
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2439280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protection of Quiescence and Longevity of IgG Memory B Cells by Mitochondrial Autophagy. Journal of Immunology, 2022, 208, 1085-1098.	0.8	8
2	Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. Journal of Leukocyte Biology, 2022, 112, 1245-1259.	3.3	7
3	Regulation of Mitochondrial Homeostasis and Metabolic Programming in Memory B cells by Mitophagy. , 2022, 1, 165-169.		0
4	Dependence on Autophagy for Autoreactive Memory B Cells in the Development of Pristane-Induced Lupus. Frontiers in Immunology, 2021, 12, 701066.	4.8	7
5	A recombinant bovine adenoviral mucosal vaccine expressing mycobacterial antigen-85B generates robust protection against tuberculosis in mice. Cell Reports Medicine, 2021, 2, 100372.	6.5	16
6	Clearance of HIV infection by selective elimination of host cells capable of producing HIV. Nature Communications, 2020, 11, 4051.	12.8	16
7	Maintenance of Germinal Center B Cells by Caspase-9 through Promotion of Apoptosis and Inhibition of Necroptosis. Journal of Immunology, 2020, 205, 113-120.	0.8	7
8	Metabolic Reprogramming in CD8+ T Cells During Acute Viral Infections. Frontiers in Immunology, 2020, 11, 1013.	4.8	27
9	NIX-Mediated Mitophagy Promotes Effector Memory Formation in Antigen-Specific CD8+ T Cells. Cell Reports, 2019, 29, 1862-1877.e7.	6.4	26
10	Citreoviridin induces myocardial apoptosis through PPAR-Î ³ -mTORC2-mediated autophagic pathway and the protective effect of thiamine and selenium. Chemico-Biological Interactions, 2019, 311, 108795.	4.0	21
11	Pancreatic islet-autonomous effect of arsenic on insulin secretion through endoplasmic reticulum stress-autophagy pathway. Food and Chemical Toxicology, 2018, 111, 19-26.	3.6	29
12	The role of oxidative stress in DNA damage in pancreatic β cells induced by di-(2-ethylhexyl) phthalate. Chemico-Biological Interactions, 2017, 265, 8-15.	4.0	45
13	Taurine Normalizes the Levels of Se, Cu, Fe in Mouse Liver and Kidney Exposed to Arsenic Subchronically. Advances in Experimental Medicine and Biology, 2017, 975 Pt 2, 843-853.	1.6	4
14	Citreoviridin induces triglyceride accumulation in hepatocytes through inhibiting PPAR-α inÂvivo and inÂvitro. Chemico-Biological Interactions, 2017, 273, 212-218.	4.0	6
15	Associated factors of self-reported psychopathology and health related quality of life among men who have sex with men (MSM) with HIV/AIDS in Dalian, China: a pilot study. Infectious Diseases of Poverty, 2016, 5, 108.	3.7	16
16	6-Gingerol induces autophagy to protect HUVECs survival from apoptosis. Chemico-Biological Interactions, 2016, 256, 249-256.	4.0	41
17	Perfluorooctane Sulfonate Induces Autophagy-Dependent Apoptosis through Spinster 1-Mediated lysosomal-Mitochondrial Axis and Impaired Mitophagy. Toxicological Sciences, 2016, 153, 198-211.	3.1	22
18	Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway. Biochemical and Biophysical Research Communications, 2016, 477, 781-785.	2.1	24

#	Article	IF	CITATIONS
19	Autophagy in Host Defense Against Viruses. , 2016, , 185-199.		0
20	Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway. Biochimie, 2016, 123, 1-6.	2.6	22
21	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
22	Citreoviridin Induces Autophagy-Dependent Apoptosis through Lysosomal-Mitochondrial Axis in Human Liver HepG2 Cells. Toxins, 2015, 7, 3030-3044.	3.4	25
23	Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells. Toxicon, 2015, 95, 30-37.	1.6	22
24	Requirement for Autophagy in the Long-Term Persistence but not Initial Formation of Memory B cells. Journal of Immunology, 2015, 194, 2607-2615.	0.8	55
25	Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line. Environmental Toxicology and Pharmacology, 2015, 39, 1099-1106.	4.0	34
26	Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells. Environmental Toxicology and Pharmacology, 2015, 40, 792-799.	4.0	25
27	Low-level sodium arsenite induces apoptosis through inhibiting TrxR activity in pancreatic β-cells. Environmental Toxicology and Pharmacology, 2015, 40, 486-491.	4.0	22
28	Sterigmatocystin-induced oxidative DNA damage in human liver-derived cell line through lysosomal damage. Toxicology in Vitro, 2015, 29, 1-7.	2.4	55
29	Role of Nix in the Maturation of Erythroid Cells through Mitochondrial Autophagy. , 2014, , 127-137.		1
30	Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nature Medicine, 2014, 20, 503-510.	30.7	173
31	Bisphenol A induces oxidative stress-associated DNA damage in INS-1 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 769, 29-33.	1.7	101
32	Cleavage of Anti-Apoptotic Bcl-2 Family Members after TCR Stimulation Contributes to the Decision between T Cell Activation and Apoptosis. Journal of Immunology, 2013, 190, 168-173.	0.8	17
33	Analyses of Programmed Cell Death in Dendritic Cells. Methods in Molecular Biology, 2013, 979, 51-63.	0.9	0
34	Critical role for perforin and Fas-dependent killing of dendritic cells in the control of inflammation. Blood, 2012, 119, 127-136.	1.4	50
35	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
36	Promotion of Caspase Activation by Caspase-9-mediated Feedback Amplification of Mitochondrial Damage. Journal of Clinical & Cellular Immunology, 2012, 03, .	1.5	24

