Kerrie A Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438805/publications.pdf

Version: 2024-02-01

180 14,936 61 115 g-index

190 190 190 15061

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	The use of focus group discussion methodology: Insights from two decades of application in conservation. Methods in Ecology and Evolution, 2018, 9, 20-32.	5.2	1,056
2	Conservation planning in a changing world. Trends in Ecology and Evolution, 2007, 22, 583-592.	8.7	842
3	Is conservation triage just smart decision making?. Trends in Ecology and Evolution, 2008, 23, 649-654.	8.7	501
4	Prioritizing global conservation efforts. Nature, 2006, 440, 337-340.	27.8	497
5	Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environmental Modelling and Software, 2009, 24, 1513-1521.	4.5	436
6	Biodiversity Conservation Planning Tools: Present Status and Challenges for the Future. Annual Review of Environment and Resources, 2006, 31, 123-159.	13.4	427
7	Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecology Letters, 2006, 9, 1136-1145.	6.4	403
8	Conserving Biodiversity Efficiently: What to Do, Where, and When. PLoS Biology, 2007, 5, e223.	5.6	398
9	Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems and Environment, 2006, 114, 369-386.	5. 3	345
10	Maximizing return on investment in conservation. Biological Conservation, 2007, 139, 375-388.	4.1	302
11	Measuring and Incorporating Vulnerability into Conservation Planning. Environmental Management, 2005, 35, 527-543.	2.7	246
12	Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 2005, 122, 99-112.	4.1	246
13	Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biological Conservation, 2010, 143, 565-575.	4.1	220
14	Setting Conservation Priorities. Annals of the New York Academy of Sciences, 2009, 1162, 237-264.	3.8	206
15	Making decisions for managing ecosystem services. Biological Conservation, 2015, 184, 229-238.	4.1	192
16	Harnessing Carbon Payments to Protect Biodiversity. Science, 2009, 326, 1368-1368.	12.6	190
17	Replacing underperforming protected areas achieves better conservation outcomes. Nature, 2010, 466, 365-367.	27.8	188
18	Incorporating ecological and evolutionary processes into continentalâ€scale conservation planning. Ecological Applications, 2009, 19, 206-217.	3.8	187

#	Article	IF	Citations
19	A methodological guide to using and reporting on interviews in conservation science research. Methods in Ecology and Evolution, 2018, 9, 10-19.	5.2	180
20	Incorporating climate change into ecosystem service assessments and decisions: a review. Global Change Biology, 2017, 23, 28-41.	9.5	174
21	Cost-effective global conservation spending is robust to taxonomic group. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6498-6501.	7.1	170
22	Major Conservation Policy Issues for Biodiversity in Oceania. Conservation Biology, 2009, 23, 834-840.	4.7	160
23	Delaying conservation actions for improved knowledge: how long should we wait?. Ecology Letters, 2009, 12, 293-301.	6.4	157
24	Hitting the target and missing the point: targetâ€based conservation planning in context. Conservation Letters, 2009, 2, 4-11.	5.7	155
25	Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting. PLoS ONE, 2008, 3, e2586.	2.5	153
26	Riskâ€sensitive planning for conserving coral reefs under rapid climate change. Conservation Letters, 2018, 11, e12587.	5.7	151
27	Carbon payments as a safeguard for threatened tropical mammals. Conservation Letters, 2009, 2, 123-129.	5 . 7	141
28	Scale Mismatches, Conservation Planning, and the Value of Socialâ€Network Analyses. Conservation Biology, 2013, 27, 35-44.	4.7	139
29	Conservation Research Is Not Happening Where It Is Most Needed. PLoS Biology, 2016, 14, e1002413.	5.6	134
30	Diminishing return on investment for biodiversity data in conservation planning. Conservation Letters, 2008, 1, 190-198.	5.7	128
31	Integrating plant―and animalâ€based perspectives for more effective restoration of biodiversity. Frontiers in Ecology and the Environment, 2016, 14, 37-45.	4.0	126
32	The role of socio-economic factors in planning and managing urban ecosystem services. Ecosystem Services, 2018, 31, 102-110.	5.4	119
33	Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Development, 2019, 120, 105-117.	4.9	117
34	Turning up the heat on hotspots. Nature, 2005, 436, 919-920.	27.8	115
35	Cost-effective priorities for global mammal conservation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11446-11450.	7.1	111
36	Conserving biodiversity in production landscapes. Ecological Applications, 2010, 20, 1721-1732.	3.8	109

