
## **Dmitriy Zamarin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2439342/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Phase II study of enzalutamide in androgen receptor positive, recurrent, high- and low-grade serous ovarian cancer. Gynecologic Oncology, 2022, 164, 12-17.                                               | 1.4  | 6         |
| 2  | Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1  | 33        |
| 3  | Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.                                                                    | 28.9 | 223       |
| 4  | Targeting Ribonucleotide Reductase Induces Synthetic Lethality in PP2A-Deficient Uterine Serous<br>Carcinoma. Cancer Research, 2022, 82, 721-733.                                                         | 0.9  | 4         |
| 5  | Recurrent <i>WWTR1</i> <scp>S89W</scp> mutations and Hippo pathway deregulation in clear cell carcinomas of the cervix. Journal of Pathology, 2022, 257, 635-649.                                         | 4.5  | 2         |
| 6  | Beyond T Cells: IgA Incites Immune Recognition in Endometrial Cancer. Cancer Research, 2022, 82, 766-768.                                                                                                 | 0.9  | 4         |
| 7  | Fundamental immune–oncogenicity trade-offs define driver mutationÂfitness. Nature, 2022, 606, 172-179.                                                                                                    | 27.8 | 23        |
| 8  | Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer.<br>Cancer Discovery, 2022, 12, 1904-1921.                                                            | 9.4  | 25        |
| 9  | Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: a case series.<br>International Journal of Gynecological Cancer, 2022, , ijgc-2022-003430.                                     | 2.5  | 5         |
| 10 | Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naÃ <sup>-</sup> ve or experienced for immune checkpoint blockade. , 2022, 10, e004076.              |      | 30        |
| 11 | Abstract CT218: First-in-human trial of intravenous MEDI9253, an oncolytic virus, in combination with durvalumab in patients with advanced solid tumors. Cancer Research, 2022, 82, CT218-CT218.          | 0.9  | 0         |
| 12 | Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nature Cancer, 2022, 3, 723-733.                                                     | 13.2 | 82        |
| 13 | Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nature Genetics, 2022, 54, 996-1012.                                                               | 21.4 | 30        |
| 14 | Recommendations for Testing and Treating Outpatient Cancer Patients in the Era of COVID-19. Journal of the National Cancer Institute, 2021, 113, 820-822.                                                 | 6.3  | 7         |
| 15 | A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecologic Oncology, 2021, 160, 71-76.                                 | 1.4  | 9         |
| 16 | Immunotherapy and radiation therapy sequencing: State of the data on timing, efficacy, and safety.<br>Cancer, 2021, 127, 1553-1567.                                                                       | 4.1  | 33        |
| 17 | Abstract PO068: Distinct immune signatures predicting clinical response to PD-1 blockade therapy in gynecological cancers revealed by high-dimensional immune profiling. , 2021, , .                      |      | 0         |
| 18 | Targeting galectin-3 with a high-affinity antibody for inhibition of high-grade serous ovarian cancer and other MUC16/CA-125-expressing malignancies. Scientific Reports, 2021, 11, 3718.                 | 3.3  | 18        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Expanding Our Impact in Cervical Cancer Treatment: Novel Immunotherapies, Radiation Innovations,<br>and Consideration of Rare Histologies. American Society of Clinical Oncology Educational Book /<br>ASCO American Society of Clinical Oncology Meeting, 2021, 41, 252-263. | 3.8  | 8         |
| 20 | Challenges and Opportunities for Immunotherapy in Gynecologic Cancer. Advances in Oncology, 2021, 1, 113-123.                                                                                                                                                                 | 0.2  | 0         |
| 21 | Standardized Uptake Value Illuminates Tumor Inflammation and Treatment Response. Clinical Cancer<br>Research, 2021, 27, clincanres.1350.2021.                                                                                                                                 | 7.0  | 0         |
| 22 | Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecologic Oncology, 2021, 161, 535-544.                                                                                                                        | 1.4  | 16        |
| 23 | Molecular characterization of high-grade serous ovarian cancers occurring in younger and older women. Gynecologic Oncology, 2021, 161, 545-552.                                                                                                                               | 1.4  | 8         |
| 24 | Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discovery, 2021, 11, 1896-1912.                                                                                                                                                                              | 9.4  | 71        |
| 25 | Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell, 2021, 184, 4032-4047.e31.                                                                                                                                                                        | 28.9 | 131       |
