
Xiao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2439621/publications.pdf Version: 2024-02-01

Χιλο ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
2	Ultrathin 2D Metal–Organic Framework Nanosheets. Advanced Materials, 2015, 27, 7372-7378.	21.0	943
3	Black Phosphorus Quantum Dots. Angewandte Chemie - International Edition, 2015, 54, 3653-3657.	13.8	594
4	Synthesis of Two-Dimensional CoS _{1.097} /Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application. Journal of the American Chemical Society, 2016, 138, 6924-6927.	13.7	591
5	A Highâ€Rate and Stable Quasiâ€Solidâ€State Zincâ€Ion Battery with Novel 2D Layered Zinc Orthovanadate Array. Advanced Materials, 2018, 30, e1803181.	21.0	571
6	Solutionâ€Processed Twoâ€Dimensional MoS ₂ Nanosheets: Preparation, Hybridization, and Applications. Angewandte Chemie - International Edition, 2016, 55, 8816-8838.	13.8	557
7	Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnology and Bioengineering, 2005, 90, 473-481.	3.3	493
8	Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chemistry, 2016, 18, 5133-5141.	9.0	457
9	Solutionâ€Processed Twoâ€Dimensional Metal Dichalcogenideâ€Based Nanomaterials for Energy Storage and Conversion. Advanced Materials, 2016, 28, 6167-6196.	21.0	438
10	Phase engineering of nanomaterials. Nature Reviews Chemistry, 2020, 4, 243-256.	30.2	438
11	Threeâ€Dimensional Architectures Constructed from Transitionâ€Metal Dichalcogenide Nanomaterials for Electrochemical Energy Storage and Conversion. Angewandte Chemie - International Edition, 2018, 57, 626-646.	13.8	398
12	Growth of Au Nanoparticles on 2D Metalloporphyrinic Metalâ€Organic Framework Nanosheets Used as Biomimetic Catalysts for Cascade Reactions. Advanced Materials, 2017, 29, 1700102.	21.0	384
13	Catalytic Oxidation of Biorefinery Lignin to Valueâ€added Chemicals to Support Sustainable Biofuel Production. ChemSusChem, 2015, 8, 24-51.	6.8	378
14	In Situ Grown Epitaxial Heterojunction Exhibits Highâ€Performance Electrocatalytic Water Splitting. Advanced Materials, 2018, 30, e1705516.	21.0	375
15	All Metal Nitrides Solid tate Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	21.0	371
16	Preparation of Highâ€Percentage 1Tâ€Phase Transition Metal Dichalcogenide Nanodots for Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, 1705509.	21.0	341
17	Oneâ€Pot Synthesis of Highly Anisotropic Fiveâ€Foldâ€Twinned PtCu Nanoframes Used as a Bifunctional Electrocatalyst for Oxygen Reduction and Methanol Oxidation. Advanced Materials, 2016, 28, 8712-8717.	21.0	336
18	Novel structured transition metal dichalcogenide nanosheets. Chemical Society Reviews, 2018, 47, 3301-3338.	38.1	303

#	Article	IF	CITATIONS
19	Effects of Sugar Inhibition on Cellulases and β-Glucosidase During Enzymatic Hydrolysis of Softwood Substrates. Applied Biochemistry and Biotechnology, 2004, 115, 1115-1126.	2.9	291
20	Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nature Catalysis, 2018, 1, 460-468.	34.4	247
21	Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nature Chemistry, 2018, 10, 456-461.	13.6	220
22	An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydrate Polymers, 2015, 123, 476-481.	10.2	205
23	Surfaceâ€Chargeâ€Mediated Formation of Hâ€īiO ₂ @Ni(OH) ₂ Heterostructures for Highâ€Performance Supercapacitors. Advanced Materials, 2017, 29, 1604164.	21.0	203
24	A Facile and Universal Topâ€Down Method for Preparation of Monodisperse Transitionâ€Metal Dichalcogenide Nanodots. Angewandte Chemie - International Edition, 2015, 54, 5425-5428.	13.8	185
