Luke A Galuska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443143/publications.pdf

Version: 2024-02-01

567281 610901 24 841 15 24 citations h-index g-index papers 24 24 24 607 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
2	The Critical Role of Electronâ€Donating Thiophene Groups on the Mechanical and Thermal Properties of Donor–Acceptor Semiconducting Polymers. Advanced Electronic Materials, 2019, 5, 1800899.	5.1	89
3	Tacky Elastomers to Enable Tearâ€Resistant and Autonomous Selfâ€Healing Semiconductor Composites. Advanced Functional Materials, 2020, 30, 2000663.	14.9	85
4	Glass Transition Phenomenon for Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900062.	2.2	69
5	Impact of Backbone Rigidity on the Thermomechanical Properties of Semiconducting Polymers with Conjugation Break Spacers. Macromolecules, 2020, 53, 6032-6042.	4.8	63
6	Toward the Prediction and Control of Glass Transition Temperature for Donor–Acceptor Polymers. Advanced Functional Materials, 2020, 30, 2002221.	14.9	46
7	Molecular Origin of Strainâ€Induced Chain Alignment in PDPPâ€Based Semiconducting Polymeric Thin Films. Advanced Functional Materials, 2021, 31, 2100161.	14.9	38
8	The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polymer Chemistry, 2020, 11, 517-526.	3.9	33
9	SMART transfer method to directly compare the mechanical response of water-supported and free-standing ultrathin polymeric films. Nature Communications, 2021, 12, 2347.	12.8	30
10	Elucidating the Role of Hydrogen Bonds for Improved Mechanical Properties in a High-Performance Semiconducting Polymer. Chemistry of Materials, 2022, 34, 2259-2267.	6.7	30
11	Challenge and Solution of Characterizing Glass Transition Temperature for Conjugated Polymers by Differential Scanning Calorimetry. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1635-1644.	2.1	27
12	Decoupling Poly(3-alkylthiophenes)' Backbone and Side-Chain Conformation by Selective Deuteration and Neutron Scattering. Macromolecules, 2020, 53, 11142-11152.	4.8	26
13	Side-Chain Engineering To Optimize the Charge Transport Properties of Isoindigo-Based Random Terpolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2019, 52, 4765-4775.	4.8	23
14	<scp>Waterâ€essisted</scp> mechanical testing of polymeric <scp>thinâ€films</scp> . Journal of Polymer Science, 2022, 60, 1108-1129.	3.8	23
15	Precise Control of Noncovalent Interactions in Semiconducting Polymers for High-Performance Organic Field-Effect Transistors. Chemistry of Materials, 2021, 33, 8267-8277.	6.7	18
16	Directly Probing the Fracture Behavior of Ultrathin Polymeric Films. ACS Polymers Au, 2021, 1, 16-29.	4.1	16
17	Roll-to-Roll Scalable Production of Ordered Microdomains through Nonvolatile Additive Solvent Annealing of Block Copolymers. Macromolecules, 2019, 52, 5026-5032.	4.8	11
18	N-Type Complementary Semiconducting Polymer Blends. ACS Applied Polymer Materials, 2020, 2, 2644-2650.	4.4	9

#	Article	IF	CITATIONS
19	Influence of sideâ€chain isomerization on the isothermal crystallization kinetics of poly(3â€alkylthiophenes). Journal of Materials Research, 2021, 36, 191-202.	2.6	8
20	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	12.2	8
21	Energy level modulation of donor–acceptor alternating random conjugated copolymers for achieving high-performance polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 15335-15343.	5 . 5	7
22	Backbone flexibility on conjugated polymer's crystallization behavior and thin film mechanical stability. Journal of Polymer Science, 2022, 60, 548-558.	3.8	7
23	Strain-Induced Nanocavitation in Block Copolymer Thin Films for High Performance Filtration Membranes. ACS Applied Polymer Materials, 2021, 3, 5666-5673.	4.4	3
24	Influence of side-chain isomerization on the isothermal crystallization kinetics of poly(3-alkylthiophenes). Journal of Materials Research, 2021, 36, 1-12.	2.6	2