#	Article	IF	CITATIONS
37	Community forest management in Indonesia: Avoided deforestation in the context of anthropogenic and climate complexities. Global Environmental Change, 2017, 46, 60-71.	7.8	109
38	Optimal restoration: accounting for space, time and uncertainty. Journal of Applied Ecology, 2011, 48, 715-725.	4.0	106
39	How just and just how? A systematic review of social equity in conservation research. Environmental Research Letters, 2018, 13, 053001.	5.2	103
40	Avoiding bioâ€perversity from carbon sequestration solutions. Conservation Letters, 2012, 5, 28-36.	5.7	101
41	Achieving social-ecological fit through bottom-up collaborative governance: an empirical investigation. Ecology and Society, 2015, 20, .	2.3	100
42	Supply of carbon sequestration and biodiversity services from Australia's agricultural land under global change. Global Environmental Change, 2014, 28, 166-181.	7.8	97
43	Global Demand for Natural Resources Eliminated More Than 100,000 Bornean Orangutans. Current Biology, 2018, 28, 761-769.e5.	3.9	94
44	Motivations, success, and cost of coral reef restoration. Restoration Ecology, 2019, 27, 981-991.	2.9	92
45	Achieving Crossâ€Scale Collaboration for Large Scale Conservation Initiatives. Conservation Letters, 2015, 8, 107-117.	5.7	88
46	A vulnerability analysis of the temperate forests of south central Chile. Biological Conservation, 2005, 122, 9-21.	4.1	86
47	Finite conservation funds mean triage is unavoidable. Trends in Ecology and Evolution, 2009, 24, 183-184.	8.7	86
48	Farmers' willingness to provide ecosystem services and effects of their spatial distribution. Ecological Economics, 2013, 92, 78-86.	5.7	85
49	Evaluating the effectiveness of palm oil certification in delivering multiple sustainability objectives. Environmental Research Letters, 2018, 13, 064032.	5.2	85
50	Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Diversity and Distributions, 2011, 17, 1225-1233.	4.1	84
51	Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nature Communications, 2015, 6, 6819.	12.8	83
52	How do marine and coastal citizen science experiences foster environmental engagement?. Journal of Environmental Management, 2018, 213, 409-416.	7.8	81
53	To boldly go where no volunteer has gone before: predicting volunteer activity to prioritize surveys at the landscape scale. Diversity and Distributions, 2013, 19, 465-480.	4.1	80
54	Unexpected outcomes of invasive predator control: the importance of evaluating conservation management actions. Animal Conservation, 2012, 15, 319-328.	2.9	79

#	Article	IF	CITATIONS
55	Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs. PLoS ONE, 2010, 5, e12431.	2.5	78
56	Carbon farming via assisted natural regeneration as a cost-effective mechanism for restoring biodiversity in agricultural landscapes. Environmental Science and Policy, 2015, 50, 114-129.	4.9	74
57	Oil palm–community conflict mapping in Indonesia: A case for better community liaison in planning for development initiatives. Applied Geography, 2017, 78, 33-44.	3.7	74
58	Equity tradeâ€offs in conservation decision making. Conservation Biology, 2018, 32, 294-303.	4.7	73
59	Protecting Biodiversity when Money Matters: Maximizing Return on Investment. PLoS ONE, 2008, 3, e1515.	2.5	72
60	Incorporating the Effects of Socioeconomic Uncertainty into Priority Setting for Conservation Investment. Conservation Biology, 2007, 21, 1463-1474.	4.7	70
61	Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE, 2020, 15, e0236399.	2.5	70
62	Wilderness and future conservation priorities in Australia. Diversity and Distributions, 2009, 15, 1028-1036.	4.1	66
63	Safeguarding Biodiversity and Ecosystem Services in the Little Karoo, South Africa. Conservation Biology, 2010, 24, 1021-1030.	4.7	66
64	Scenarios for land use and ecosystem services under global change. Ecosystem Services, 2017, 25, 56-68.	5.4	66
65	Achieving the promise of integration in social-ecological research: a review and prospectus. Ecology and Society, 2018, 23, .	2.3	66
66	Conservation Planning with Multiple Organizations and Objectives. Conservation Biology, 2010, 25, no-no.	4.7	65
67	Heterogeneous impacts of community forestry on forest conservation and poverty alleviation: Evidence from Indonesia. People and Nature, 2019, 1, 204-219.	3.7	64
68	Improving the Key Biodiversity Areas Approach for Effective Conservation Planning. BioScience, 2007, 57, 256-261.	4.9	62
69	Restoring degraded tropical forests for carbon and biodiversity. Environmental Research Letters, 2014, 9, 114020.	5 . 2	62
70	Conservation Planning when Costs Are Uncertain. Conservation Biology, 2010, 24, 1529-1537.	4.7	61
71	What motivates ecological restoration?. Restoration Ecology, 2017, 25, 832-843.	2.9	60
72	Enhancing feasibility: Incorporating a socio-ecological systems framework into restoration planning. Environmental Science and Policy, 2016, 64, 83-92.	4.9	59