25	Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Materials Chemistry Frontiers, 2017, 1, 24-36.	5.9	173
26	Recent advances in oxidative valorization of lignin. Catalysis Today, 2018, 302, 50-60.	4.4	155
27	Peroxidase-like activity of MoS ₂ nanoflakes with different modifications and their application for H ₂ O ₂ and glucose detection. Journal of Materials Chemistry B, 2018, 6, 487-498.	5.8	130
28	Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses. Bioenergy Research, 2011, 4, 246-257.	3.9	129
29	Facile Extraction of Wheat Straw by Deep Eutectic Solvent (DES) to Produce Lignin Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 10248-10256.	6.7	127
30	Preparation of Singleâ€Layer MoS ₂ <i>_x</i> Se _{2(1â€} <i>_x</i> ₎ and Mo <i>_x</i> W _{1â€} <i>_x</i> S ₂ Nanosheets with Highâ€Concentration Metallic 1T Phase. Small, 2016, 12, 1866-1874.	10.0	126
31	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	19.5	123
32	Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids. ChemSusChem, 2014, 7, 412-415.	6.8	120
33	An advanced understanding of the specific effects of xylan and surface lignin contents on enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 2013, 132, 137-145.	9.6	115
34	Phase-Selective Epitaxial Growth of Heterophase Nanostructures on Unconventional 2H-Pd Nanoparticles. Journal of the American Chemical Society, 2020, 142, 18971-18980.	13.7	111
35	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	5.6	109
36	High consistency enzymatic hydrolysis of hardwood substrates. Bioresource Technology, 2009, 100, 5890-5897.	9.6	107

#	Article	IF	CITATIONS
37	The Alcoholâ€ŧoâ€ŀet Conversion Pathway for Dropâ€ŀn Biofuels: Technoâ€Economic Evaluation. ChemSusChem, 2018, 11, 3728-3741.	6.8	107
38	Self-branched α-MnO ₂ /δ-MnO ₂ heterojunction nanowires with enhanced pseudocapacitance. Materials Horizons, 2017, 4, 415-422.	12.2	105
39	Iron Doped CuSn(OH) ₆ Microspheres as a Peroxidase-Mimicking Artificial Enzyme for H ₂ O ₂ Colorimetric Detection. ACS Sustainable Chemistry and Engineering, 2018, 6, 14383-14393.	6.7	103
40	In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metalâ€Organic Framework Nanosheets. Small, 2016, 12, 4669-4674.	10.0	101
41	Boosting the lithium storage performance of MoS ₂ with graphene quantum dots. Journal of Materials Chemistry A, 2016, 4, 4783-4789.	10.3	100
42	Selective Epitaxial Growth of Oriented Hierarchical Metal–Organic Framework Heterostructures. Journal of the American Chemical Society, 2020, 142, 8953-8961.	13.7	100
43	Synthesis of Palladiumâ€Based Crystalline@Amorphous Core–Shell Nanoplates for Highly Efficient Ethanol Oxidation. Advanced Materials, 2020, 32, e2000482.	21.0	98
44	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26178-26187.	8.0	94
45	FePt nanoparticles-decorated graphene oxide nanosheets as enhanced peroxidase mimics for sensitive response to H2O2. Materials Science and Engineering C, 2018, 90, 610-620.	7.3	93
46	Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core–shell nanorods. Journal of Materials Chemistry A, 2014, 2, 3912.	10.3	91
47	Potential of Nanocrystalline Cellulose–Fibrin Nanocomposites for Artificial Vascular Graft Applications. Biomacromolecules, 2013, 14, 1063-1071.	5.4	90
48	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	10.0	86
49	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	13.7	85
