
Samendra P Sherchan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hurricane Michael and Adverse Birth Outcomes in the Florida Panhandle: Analysis of Vital Statistics Data. Disaster Medicine and Public Health Preparedness, 2023, 17, 1-8.	1.3	5
2	Periodically aperiodic pattern of SARS-CoV-2 mutations underpins the uncertainty of its origin and evolution. Environmental Research, 2022, 204, 112092.	7.5	4
3	Incidence of human associated HF183 Bacteroides marker and E. coli levels in New Orleans Canals. Science of the Total Environment, 2022, 806, 150356.	8.0	2
4	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
5	Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. Environmental Science and Pollution Research, 2022, 29, 85658-85668.	5.3	18
6	Enhanced decay of coronaviruses in sewers with domestic wastewater. Science of the Total Environment, 2022, 813, 151919.	8.0	27
7	Emergence of unique SARS-CoV-2 ORF10 variants and their impact on protein structure and function. International Journal of Biological Macromolecules, 2022, 194, 128-143.	7.5	13
8	The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of Biochemistry and Biophysics, 2022, 717, 109124.	3.0	20
9	Detection of SARS-CoV-2 RNA in wastewater, river water, and hospital wastewater of Nepal. Science of the Total Environment, 2022, 824, 153816.	8.0	34
10	Harmful algal bloom-related 311 calls, Cape Coral, Florida 2018–2019. Journal of Water and Health, 2022, 20, 531-538.	2.6	3
11	Occurrence of <i>Naegleria fowleri</i> and faecal indicators in sediments from Lake Pontchartrain, Louisiana. Journal of Water and Health, 2022, 20, 657-669.	2.6	3
12	Integrating Virus Monitoring Strategies for Safe Non-Potable Water Reuse. Water (Switzerland), 2022, 14, 1187.	2.7	7
13	SARS-CoV-2 shedding sources in wastewater and implications for wastewater-based epidemiology. Journal of Hazardous Materials, 2022, 432, 128667.	12.4	34
14	Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. Science of the Total Environment, 2022, 835, 155347.	8.0	31
15	Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 2022, 218, 118451.	11.3	52
16	Prevalence of antibiotic resistance genes in drinking water of the Kathmandu Valley, Nepal. Environmental Challenges, 2022, 7, 100527.	4.2	2
17	Application of digital PCR for public health-related water quality monitoring. Science of the Total Environment, 2022, 837, 155663.	8.0	36
18	The structural basis of accelerated host cell entry by SARSâ€CoVâ€2â€. FEBS Journal, 2021, 288, 5010-5020.	4.7	129

#	Article	IF	CITATIONS
19	Intraday variability of indicator and pathogenic viruses in 1-h and 24-h composite wastewater samples: Implications for wastewater-based epidemiology. Environmental Research, 2021, 193, 110531.	7.5	72
20	Implications of SARSâ€CoVâ€2 on current and future operation and management of wastewater systems. Water Environment Research, 2021, 93, 502-515.	2.7	18
21	Questions concerning the proximal origin of SARS oVâ€2. Journal of Medical Virology, 2021, 93, 1204-1206.	5.0	56
22	Effects of Hurricane Michael on Access to Care for Pregnant Women and Associated Pregnancy Outcomes. International Journal of Environmental Research and Public Health, 2021, 18, 390.	2.6	13
23	Urgent Need for Field Surveys of Coronaviruses in Southeast Asia to Understand the SARS-CoV-2 Phylogeny and Risk Assessment for Future Outbreaks. Biomolecules, 2021, 11, 398.	4.0	3
24	Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs. International Journal of Environmental Research and Public Health, 2021, 18, 4455.	2.6	107
25	Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano, 2021, 15, 8069-8086.	14.6	134
26	Bathing Water Quality Monitoring Practices in Europe and the United States. International Journal of Environmental Research and Public Health, 2021, 18, 5513.	2.6	39
27	A unique view of SARS-CoV-2 through the lens of ORF8 protein. Computers in Biology and Medicine, 2021, 133, 104380.	7.0	48
28	Letter to the Editor regarding Mathavarajah et al. (2020) Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. Science of the Total Environment, 2021, 773, 144855.	8.0	9
29	Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 181, 801-809.	7.5	36
30	Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens, 2021, 10, 798.	2.8	24
31	COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Science of the Total Environment, 2021, 779, 146408.	8.0	226
32	COVID-19 Vaccines and Thrombosis—Roadblock or Dead-End Street?. Biomolecules, 2021, 11, 1020.	4.0	28
33	Assessing the effects of disasters and their aftermath on pregnancy and infant outcomes: A conceptual model. International Journal of Disaster Risk Reduction, 2021, 62, 102415.	3.9	8
34	Wastewater Based Epidemiology Perspective as a Faster Protocol for Detecting Coronavirus RNA in Human Populations: A Review with Specific Reference to SARS-CoV-2 Virus. Pathogens, 2021, 10, 1008.	2.8	30
35	Autoimmunity roots of the thrombotic events after COVID-19 vaccination. Autoimmunity Reviews, 2021, 20, 102941.	5.8	39
36	The mechanism behind flaring/triggering of autoimmunity disorders associated with COVID-19. Autoimmunity Reviews, 2021, 20, 102909.	5.8	7