#	Article	IF	CITATIONS
73	Priorities and Motivations of Marine Coastal Restoration Research. Frontiers in Marine Science, 2020, 7, .	2.5	58
74	Mixed policies give more options in multifunctional tropical forest landscapes. Journal of Applied Ecology, 2017, 54, 51-60.	4.0	57
75	Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems. Biological Conservation, 2011, 144, 1585-1594.	4.1	54
76	Prioritizing conservation investments for mammal species globally. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2670-2680.	4.0	54
77	Does more mean less? The value of information for conservation planning under sea level rise. Global Change Biology, 2013, 19, 352-363.	9.5	54
78	Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. Biological Conservation, 2015, 186, 276-286.	4.1	54
79	Change the IUCN Protected Area Categories to Reflect Biodiversity Outcomes. PLoS Biology, 2008, 6, e66.	5.6	53
80	Expanding the conservation toolbox: conservation planning of multifunctional landscapes. Landscape Ecology, 2012, 27, 1121-1134.	4.2	53
81	Forest loss and Borneo's climate. Environmental Research Letters, 2018, 13, 044009.	5.2	53
82	A Climatic Stability Approach to Prioritizing Global Conservation Investments. PLoS ONE, 2010, 5, e15103.	2.5	52
83	Spatial conservation prioritization inclusive of wilderness quality: A case study of Australia's biodiversity. Biological Conservation, 2009, 142, 1282-1290.	4.1	51
84	Wise selection of an indicator for monitoring the success of management actions. Biological Conservation, 2011, 144, 141-154.	4.1	50
85	First integrative trend analysis for a great ape species in Borneo. Scientific Reports, 2017, 7, 4839.	3.3	47
86	Designer policy for carbon and biodiversity co-benefits under global change. Nature Climate Change, 2016, 6, 301-305.	18.8	46
87	What to do in the face of multiple threats? Incorporating dependencies within a return on investment framework for conservation. Diversity and Distributions, 2011, 17, 437-450.	4.1	45
88	The evidence for the bushmeat crisis in African savannas: A systematic quantitative literature review. Biological Conservation, 2018, 221, 345-356.	4.1	45
89	Impact of palm oil sustainability certification on village well-being and poverty in Indonesia. Nature Sustainability, 2021, 4, 109-119.	23.7	43
90	Mathematical problem definition for ecological restoration planning. Ecological Modelling, 2010, 221, 2243-2250.	2.5	42