50	A colorimetric sensor of H ₂ O ₂ based on Co ₃ O ₄ –montmorillonite nanocomposites with peroxidase activity. New Journal of Chemistry, 2018, 42, 1501-1509.	2.8	79
51	Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways. Bioresource Technology, 2013, 150, 321-327.	9.6	75
52	A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling inÂvivo. Biomaterials, 2015, 54, 34-43.	11.4	75
53	Si Doped CoO Nanorods as Peroxidase Mimics for Colorimetric Sensing of Reduced Glutathione. ACS Sustainable Chemistry and Engineering, 2019, 7, 13989-13998.	6.7	75
54	Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. ACS Applied Materials & Interfaces, 2019, 11, 20796-20803.	8.0	75

#	Article	IF	CITATIONS
55	FeNi Cubic Cage@N-Doped Carbon Coupled with N-Doped Graphene toward Efficient Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2018, 6, 8266-8273.	6.7	68
56	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	10.0	65
57	Recent Progress in the Preparation, Assembly, Transformation, and Applications of Layerâ€6tructured Nanodisks beyond Graphene. Advanced Materials, 2017, 29, 1701704.	21.0	65
58	Synthesis of well-dispersed Fe ₃ O ₄ nanoparticles loaded on montmorillonite and sensitive colorimetric detection of H ₂ O ₂ based on its peroxidase-like activity. New Journal of Chemistry, 2018, 42, 9578-9587.	2.8	65
59	Synthesis of Pd ₃ Sn and PdCuSn Nanorods with <i>L1₂</i> Phase for Highly Efficient Electrocatalytic Ethanol Oxidation. Advanced Materials, 2022, 34, e2106115.	21.0	65
60	Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS ₂ Nanosheets. ACS Sensors, 2016, 1, 1315-1321.	7.8	64
61	Recent progress on single-atom catalysts for CO2 electroreduction. Materials Today, 2021, 48, 95-114.	14.2	63
62	Sol-gel synthesis of mesoporous Co3O4 octahedra toward high-performance anodes for lithium-ion batteries. Electrochimica Acta, 2014, 129, 410-415.	5.2	62
63	Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem, 2020, 12, 401-425.	3.7	62
64	CoFeP hollow cube as advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2019, 6, 604-611.	6.0	61
65	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â^²<i>x</i>} S _{<i>y</i>} O _{<i>z</i>} Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie - International Edition, 2017, 56, 7842-7846.	13.8	59
66	Efficient bifunctional vanadium-doped Ni ₃ S ₂ nanorod array for overall water splitting. Inorganic Chemistry Frontiers, 2019, 6, 443-450.	6.0	54
67	Strong Charge Transfer at 2H–1T Phase Boundary of MoS ₂ for Superb Highâ€Performance Energy Storage. Small, 2019, 15, e1900131.	10.0	53
68	Lösungsprozessierte MoS ₂ â€NanoplÃætchen: Herstellung, Hybridisierung und Anwendungen. Angewandte Chemie, 2016, 128, 8960-8984.	2.0	52
69	Topochemical transformation of Co(<scp>ii</scp>) coordination polymers to Co ₃ O ₄ nanoplates for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 2251-2257.	10.3	49
70	Organic-Dye-Modified Upconversion Nanoparticle as a Multichannel Probe To Detect Cu ²⁺ in Living Cells. ACS Applied Materials & Interfaces, 2018, 10, 1028-1032.	8.0	49
71	Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review. Catalysis Today, 2019, 338, 18-30.	4.4	48
72	Weavable, Highâ€Performance, Solid‣tate Supercapacitors Based on Hybrid Fibers Made of Sandwiched Structure of MWCNT/rGO/MWCNT. Advanced Electronic Materials, 2016, 2, 1600102.	5.1	47

#	Article	IF	CITATIONS
73	Porphyrin functionalized Co(OH) ₂ /GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst, The, 2019, 144, 5284-5291.	3.5	45