#	Article	IF	CITATIONS
37	Regulation of Immune Responses by Spontaneous and T cell-mediated Dendritic Cell Death. Journal of Clinical & Cellular Immunology, 2012, 01, .	1.5	5
38	Immune Regulation through Mitochondrion-Dependent Dendritic Cell Death Induced by T Regulatory Cells. Journal of Immunology, 2011, 187, 5684-5692.	0.8	12
39	Programmed cell death of dendritic cells in immune regulation. Immunological Reviews, 2010, 236, 11-27.	6.0	54
40	Delineation of the caspase-9 signaling cascade. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 177-186.	4.9	61
41	Essential role for Nix in autophagic maturation of erythroid cells. Nature, 2008, 454, 232-235.	27.8	1,008
42	Selective mitochondrial autophagy during erythroid maturation. Autophagy, 2008, 4, 926-928.	9.1	46
43	Caspase-9-induced Mitochondrial Disruption through Cleavage of Anti-apoptotic BCL-2 Family Members. Journal of Biological Chemistry, 2007, 282, 33888-33895.	3.4	92
44	Deficiency of Bim in dendritic cells contributes to overactivation of lymphocytes and autoimmunity. Blood, 2007, 109, 4360-4367.	1.4	96
45	Regulation of the lifespan in dendritic cell subsets. Molecular Immunology, 2007, 44, 2558-2565.	2.2	72
46	Essential Role of Pro-Apoptotic Mechanisms for Production of Normal Erythrocytes and Prevention of Hemolysis Blood, 2007, 110, 426-426.	1.4	3
47	Dendritic Cell Apoptosis in the Maintenance of Immune Tolerance. Science, 2006, 311, 1160-1164.	12.6	293
48	Two Waves of Mitochondrion Disruption in Apoptosis: Implications for the Design of Anti-Cancer Drugs Blood, 2006, 108, 3896-3896.	1.4	0
49	Autoimmunity Caused by Cell Type-Specific Deficiency in Apoptosis Blood, 2005, 106, 3913-3913.	1.4	0
50	Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood, 2004, 103, 2009-2018.	1.4	116
51	Characterization and Analysis of the ProximalJanus Kinase 3Promoter. Journal of Immunology, 2003, 170, 6057-6064.	0.8	29
52	Activation of Initiator Caspases through a Stable Dimeric Intermediate. Journal of Biological Chemistry, 2002, 277, 50761-50767.	3.4	59
53	Initiator caspases in apoptosis signaling pathways. Apoptosis: an International Journal on Programmed Cell Death, 2002, 7, 313-319.	4.9	394
54	Unexpected Effects of FERM Domain Mutations on Catalytic Activity of Jak3. Molecular Cell, 2001, 8, 959-969.	9.7	127

#	Article	IF	CITATIONS
55	Complex Effects of Naturally Occurring Mutations in the JAK3 Pseudokinase Domain: Evidence for Interactions between the Kinase and Pseudokinase Domains. Molecular and Cellular Biology, 2000, 20, 947-956.	2.3	125
56	STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Letters, 2000, 477, 55-61.	2.8	61
57	Activation of p53 Tumor Suppressor by Hepatitis C Virus Core Protein. Virology, 1999, 264, 134-141.	2.4	131
58	Advances in cytokine signaling: the role of Jaks and STATs. Transplantation Proceedings, 1999, 31, 1482-1487.	0.6	11
59	Janus kinases and their role in growth and disease. Life Sciences, 1999, 64, 2173-2186.	4.3	71
60	Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO Journal, 1999, 18, 1549-1558.	7.8	103
61	Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13850-13855.	7.1	109
62	Interaction of Transcription Factors RFX1 and MIBP1 with the $\hat{1}^3$ Motif of the Negative Regulatory Element of the Hepatitis B Virus Core Promoter. Virology, 1997, 227, 515-518.	2.4	25
63	Key Role of a CCAAT Element in Regulating Hepatitis B Virus Surface Protein Expression. Virology, 1995, 206, 1155-1158.	2.4	42
64	Cell Type-Dependent Regulation of the Activity of the Negative Regulatory Element of the Hepatitis B Virus Core Promoter. Virology, 1995, 214, 198-206.	2.4	26
65	Regulation of Hepatitis B Virus ENI Enhancer Activity by Hepatocyte-Enriched Transcription Factor HNF3. Virology, 1994, 205, 127-132.	2.4	60
66	Hepatocyte-specific expression of the hepatitis B virus core promoter depends on both positive and negative regulation Molecular and Cellular Biology, 1993, 13, 443-448.	2.3	104