| 26 | Tim-4+ cavity-resident macrophages impair anti-tumor CD8+ TÂcell immunity. Cancer Cell, 2021, 39,<br>973-988.e9.                                                                                                                                                              | 16.8 | 93        |
| 27 | Pattern of disease and response to pembrolizumab in recurrent cervical cancer. Gynecologic<br>Oncology Reports, 2021, 37, 100831.                                                                                                                                             | 0.6  | 4         |
| 28 | Rejuvenating dysfunctional TÂcells in ovarian cancer: CD28 is the license to kill. Cancer Cell, 2021, 39,<br>1567-1569.                                                                                                                                                       | 16.8 | 3         |
| 29 | Geometric network analysis provides prognostic information in patients with high grade serous carcinoma of the ovary treated with immune checkpoint inhibitors. Npj Genomic Medicine, 2021, 6, 99.                                                                            | 3.8  | 13        |
| 30 | Preparation of single cells from tumors for single-cell RNA sequencing. Methods in Enzymology, 2020, 632, 295-308.                                                                                                                                                            | 1.0  | 11        |
| 31 | Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary.<br>Nature Communications, 2020, 11, 44.                                                                                                                                     | 12.8 | 34        |
| 32 | Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer. , 2020, 8, e001126.                                                                                                                                                 |      | 54        |
| 33 | Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Scientific Reports, 2020, 10, 17769.                                                                        | 3.3  | 35        |
| 34 | Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers, 2020, 12, 3552.                                                                                                                                                                                    | 3.7  | 53        |
| 35 | Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem<br>Cells via PDGF Signaling. Cancers, 2020, 12, 2063.                                                                                                                              | 3.7  | 43        |
| 36 | Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nature<br>Communications, 2020, 11, 4011.                                                                                                                                           | 12.8 | 198       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist selicrelumab in advanced solid tumor patients. , 2020, 8, e001153.                                                                           |      | 37        |
| 38 | Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nature Genetics, 2020, 52, 582-593.                                                                                | 21.4 | 136       |
| 39 | Utility of serum CA-125 monitoring in patients with ovarian cancer undergoing immune checkpoint inhibitor therapy. Gynecologic Oncology, 2020, 158, 303-308.                                                                     | 1.4  | 4         |
| 40 | <i>BRCA</i> Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response<br>to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precision Oncology, 2020, 4,<br>665-679.                      | 3.0  | 29        |
| 41 | Safety, immunogenicity, and clinical efficacy of durvalumab in combination with folate receptor alpha vaccine TPIV200 in patients with advanced ovarian cancer: a phase II trial. , 2020, 8, e000829.                            |      | 34        |
| 42 | Mogamulizumab in Combination with Durvalumab or Tremelimumab in Patients with Advanced Solid<br>Tumors: A Phase I Study. Clinical Cancer Research, 2020, 26, 4531-4541.                                                          | 7.0  | 46        |
| 43 | A phase 1 dose-escalation study of intraperitoneal cisplatin, intravenous/intraperitoneal paclitaxel,<br>bevacizumab, and olaparib for newly diagnosed ovarian cancer. Gynecologic Oncology, 2020, 157,<br>214-221.              | 1.4  | 2         |
| 44 | Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent<br>Ovarian Cancer: An NRG Oncology Study. Journal of Clinical Oncology, 2020, 38, 1814-1823.                                  | 1.6  | 202       |
| 45 | Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.                                                                                                             |      | 610       |
| 46 | Pan-cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct<br>Genomic and Clinical Characteristics. European Urology, 2020, 78, 671-679.                                                     | 1.9  | 72        |
| 47 | Design and Production of Newcastle Disease Virus for Intratumoral Immunomodulation. Methods in<br>Molecular Biology, 2020, 2058, 133-154.                                                                                        | 0.9  | 15        |
| 48 | Anti-PD-L1 (atezolizumab) as an immune primer and concurrently with extended-field<br>chemoradiotherapy for node-positive locally advanced cervical cancer. International Journal of<br>Gynecological Cancer, 2020, 30, 701-704. | 2.5  | 24        |