74	Construction of sandwiched graphene paper@Fe ₃ O ₄ nanorod array@graphene for large and fast lithium storage with an extended lifespan. Journal of Materials Chemistry A, 2015, 3, 19384-19392.	10.3	44
75	Synthesis of 4H/fcc-Au@Metal Sulfide Core–Shell Nanoribbons. Journal of the American Chemical Society, 2015, 137, 10910-10913.	13.7	44
76	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	10.4	44
77	Strategic assessment of sustainable aviation fuel production technologies: Yield improvement and cost reduction opportunities. Biomass and Bioenergy, 2021, 145, 105942.	5.7	44
78	Cleavage of ethers and demethylation of lignin in acidic concentrated lithium bromide (ACLB) solution. Green Chemistry, 2020, 22, 7989-8001.	9.0	43
79	Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel. Bioresource Technology, 2014, 155, 422-426.	9.6	42
80	Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds. Chemistry - A European Journal, 2016, 22, 10884-10891.	3.3	42
81	Alkaline hydrogen peroxide (AHP) pretreatment of softwood: Enhanced enzymatic hydrolysability at low peroxide loadings. Biomass and Bioenergy, 2017, 96, 96-102.	5.7	42
82	Specific effects of fiber size and fiber swelling on biomass substrate surface area and enzymatic digestibility. Bioresource Technology, 2013, 144, 232-239.	9.6	40
83	Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis. Materials Chemistry Frontiers, 2019, 3, 842-850.	5.9	40
84	Deep Eutectic Solvent Extraction of Highâ€Purity Lignin from a Corn Stover Hydrolysate. ChemSusChem, 2020, 13, 4678-4690.	6.8	39
85	Flexible foams of graphene entrapped SnO ₂ –Co ₃ O ₄ nanocubes with remarkably large and fast lithium storage. Journal of Materials Chemistry A, 2016, 4, 16101-16107.	10.3	38
86	Lignin Depolymerization to Dicarboxylic Acids with Sodium Percarbonate. ACS Sustainable Chemistry and Engineering, 2017, 5, 6253-6260.	6.7	38
87	Ultra-thin metal-organic framework nanoribbons. National Science Review, 2020, 7, 46-52.	9.5	38
88	Dreidimensionale Architekturen aus Übergangsmetallâ€Dichalkogenidâ€Nanomaterialien zur elektrochemischen Energiespeicherung und â€umwandlung. Angewandte Chemie, 2018, 130, 634-655.	2.0	37
89	Enhanced hydrogen evolution of MoS ₂ /RGO: vanadium, nitrogen dopants triggered new active sites and expanded interlayer. Inorganic Chemistry Frontiers, 2018, 5, 2092-2099.	6.0	36
90	Electrochemical sandwich-type thrombin aptasensor based on dual signal amplification strategy of silver nanowires and hollow Au–CeO2. Biosensors and Bioelectronics, 2020, 150, 111846.	10.1	36

#	Article	IF	CITATIONS
91	Cobalt and nickel bimetallic sulfide nanoparticles immobilized on montmorillonite demonstrating peroxidase-like activity for H ₂ O ₂ detection. New Journal of Chemistry, 2018, 42, 18749-18758.	2.8	34
92	Metal-Free 2(3),9(10),16(17),23(24)-Octamethoxyphthalocyanine-Modified Uniform CoSn(OH) ₆ Nanocubes: Enhanced Peroxidase-like Activity, Catalytic Mechanism, and Fast Colorimetric Sensing for Cholesterol. ACS Sustainable Chemistry and Engineering, 2020, 8, 9404-9414.	6.7	34
93	Investigation of Thermally Induced Cellular Ablation and Heat Response Triggered by Planar MoS ₂ -Based Nanocomposite. Bioconjugate Chemistry, 2017, 28, 1059-1067.	3.6	33
94	VS ₄ â€Decorated Carbon Nanotubes for Lithium Storage with Pseudocapacitance Contribution. ChemSusChem, 2020, 13, 1637-1644.	6.8	32
95	Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nature Communications, 2022, 13, .	12.8	32
