Neutron Scattering. Macromolecules, 2020, 53, 11142-11152.	4.8	26
16	Tacky Elastomers to Enable Tearâ€Resistant and Autonomous Selfâ€Healing Semiconductor Composites. Advanced Functional Materials, 2020, 30, 2000663.	14.9	85
17	N-Type Complementary Semiconducting Polymer Blends. ACS Applied Polymer Materials, 2020, 2, 2644-2650.	4.4	9
18	Toward the Prediction and Control of Glass Transition Temperature for Donor–Acceptor Polymers. Advanced Functional Materials, 2020, 30, 2002221.	14.9	46

Luke A Galuska

#	Article	IF	CITATIONS
19	Roll-to-Roll Scalable Production of Ordered Microdomains through Nonvolatile Additive Solvent Annealing of Block Copolymers. Macromolecules, 2019, 52, 5026-5032.	4.8	11
20	Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52, 4765-4775.	4.8	23
21	Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900062.	2.2	69
22	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	5.1	89
23	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	5.5	7
24	Challenge and Solution of Characterizing Glass Transition Temperature for Conjugated Polymers by Differential Scanning Calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1635-1644.	2.1	27