| 49 | TOX is a critical regulator of tumour-specific T cell differentiation. Nature, 2019, 571, 270-274.                                                                                                                               | 27.8 | 697       |
| 50 | Immunomodulatory Drugs Encoded by Oncolytic Viruses: Is the Whole Greater Than the Sum?.<br>Molecular Therapy, 2019, 27, 1874-1877.                                                                                              | 8.2  | 0         |
| 51 | Subsequent therapies and survival after immunotherapy in recurrent ovarian cancer. Gynecologic Oncology, 2019, 155, 51-57.                                                                                                       | 1.4  | 14        |
| 52 | Role of Immunotherapy in the Management of Locally Advanced and Recurrent/Metastatic Cervical Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 91-97.                                              | 4.9  | 47        |
| 53 | Computed Tomography–Derived Radiomic Metrics Can Identify Responders to Immunotherapy in<br>Ovarian Cancer. JCO Precision Oncology, 2019, 3, 1-13.                                                                               | 3.0  | 16        |
| 54 | Early disease progression and treatment discontinuation in patients with advanced ovarian cancer receiving immune checkpoint blockade. Gynecologic Oncology, 2019, 152, 251-258.                                                 | 1.4  | 33        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Virus, Vessel, Victory: A Novel Approach to Tumor Killing. Clinical Cancer Research, 2019, 25, 1446-1448.                                                                                                                          | 7.0  | 3         |
| 56 | A phase II trial of durvalumab with or without tremelimumab in patients with persistent or recurrent<br>endometrial carcinoma and endometrial carcinosarcoma Journal of Clinical Oncology, 2019, 37,<br>5582-5582.                 | 1.6  | 25        |
| 57 | Adjuvant chemotherapy in patients with operable granulosa cell tumors of the ovary: a surveillance, epidemiology, and end results cohort study. Cancer Medicine, 2018, 7, 2280-2287.                                               | 2.8  | 21        |
| 58 | Immune-Active Microenvironment in Small Cell Carcinoma of the Ovary, Hypercalcemic Type: Rationale<br>for Immune Checkpoint Blockade. Journal of the National Cancer Institute, 2018, 110, 787-790.                                | 6.3  | 123       |
| 59 | Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Molecular<br>Therapy, 2018, 26, 1008-1019.                                                                                                    | 8.2  | 103       |
| 60 | Vanadium: A Panacea for Resistance to Oncolytic Immunotherapy?. Molecular Therapy, 2018, 26, 9-12.                                                                                                                                 | 8.2  | 6         |
| 61 | Combination Immune Checkpoint Blockade Strategies to Maximize Immune Response in Gynecological<br>Cancers. Current Oncology Reports, 2018, 20, 94.                                                                                 | 4.0  | 43        |
| 62 | IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 2018, 562, 423-428.                                                                                                            | 27.8 | 252       |
| 63 | Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clinical<br>Cancer Research, 2018, 24, 5939-5947.                                                                                       | 7.0  | 100       |
| 64 | PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. Journal of Clinical Investigation, 2018, 128, 1413-1428.                                                                                           | 8.2  | 111       |
| 65 | A phase I study of concomitant galinpepimut-s (CPS) in combination with nivolumab (nivo) in patients<br>(pts) with WT1+ ovarian cancer (OC) in second or third remission Journal of Clinical Oncology, 2018,<br>36, 5553-5553.     | 1.6  | 5         |
| 66 | Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget, 2018, 9, 28702-28716.                                                                                                                 | 1.8  | 27        |
| 67 | Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nature Communications, 2017, 8, 14340.                                                          | 12.8 | 110       |
| 68 | Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic<br>antitumor immunity via STING and Batf3-dependent dendritic cells. Science Immunology, 2017, 2, .                                    | 11.9 | 101       |
| 69 | Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an<br>Ovarian Cancer Patient. Cell, 2017, 170, 927-938.e20.                                                                                | 28.9 | 368       |
| 70 | Validation of Anti-Mouse PDL-1 Goat Polyclonal Antibody Staining with Mouse PDL-1 In Situ<br>Hybridization on Adjacent Sections of Cell Pellets and Mouse Tumors. Methods in Molecular Biology,<br>2017, 1554, 253-262.            | 0.9  | 2         |
| 71 | Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine.<br>Gynecologic Oncology, 2016, 141, 86-94.                                                                                     | 1.4  | 26        |
| 72 | Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can<br>reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors.<br>EBioMedicine, 2016, 6, 50-58. | 6.1  | 113       |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Immune checkpoint modulation: Rational design of combination strategies. , 2015, 150, 23-32.                                                                                                                                                  |      | 76        |