96	Evaluation of pretreatment effect on lignin extraction from wheat straw by deep eutectic solvent. Bioresource Technology, 2022, 344, 126174.	9.6	31
97	Rapid colorimetric determination of dopamine based on the inhibition of the peroxidase mimicking activity of platinum loaded CoSn(OH)6 nanocubes. Mikrochimica Acta, 2019, 186, 755.	5.0	29
98	PtFe/nitrogen-doped graphene for high-performance electrooxidation of formic acid with composition sensitive electrocatalytic activity. RSC Advances, 2015, 5, 60237-60245.	3.6	28
99	5,10,15,20-Tetrakis(4-carboxylphenyl)porphyrin modified nickel-cobalt layer double hydroxide nanosheets as enhanced photoelectrocatalysts for methanol oxidation under visible-light. Journal of Colloid and Interface Science, 2020, 561, 881-889.	9.4	28
100	Flower-like CeO ₂ /CoO p–n Heterojuncted Nanocomposites with Enhanced Peroxidase-Mimicking Activity for <scp>I</scp> -Cysteine Sensing. ACS Sustainable Chemistry and Engineering, 2020, 8, 17540-17550.	6.7	28
101	Facile fabrication of a NiO/Ag ₃ PO ₄ Z-scheme photocatalyst with enhanced visible-light-driven photocatalytic activity. New Journal of Chemistry, 2020, 44, 12806-12814.	2.8	27
102	Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production. Renewable and Sustainable Energy Reviews, 2021, 151, 111516.	16.4	27
103	Recent advances in biomedical applications of 2D nanomaterials with peroxidase-like properties. Advanced Drug Delivery Reviews, 2022, 185, 114269.	13.7	27
104	Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genetics and Biology, 2013, 61, 120-132.	2.1	25
105	Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation. Carbohydrate Polymers, 2019, 218, 103-111.	10.2	25
106	A Novel and Formaldehyde-Free Preparation Method for Lignin Amine and Its Enhancement for Soy Protein Adhesive. Journal of Polymers and the Environment, 2017, 25, 599-605.	5.0	24
107	Hierarchical Ni(OH) ₂ â€MnO ₂ Array as Supercapacitor Electrode with High Capacity. Advanced Materials Interfaces, 2019, 6, 1801470.	3.7	23
108	Ni ₃ [Fe(CN) ₆] ₂ nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1683-1689.	6.0	23

#	Article	IF	CITATIONS
109	The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass. Biomacromolecules, 2016, 17, 1705-1715.	5.4	21
110	Evaluation of physical structural features on influencing enzymatic hydrolysis efficiency of micronized wood. RSC Advances, 2016, 6, 103026-103034.	3.6	21
111	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2017, 56, 10486-10490.	13.8	21
112	N,N-dicarboxymethyl Perylene-diimide modified CeCoO3: Enhanced peroxidase activity, synergetic catalytic mechanism and glutathione colorimetric sensing. Talanta, 2020, 218, 121142.	5.5	21
113	Sacrificial template formation of CoMoO ₄ hollow nanostructures constructed by ultrathin nanosheets for robust lithium storage. RSC Advances, 2016, 6, 51710-51715.	3.6	20
114	Hydroquinone colorimetric sensing based on platinum deposited on CdS nanorods as peroxidase mimics. Mikrochimica Acta, 2020, 187, 587.	5.0	20
115	Depolymerization and Demethylation of Kraft Lignin in Molten Salt Hydrate and Applications as an Antioxidant and Metal Ion Scavenger. Journal of Agricultural and Food Chemistry, 2021, 69, 13568-13577.	5.2	20
116	Investigating commercial cellulase performances toward specific biomass recalcitrance factors using reference substrates. Applied Microbiology and Biotechnology, 2014, 98, 4409-4420.	3.6	19
117	Self-assembled 3D Co3O4-graphene frameworks with high lithium storage performance. Ionics, 2014, 20, 1635-1639.	2.4	19