#	Article	IF	Citations
91	Effects of threat management interactions on conservation priorities. Conservation Biology, 2015, 29, 1626-1635.	4.7	42
92	Ecosystem services from a degraded peatland of Central Kalimantan: implications for policy, planning, and management., 2015, 25, 70-87.		42
93	Ethics of Conservation Triage. Frontiers in Ecology and Evolution, 0, 4, .	2.2	42
94	Providing Context for the Landâ€Sharing and Landâ€Sparing Debate. Conservation Letters, 2015, 8, 404-413.	5.7	41
95	Predicting willingnessâ€toâ€sell and its utility for assessing conservation opportunity for expanding protected area networks. Conservation Letters, 2010, 3, 332-339.	5.7	40
96	Spatial and temporal patterns of land clearing during policy change. Land Use Policy, 2018, 75, 399-410.	5.6	40
97	Using a social–ecological framework to inform the implementation of conservation plans. Conservation Biology, 2017, 31, 290-301.	4.7	39
98	Rising floodwaters: mapping impacts and perceptions of flooding in Indonesian Borneo. Environmental Research Letters, 2016, 11, 064016.	5.2	38
99	A novel approach for global mammal extinction risk reduction. Conservation Letters, 2012, 5, 134-141.	5.7	37
100	Inequality in access to cultural ecosystem services from protected areas in the Chilean biodiversity hotspot. Science of the Total Environment, 2018, 636, 1128-1138.	8.0	37
101	Changing landscapes, livelihoods and village welfare in the context of oil palm development. Land Use Policy, 2019, 87, 104073.	5.6	37
102	Building community support for coastal management â€" What types of messages are most effective?. Environmental Science and Policy, 2019, 92, 161-169.	4.9	37
103	Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environmental Change, 2018, 52, 152-161.	7.8	36
104	Engage the hodgepodge: management factors are essential when prioritizing areas for restoration and conservation action. Diversity and Distributions, 2011, 17, 1234-1238.	4.1	35
105	Clear consideration of costs, condition and conservation benefits yields better planning outcomes. Biological Conservation, 2015, 191, 716-727.	4.1	35
106	Frequent policy uncertainty can negate the benefits of forest conservation policy. Environmental Science and Policy, 2018, 89, 401-411.	4.9	34
107	Modelling species distributional shifts across broad spatial extents by linking dynamic occupancy models with publicâ€based surveys. Diversity and Distributions, 2014, 20, 786-796.	4.1	33
108	Using structured decisionâ€making to set restoration objectives when multiple values and preferences exist. Restoration Ecology, 2017, 25, 858-865.	2.9	33

#	Article	IF	CITATIONS
109	The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation. PLoS ONE, 2011, 6, e23843.	2.5	33
110	Influence of a Threatenedâ€Species Focus on Conservation Planning. Conservation Biology, 2010, 24, 441-449.	4.7	32
111	Using systematic conservation planning to minimize REDD+ conflict with agriculture and logging in the tropics. Conservation Letters, 2013, 6, 116-124.	5.7	32
112	Public willingness to pay for carbon farming and its co-benefits. Ecological Economics, 2016, 126, 125-131.	5.7	32
113	Designing multifunctional landscapes for forest conservation. Environmental Research Letters, 2015, 10, 114012.	5.2	31
114	Projecting the performance of conservation interventions. Biological Conservation, 2017, 215, 142-151.	4.1	31
115	How robust are global conservation priorities to climate change?. Global Environmental Change, 2013, 23, 1277-1284.	7.8	30
116	Conservation policies and planning under climate change. Biological Conservation, 2011, 144, 2968-2977.	4.1	28
117	Integrating diverse social and ecological motivations to achieve landscape restoration. Journal of Applied Ecology, 2019, 56, 246-252.	4.0	28
118	Factoring attitudes towards armed conflict risk into selection of protected areas for conservation. Nature Communications, 2016, 7, 11042.	12.8	27
119	Moving beyond the conceptual: specificity in regional climate change adaptation actions for biodiversity in South East Queensland, Australia. Regional Environmental Change, 2014, 14, 435-447.	2.9	26
120	Accounting for continuous species' responses to management effort enhances cost-effectiveness of conservation decisions. Biological Conservation, 2016, 197, 116-123.	4.1	25
121	Bushmeat hunting and consumption is a pervasive issue in African savannahs: insights from four protected areas in Malawi. Biodiversity and Conservation, 2020, 29, 1443-1464.	2.6	25
122	Effectiveness of regulatory policy in curbing deforestation in a biodiversity hotspot. Environmental Research Letters, 2018, 13, 124003.	5.2	24
123	The Roles of Spatial Heterogeneity and Ecological Processes in Conservation Planning. , 2005, , 389-406.		23
124	The processes that threaten Indonesian plants. Oryx, 2011, 45, 172-179.	1.0	23
125	Interannual climate variation, land type and village livelihood effects on fires in Kalimantan, Indonesia. Global Environmental Change, 2020, 64, 102129.	7.8	22
126	Barometer of Life: More Action, Not More Data. Science, 2010, 329, 141-141.	12.6	21