#	Article	IF	CITATIONS
37	Implications derived from S-protein variants of SARS-CoV-2 from six continents. International Journal of Biological Macromolecules, 2021, 191, 934-955.	7.5	10
38	Virus reduction at wastewater treatment plants in Nepal. Environmental Challenges, 2021, 5, 100281.	4.2	3
39	Possibility of Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) through Wastewater in Developing Countries. Water (Switzerland), 2021, 13, 3412.	2.7	3
40	Circulating Genotypes of Rotavirus Prior to Rotarix?vaccine Introduction in Kathmandu, Nepal Journal of Nepal Health Research Council, 2021, 19, 508-512.	0.8	0
41	Molecular detection of opportunistic premise plumbing pathogens in rural Louisiana's drinking water distribution system. Environmental Research, 2020, 181, 108847.	7.5	18
42	Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environmental Research, 2020, 191, 110092.	7.5	285
43	The Environmental Health and Emergency Preparedness Impacts of Hurricane Katrina. American Journal of Public Health, 2020, 110, 1476-1477.	2.7	2
44	Reduction of Pathogenic and Indicator Viruses at a Drinking Water Treatment Plant in Southern Louisiana, USA. Food and Environmental Virology, 2020, 12, 269-273.	3.4	3
45	Molecular detection of opportunistic pathogens and insights into microbial diversity in private well water and premise plumbing. Journal of Water and Health, 2020, 18, 820-834.	2.6	9
46	The Importance of Research on the Origin of SARS-CoV-2. Viruses, 2020, 12, 1203.	3.3	27
47	Prevalence of intestinal parasitosis and associated risk factors among school children of Saptari district, Nepal: a cross-sectional study. Tropical Medicine and Health, 2020, 48, 73.	2.8	10
48	Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features. Molecules, 2020, 25, 5906.	3.8	33
49	The Occurrence of Antibiotic Resistance Genes in an Urban River in Nepal. Water (Switzerland), 2020, 12, 450.	2.7	16
50	Removal of Antibiotic Resistance Genes at Two Conventional Wastewater Treatment Plants of Louisiana, USA. Water (Switzerland), 2020, 12, 1729.	2.7	29
51	First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Science of the Total Environment, 2020, 743, 140621.	8.0	416
52	Reduction of Human Enteric and Indicator Viruses at a Wastewater Treatment Plant in Southern Louisiana, USA. Food and Environmental Virology, 2020, 12, 260-263.	3.4	13
53	Evaluation of CrAssphage Marker for Tracking Fecal Contamination in River Water in Nepal. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	12
54	Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Scientific Reports, 2020, 10, 3616.	3.3	72

#	Article	IF	CITATIONS
55	Reduction of erythromycin resistance gene <i>erm</i> (F) and class 1 integronâ€integrase genes in wastewater by Bardenpho treatment. Water Environment Research, 2020, 92, 1042-1050.	2.7	9
56	Microbiological Assessment of Tap Water Following the 2016 Louisiana Flooding. International Journal of Environmental Research and Public Health, 2020, 17, 1273.	2.6	6
57	Assessment of microbial risks by characterization of Escherichia coli presence to analyze the public health risks from poor water quality in Nepal. International Journal of Hygiene and Environmental Health, 2020, 226, 113484.	4.3	31
58	Arsenic disturbs the gut microbiome of individuals in a disadvantaged community in Nepal. Heliyon, 2020, 6, e03313.	3.2	20
59	Prevalence of Arcobacter and Other Pathogenic Bacteria in River Water in Nepal. Water (Switzerland), 2019, 11, 1416.	2.7	14
60	Reduction of Arcobacter at Two Conventional Wastewater Treatment Plants in Southern Arizona, USA. Pathogens, 2019, 8, 175.	2.8	20
61	Removal of fecal indicator bacteria and antibiotic resistant genes in constructed wetlands. Environmental Science and Pollution Research, 2019, 26, 10188-10197.	5.3	27
62	Assessing the spatial and temporal variability of bacterial communities in two Bardenpho wastewater treatment systems via Illumina MiSeq sequencing. Science of the Total Environment, 2019, 657, 1543-1552.	8.0	49
63	Quantitative assessment of Naegleria fowleri and fecal indicator bacteria in brackish water of Lake Pontchartrain, Louisiana. Science of the Total Environment, 2018, 622-623, 8-16.	8.0	21
64	Assessment of fecal pollution in Lake Pontchartrain, Louisiana. Marine Pollution Bulletin, 2018, 129, 655-663.	5.0	14
65	Prevalence and associated risk factors of Giardia duodenalis infection among school-going children in Nepal. Parasitology Research, 2018, 117, 287-293.	1.6	10
66	Prevalence of methicillin resistant Staphylococcus aureus, multidrug resistant and extended spectrum β-lactamase producing gram negative bacilli causing wound infections at a tertiary care hospital of Nepal. Antimicrobial Resistance and Infection Control, 2018, 7, 121.	4.1	42
67	Reduction ofCryptosporidium,Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment. Environmental Science & Technology, 2018, 52, 7015-7023.	10.0	16
68	Near Real-Time Detection of E. coli in Reclaimed Water. Sensors, 2018, 18, 2303.	3.8	16
69	Presence of Human Enteric Viruses, Protozoa, and Indicators of Pathogens in the Bagmati River, Nepal. Pathogens, 2018, 7, 38.	2.8	32
70	Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration of <i>Naegleria fowleri</i> in environmental water and clinical samples. Letters in Applied Microbiology, 2018, 67, 322-328.	2.2	10
71	Association between screen time and depression among US adults. Preventive Medicine Reports, 2017, 8, 67-71.	1.8	96
72	The Deepwater Horizon Oil Spill Through the Lens of Human Health and the Ecosystem. Current Environmental Health Reports, 2016, 3, 370-378.	6.7	30

#	Article	IF	CITATIONS
73	Inactivation of MS2 coliphage by UV and hydrogen peroxide: Comparison by cultural and molecular methodologies. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 397-403.	1.7	16
74	Microbial source tracking of fecal contamination in stormwater runoff. Journal of Water and Health, 0, , .	2.6	3