118	New Insights Toward Quantitative Relationships between Lignin Reactivity to Monomers and Their Structural Characteristics. ChemSusChem, 2018, 11, 2146-2155.	6.8	19
119	Dilute Acid Pretreatment of Douglas Fir Forest Residues: Pretreatment Yield, Hemicellulose Degradation, and Enzymatic Hydrolysability. Bioenergy Research, 2015, 8, 42-52.	3.9	18
120	Enhanced peroxidaseâ€like activity of MMTâ€supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H ₂ O ₂ . Applied Organometallic Chemistry, 2019, 33, e4716.	3.5	18
121	Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo ₂ O ₄ spheres. New Journal of Chemistry, 2020, 44, 12002-12008.	2.8	18
122	Pulp mill integration with alcohol-to-jet conversion technology. Fuel Processing Technology, 2020, 201, 106338.	7.2	18
123	A MnO _{<i>x</i>} enhanced atomically dispersed iron–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 5981-5989.	10.3	18
124	Deep Eutectic Solvent Assisted Facile Synthesis of Lignin-Based Cryogel. Macromolecules, 2019, 52, 227-235.	4.8	17
125	A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Science China Materials, 2019, 62, 115-121.	6.3	16
126	Sizeâ€Dependent Phase Transformation of Noble Metal Nanomaterials. Small, 2019, 15, e1903253.	10.0	16

#	Article	IF	CITATIONS
127	Controllable growth of Au nanostructures onto MoS ₂ nanosheets for dual-modal imaging and photothermal–radiation combined therapy. Nanoscale, 2019, 11, 22788-22795.	5.6	16
128	Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield. Bioresource Technology, 2015, 194, 407-410.	9.6	15
129	Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. Biomass and Bioenergy, 2021, 146, 105937.	5.7	15
130	Structural studies of Myceliophthora Thermophila Laccase in the presence of deep eutectic solvents. Enzyme and Microbial Technology, 2021, 150, 109890.	3.2	15
131	Direct Catalytic Conversion of Ethanol to C ₅₊ Ketones: Role of Pd–Zn Alloy on Catalytic Activity and Stability. Angewandte Chemie - International Edition, 2020, 59, 14550-14557.	13.8	14
132	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie - International Edition, 2021, 60, 15556-15562.	13.8	13
133	Evaluation of bio-refinery alternatives to produce sustainable aviation fuels in a sugarcane mill. Fuel, 2022, 321, 123992.	6.4	13
134	Deep Eutectic Solvent-Extracted Lignin as an Efficient Additive for Entirely Biobased Polylactic Acid Composites. ACS Applied Polymer Materials, 2022, 4, 5861-5871.	4.4	13
135	Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study. Langmuir, 2015, 31, 10233-10245.	3.5	11
136	Mesoporous CoFe ₂ O ₄ octahedra with high-capacity and long-life lithium storage properties. RSC Advances, 2016, 6, 18-22.	3.6	11
137	Preparation of Ultrathin Twoâ€Dimensional Ti _{<i>x</i>} Ta _{1â^`<i>x</i>} C _{C_{<i>x</i>}Nanosheets as Highly Efficient Photothermal Agents. Angewandte Chemie, 2017, 129, 7950-7954.}	2.0	11
138	FePt nanoalloys on N-doped graphene paper as integrated electrode towards efficient formic acid electrooxidation. Journal of Applied Electrochemistry, 2018, 48, 95-103.	2.9	11
139	Ruthenium doped Ni2P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Sustainable Energy and Fuels, 2020, 4, 1883-1890.	4.9	11
140	Role of peracetic acid on the disruption of lignin packing structure and its consequence on lignin depolymerisation. Green Chemistry, 2021, 23, 8468-8479.	9.0	11
141	Relating Dicarboxylic Acid Yield to Residual Lignin Structural Features. ACS Sustainable Chemistry and Engineering, 2017, 5, 11695-11705.	6.7	10