| 74 | The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.                                                                                                                                                            | 5.0  | 41        |
| 75 | Cancer therapy with Newcastle disease virus: rationale for new immunotherapeutic combinations.<br>Clinical Investigation, 2015, 5, 75-87.                                                                                                     | 0.0  | 1         |
| 76 | Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Reports, 2015, 13, 412-424.                                                                                                                                 | 6.4  | 387       |
| 77 | Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data. Human Gene<br>Therapy, 2015, 26, 538-549.                                                                                                                 | 2.7  | 19        |
| 78 | Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint<br>Blockade Immunotherapy. Science Translational Medicine, 2014, 6, 226ra32.                                                                         | 12.4 | 590       |
| 79 | Harnessing the immune system for cancer therapy. Current Opinion in Oncology, 2014, 26, 600-607.                                                                                                                                              | 2.4  | 25        |
| 80 | Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer.<br>Molecular Therapy - Oncolytics, 2014, 1, 14004.                                                                                          | 4.4  | 33        |
| 81 | Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy<br>targeting CTLA-4. Journal of Experimental Medicine, 2013, 210, 1389-1402.                                                                 | 8.5  | 562       |
| 82 | Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiology, 2012, 7, 347-367.                                                                                                               | 2.0  | 185       |
| 83 | Reactive Polyclonal Gammopathy Associated with Polyclonal Plasmacytosis Is Common in Patients<br>with Multiple Myeloma Receiving Prolonged Lenalidomide Therapy: A Retrospective Study of 104<br>Patients. Blood, 2012, 120, 4033-4033.       | 1.4  | 0         |
| 84 | Oncolytic Specificity of Newcastle Disease Virus Is Mediated by Selectivity for Apoptosis-Resistant<br>Cells. Journal of Virology, 2011, 85, 6015-6023.                                                                                       | 3.4  | 119       |
| 85 | Therapeutic effects of a fusogenic newcastle disease virus in treating head and neck cancer. Head and Neck, 2011, 33, 1394-1399.                                                                                                              | 2.0  | 33        |
| 86 | Polyclonal IgA Gammopathy Associated with Polyclonal Plasmacytosis in Patients Receiving<br>Lenalidomide Maintenance Therapy. Blood, 2011, 118, 5130-5130.                                                                                    | 1.4  | 7         |
| 87 | Patterns of Disease Relapse and Progression in Patients with Multiple Myeloma After First Line Therapy<br>with Autologous Stem Cell Transplantation: Implications for Patient Monitoring After<br>Transplantation. Blood, 2011, 118, 825-825. | 1.4  | Ο         |
| 88 | Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus<br>[NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. Journal of Molecular Medicine, 2010, 88,<br>589-596.                                | 3.9  | 49        |
| 89 | Detection of Free Peritoneal Cancer Cells in Gastric Cancer Using Cancer-Specific Newcastle Disease<br>Virus. Journal of Gastrointestinal Surgery, 2010, 14, 7-14.                                                                            | 1.7  | 11        |
| 90 | Genetically Engineered Oncolytic Newcastle Disease Virus Effectively Induces Sustained Remission of<br>Malignant Pleural Mesothelioma. Molecular Cancer Therapeutics, 2010, 9, 2761-2769.                                                     | 4.1  | 33        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Enhancement of Oncolytic Properties of Recombinant Newcastle Disease Virus Through Antagonism<br>of Cellular Innate Immune Responses. Molecular Therapy, 2009, 17, 697-706.                | 8.2 | 84        |
| 92 | Influenza A Virus PB1-F2 Protein Contributes to Viral Pathogenesis in Mice. Journal of Virology, 2006,<br>80, 7976-7983.                                                                   | 3.4 | 276       |
| 93 | Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1. PLoS<br>Pathogens, 2005, 1, e4.                                                                    | 4.7 | 306       |
| 94 | Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like<br>Receptor 3-Triggered Signaling Pathways. Journal of Virology, 2005, 79, 6078-6088. | 3.4 | 174       |
| 95 | Attenuation of Equine Influenza Viruses through Truncations of the NS1 Protein. Journal of Virology, 2005, 79, 8431-8439.                                                                  | 3.4 | 220       |
| 96 | A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding<br>Specificity. Journal of Virology, 2005, 79, 11533-11536.                                | 3.4 | 356       |
| 97 | Differential IL-10R1 Expression Plays a Critical Role in IL-10-Mediated Immune Regulation. Journal of<br>Immunology, 2001, 167, 6884-6892.                                                 | 0.8 | 85        |