#	Article	IF	Citations
127	Assessing spatioâ€temporal priorities for species' recovery in broadâ€scale dynamic landscapes. Journal of Applied Ecology, 2015, 52, 832-840.	4.0	20
128	Navigating Complex Decisions in Restoration Investment. Conservation Letters, 2017, 10, 748-756.	5.7	20
129	Beyond the †extinction of experience†M†Novel pathways between nature experience and support for nature conservation. Global Environmental Change, 2019, 55, 48-57.	7.8	19
130	Mainstreaming of ecosystem services as a rationale for ecological restoration in Australia. Ecosystem Services, 2019, 35, 79-86.	5.4	19
131	Key considerations and challenges in the application of socialâ€network research for environmental decision making. Conservation Biology, 2020, 34, 733-742.	4.7	19
132	Optimal Dynamic Allocation of Conservation Funding Among Priority Regions. Bulletin of Mathematical Biology, 2008, 70, 2039-2054.	1.9	18
133	Strategies and alliances needed to protect forest from palm-oil industry. Nature, 2008, 451, 16-16.	27.8	18
134	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	4.0	16
135	Use of seasonal forecasting to manage weather risk in ecological restoration. Ecological Applications, 2018, 28, 1797-1807.	3.8	16
136	Effectiveness of 20 years of conservation investments in protecting orangutans. Current Biology, 2022, 32, 1754-1763.e6.	3.9	16
137	Toward improved impact evaluation of community forest management in Indonesia. Conservation Science and Practice, 2021, 3, e189.	2.0	15
138	Beyond the community in participatory forest management: A governance network perspective. Land Use Policy, 2020, 97, 104738.	5.6	15
139	Integrating research, monitoring and management into an adaptive management framework to achieve effective conservation outcomes. Animal Conservation, 2012, 15, 334-336.	2.9	14
140	A modular framework for management of complexity in international forest-carbon policy. Nature Climate Change, 2012, 2, 155-160.	18.8	14
141	Measurement matters in managing landscape carbon. Ecosystem Services, 2015, 13, 6-15.	5.4	14
142	Assisted natural regeneration accelerates recovery of highly disturbed rainforest. Ecological Management and Restoration, 2017, 18, 231-238.	1.5	14
143	Tax Shifting and Incentives for Biodiversity Conservation on Private Lands. Conservation Letters, 2018, 11, e12377.	5.7	14
144	Effects of amusing memes on concern for unappealing species. Conservation Biology, 2020, 34, 1200-1209.	4.7	14