142	Perylene diimideâ€modified magnetic γâ€Fe ₂ O ₃ /CeO ₂ nanoparticles as peroxidase mimics for highly sensitive colorimetric detection of Vitamin C. Applied Organometallic Chemistry, 2019, 33, e4884.	3.5	10
143	Organic–Inorganic Composite Nanorods as an Excellent Mimicking Peroxidases for Colorimetric Detection and Evaluation of Antioxidant. ACS Applied Bio Materials, 2020, 3, 2499-2506.	4.6	10
144	Cerium and nitrogen doped CoP nanorod arrays for hydrogen evolution in all pH conditions. Sustainable Energy and Fuels, 2019, 3, 3344-3351.	4.9	9

#	Article	IF	CITATIONS
145	Porphyrin-Modified Cobalt Sulfide as a Developed Noble Metal-free Photoelectrocatalyst toward Methanol Oxidation under Visible Light. Journal of Physical Chemistry C, 2020, 124, 26678-26687.	3.1	8
146	Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers. Langmuir, 2017, 33, 6857-6868.	3.5	7
147	Synthesis of WO _{<i>n</i>} â€WX ₂ (<i>n</i> =2.7, 2.9; X=S, Se) Heterostructures for Highly Efficient Green Quantum Dot Lightâ€Emitting Diodes. Angewandte Chemie, 2017, 129, 10622-10626.	2.0	7
148	Uncovering the active sites and demonstrating stable catalyst for the cost-effective conversion of ethanol to 1-butanol. Green Chemistry, 2021, 23, 8030-8039.	9.0	7
149	Production of Sustainable Aviation Fuels in Petroleum Refineries: Evaluation of New Bio-Refinery Concepts. Frontiers in Energy Research, 2021, 9, .	2.3	6
150	Efficient hydrogen evolution by reconstruction of NiMoO ₄ –CoO <i>via</i> Mo recombination. Inorganic Chemistry Frontiers, 0, , .	6.0	6
151	One-pot synthesis of ferromagnetic Fe2.25W0.75O4 nanoparticles as a magnetically recyclable photocatalyst. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	5
152	Chapter 6. Oxidative Valorization of Lignin. RSC Energy and Environment Series, 2018, , 128-158.	0.5	5
153	Modify Existing Pulp and Paper Mills for Biorefinery Operations. ACS Symposium Series, 2011, , 395-408.	0.5	4
154	Hierarchical NiCo2â	3.7	4
155	A Multi-Level Analysis Approach to Measuring Variations in Biomass Recalcitrance of Douglas Fir Tree Samples. Bioenergy Research, 2014, 7, 1411-1420.	3.9	3
156	The Alcoholâ€ŧoâ€Jet Conversion Pathway for Dropâ€In Biofuels: Technoâ€Economic Evaluation. ChemSusChem, 2018, 11, 3692-3692.	6.8	2
157	Doping-induced phase transition enables better electrocatalysts. Science China Materials, 2018, 61, 1623-1624.	6.3	2
158	Exonuclease III-Regulated Target Cyclic Amplification-Based Single Nucleotide Polymorphism Detection Using Ultrathin Ternary Chalcogenide Nanosheets. Frontiers in Chemistry, 2019, 7, 844.	3.6	2
159	Rücktitelbild: Direct Catalytic Conversion of Ethanol to C ₅₊ Ketones: Role of Pd–Zn Alloy on Catalytic Activity and Stability (Angew. Chem. 34/2020). Angewandte Chemie, 2020, 132, 14802-14802.	2.0	1
160	Dataset for Techno-Economic Analysis of Catalytic Hydrothermolysis Pathway for Jet Fuel Production. Data in Brief, 2021, 39, 107514.	1.0	1
161	Genetic Parameters of Factors Affecting the Biomass Recalcitrance of Douglas Fir Trees. Bioenergy Research, 2016, 9, 731-739.	3.9	0
162	Direct Catalytic Conversion of Ethanol to C 5+ Ketones: Role of Pd–Zn Alloy on Catalytic Activity and Stability. Angewandte Chemie, 2020, 132, 14658-14665.	2.0	0

#	Article	IF	CITATIONS
163	General Synthesis of Ordered Mesoporous Carbonaceous Hybrid Nanostructures with Molecularly Dispersed Polyoxometallates. Angewandte Chemie, 2021, 133, 15684-15690.	2.0	0