Ramos, Hcc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2441319/publications.pdf Version: 2024-02-01

PAMOS HCC

#	Article	IF	CITATIONS
1	Plant breeding with marker-assisted selection in Brazil. Crop Breeding and Applied Biotechnology, 2014, 14, 54-60.	0.4	29
2	Seasonal and genetic influences on sex expression in a backcrossed segregating papaya population. Crop Breeding and Applied Biotechnology, 2011, 11, 97-105.	0.4	23
3	Model-assisted phenotyping by digital images in papaya breeding program. Scientia Agricola, 2017, 74, 294-302.	1.2	22
4	Combined Selection in Backcross Population of Papaya (<i>Carica papaya</i> L.) by the Mixed Model Methodology. American Journal of Plant Sciences, 2014, 05, 2973-2983.	0.8	20
5	Development of superior lines of papaya from the Formosa group using the pedigree method and REML/Blup procedure. Bragantia, 2019, 78, 350-360.	1.3	16
6	Selection of legitimate dwarf coconut hybrid seedlings using DNA fingerprinting. Crop Breeding and Applied Biotechnology, 2018, 18, 409-416.	0.4	14
7	Image-based phenotyping of morpho-agronomic traits in papaya fruits (Carica papaya L. THB var.). Australian Journal of Crop Science, 2018, 12, 1750-1756.	0.3	13
8	Papaya (Carica papaya L.) S1 family recurrent selection: Opportunities and selection alternatives from the base population. Scientia Horticulturae, 2020, 260, 108848.	3.6	13
9	Development of a Gene-Centered SSR Atlas as a Resource for Papaya (Carica papaya) Marker-Assisted Selection and Population Genetic Studies. PLoS ONE, 2014, 9, e112654.	2.5	12
10	UC10: a new early Formosa papaya cultivar. Crop Breeding and Applied Biotechnology, 2019, 19, 131-134.	0.4	11
11	Discovery of SNPs and InDels in papaya genotypes and its potential for marker assisted selection of fruit quality traits. Scientific Reports, 2021, 11, 292.	3.3	10
12	Papaya recombinant inbred lines selection by image-based phenotyping. Scientia Agricola, 2018, 75, 208-215.	1.2	9
13	Genotyping-by-sequencing technology reveals directions for coconut (Cocos nucifera L.) breeding strategies for water production. Euphytica, 2020, 216, 1.	1.2	9
14	TWENTY-TWO-YEAR PAPAYA BREEDING PROGRAM: FROM BREEDING STRATEGY ESTABLISHMENT TO CULTIVAR DEVELOPMENT. Revista Do Especialista, 2020, 1, 9-27.	0.6	9
15	First report of a genetic map and evidence of QTL for resistance to CABMV in a segregating population of Passiflora. European Journal of Plant Pathology, 2019, 155, 903-915.	1.7	7
16	Quantification of floral abnormalities in a population generated from sexual polymorphism aiming at recurrent selection in papaya. Bragantia, 2019, 78, 158-165.	1.3	7
17	Combining ability of recombined F4 papaya lines: a strategy to select hybrid combination. Scientia Agricola, 2021, 78, .	1.2	7
18	â€~UC14': a new papaya cultivar with intermediate fruit size. Crop Breeding and Applied Biotechnology, 2019, 19, 226-229.	0.4	7

Ramos, Hcc

#	Article	IF	CITATIONS
19	Combining ability of recombinant lines of papaya from backcrossing for sexual conversion. Revista Ciencia Agronomica, 2017, 48, .	0.3	6
20	Combining ability for fruit yield and quality in papaya recombinant inbred lines from the sexual conversion backcrossing. Euphytica, 2019, 215, 1.	1.2	5
21	Topcross hybrids in papaya (<i>Carica papaya</i> L.): evaluation of the potential for increasing fruit quality in new cultivars. Archives of Agronomy and Soil Science, 2022, 68, 1473-1486.	2.6	5
22	A hermaphrodite genotype in dioecious papaya progeny: sex reversal or contamination?. Euphytica, 2018, 214, 1.	1.2	4
23	Genetic diversity between papaya lines and their correlation with heterosis in hybrids for disease resistance and morpho-agronomic traits. Summa Phytopathologica, 2018, 44, 110-115.	0.1	4
24	Molecular sexing in papaya (Carica papaya L.) seeds based on endosperm DNA. Euphytica, 2020, 216, 1.	1.2	4
25	MOLECULAR CHARACTERIZATION OF ELITE LINES OF PAPAYA (Carica papaya L.) VIA SSR MARKERS. Revista Do Especialista, 2021, 3, 49-58.	0.6	4
26	Topcross hybrids in papaya: Genes derived from backcrossing provide resistance to multiple diseases. Crop Protection, 2020, 137, 105240.	2.1	2
27	Genotype analysis by trait is a practical and efficient approach on discrimination of inbred lines and identification of papaya (Carica papaya L.) ideotypes for fruit quality. Euphytica, 2021, 217, 1.	1.2	2
28	Comparison of multiallelic distances for the quantification of genetic diversity in the papaya. Acta Scientiarum - Agronomy, 2011, 33, .	0.6	1
29	New source of alleles for resistance to black spot and phoma spot in papaya (Carica papaya L.). Euphytica, 2021, 217, 1.	1.2	1
30	Genetic structure analysis of Mauritia flexuosa natural population from the Lençóis Maranhenses region using microsatellite markers. Scientia Agricola, 2022, 79, .	1.2	1
31	Genetic diversity of papaya (Carica papaya L.) F5 recombinant inbred lines using the Ward-MLM strategy. Genetic Resources and Crop Evolution, 2021, 68, 3333-3343.	1.6	0
32	Is there a possibility to improve a developed hybrid? A current demand on papaya (Carica papaya L.). Euphytica, 2022, 218, .	1.2	0