#	Article	IF	CITATIONS
145	Landholder typologies illuminate pathways for social change in a deforestation hotspot. Journal of Environmental Management, 2020, 254, 109777.	7.8	13
146	Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot. Biological Conservation, 2021, 262, 109310.	4.1	13
147	Conservation planning for people and nature in a Chilean biodiversity hotspot. People and Nature, 2021, 3, 686-699.	3.7	12
148	Public support for restoration: Does including ecosystem services as a goal engage a different set of values and attitudes than biodiversity protection alone? PLoS ONE, 2021, 16, e0245074.	2.5	12
149	Concern about threatened species and ecosystem disservices underpin public willingness to pay for ecological restoration. Restoration Ecology, 2019, 27, 513-519.	2.9	11
150	Analyzing procedural equity in government-led community-based forest management. Ecology and Society, 2020, 25, .	2.3	11
151	Hull fouling marine invasive species pose a very low, but plausible, risk of introduction to East Antarctica in climate change scenarios. Diversity and Distributions, 2021, 27, 973-988.	4.1	11
152	How to Avoid Underselling Biodiversity with Ecosystem Services: A Response to Silvertown. Trends in Ecology and Evolution, 2016, 31, 332-333.	8.7	10
153	Not more, but strategic collaboration needed to conserve Borneo's orangutan. Global Ecology and Conservation, 2017, 11, 236-246.	2.1	10
154	Dealing with Data Uncertainty in Conservation Planning. Natureza A Conservacao, 2010, 08, 145-150.	2.5	9
155	Extinctions: conserve not collate. Nature, 2011, 474, 284-284.	27.8	8
156	Optimising the spatial planning of prescribed burns to achieve multiple objectives in a fireâ€dependent ecosystem. Journal of Applied Ecology, 2017, 54, 1699-1709.	4.0	8
157	A generalisable integrated natural capital methodology for targeting investment in coastal defence. Journal of Environmental Economics and Policy, 2019, 8, 429-446.	2.5	8
158	Cost-benefit based prioritisation of orangutan conservation actions in Indonesian Borneo. Biological Conservation, 2019, 238, 108236.	4.1	8
159	Program Awareness, Social Capital, and Perceptions of Trees Influence Participation in Private Land Conservation Programs in Queensland, Australia. Environmental Management, 2020, 66, 289-304.	2.7	8
160	Estimating the Aboveground Biomass of Bornean Forest. Biotropica, 2014, 46, 507-511.	1.6	7
161	The Routledge Handbook of Philosophy of Biodiversity. , 0, , .		7
162	Water availability drives aboveground biomass and bird richness in forest restoration plantings to achieve carbon and biodiversity cobenefits. Ecology and Evolution, 2019, 9, 14379-14393.	1.9	6

#	Article	IF	Citations
163	Psychosocial drivers of land management behaviour: How threats, norms, and context influence deforestation intentions. Ambio, 2021, 50, 1364-1377.	5 . 5	6
164	The contributions of nature to people within the Yawuru Indigenous Protected Area. Conservation Science and Practice, $2019,1,e16.$	2.0	4
165	Smart allocation of restoration funds over space and time. Ecological Applications, 2021, 31, e02448.	3.8	4
166	What does equitable distribution mean in community forests?. World Development, 2022, 157, 105954.	4.9	4
167	Reclaiming Degraded Rainforest: A Spatial Evaluation of Gains and Losses in Subtropical Eastern Australia to Inform Future Investment in Restoration. Restoration Ecology, 2013, 21, 481-489.	2.9	3
168	"Taking action for the Reef?â€â€"Australians do not connect Reef conservation with individual climateâ€related actions. Conservation Letters, 2021, 14, e12765.	5.7	3
169	Potential future climate-induced shifts in marine fish larvae and harvested fish communities in the subtropical southwestern Atlantic Ocean. Climatic Change, 2021, 165, 1.	3.6	3
170	The Economics of Restoration. World Forests, 2012, , 215-231.	0.1	3
171	Partner or perish or perish through partnering? A workshop report. Ecological Management and Restoration, 2009, 10, 166-168.	1.5	2
172	Planning for Biodiversity in Future Climatesâ€"Response. Science, 2010, 327, 1453-1453.	12.6	2
173	A reckoning for reckoning. Trends in Ecology and Evolution, 2011, 26, 105-106.	8.7	2
174	Better planning outcomes requires clear consideration of costs, condition and conservation benefits, and access to the best available data: Reply to Gosper et al., 2016. Biological Conservation, 2016, 200, 242-243.	4.1	2
175	Ivory crisis: Role of bioprinting technology. Science, 2018, 360, 277-277.	12.6	2
176	Evaluating institutional fit for the conservation of threatened species. Conservation Biology, 2021, 35, 1437-1450.	4.7	2
177	Environmental Management in the Peri-urban Region: Psychological and Contextual Factors Influencing Private Land Conservation Actions. Environmental Management, 2021, 68, 184-197.	2.7	1
178	Identification of priority areas for conservation in south-central Chile, 2007, , 314-334.		1
179	Smart decisions for the environment. Pacific Conservation Biology, 2018, 24, 251.	1.0	0
180	Local scale prioritization of cost-efficient protection within the National Park Thy. Journal for Nature Conservation, 2022, 68, 126218.	1.8	0