
Jianbo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438407/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion. Chemical Reviews, 2017, 117, 13810-13889.	23.0	915
2	Diazo Compounds and <i>N</i> -Tosylhydrazones: Novel Cross-Coupling Partners in Transition-Metal-Catalyzed Reactions. Accounts of Chemical Research, 2013, 46, 236-247.	7.6	879
3	Recent studies on the reactions of $\hat{I}\pm$ -diazocarbonyl compounds. Tetrahedron, 2008, 64, 6577-6605.	1.0	728
4	Copper-Catalyzed C(sp ³)–C(sp ³) Bond Formation Using a Hypervalent Iodine Reagent: An Efficient Allylic Trifluoromethylation. Journal of the American Chemical Society, 2011, 133, 16410-16413.	6.6	439
5	Recent applications of arene diazonium salts in organic synthesis. Organic and Biomolecular Chemistry, 2013, 11, 1582.	1.5	396
6	Catalytic Cascade Reactions Involving Metal Carbene Migratory Insertion. ACS Catalysis, 2013, 3, 2586-2598.	5.5	342
7	Recent developments in copper-catalyzed reactions of diazo compounds. Chemical Communications, 2012, 48, 10162.	2.2	323
8	N-Tosylhydrazones: versatile synthons in the construction of cyclic compounds. Chemical Society Reviews, 2017, 46, 2306-2362.	18.7	271
9	Copper-Catalyzed Direct Benzylation or Allylation of 1,3-Azoles with <i>N</i> -Tosylhydrazones. Journal of the American Chemical Society, 2011, 133, 3296-3299.	6.6	261
10	Coupling of <i>N</i> â€Tosylhydrazones with Terminal Alkynes Catalyzed by Copper(I): Synthesis of Trisubstituted Allenes. Angewandte Chemie - International Edition, 2011, 50, 1114-1117.	7.2	261
11	Recent Developments in Pdâ€Catalyzed Reactions of Diazo Compounds. European Journal of Organic Chemistry, 2011, 2011, 1015-1026.	1.2	250
12	Recent development of reactions with $\hat{l}\pm$ -diazocarbonyl compounds as nucleophiles. Chemical Communications, 2009, , 5350.	2.2	240
13	Rhodium(III)â€Catalyzed <i>ortho</i> Alkenylation of <i>N</i> â€Phenoxyacetamides with <i>N</i> â€Tosylhydrazones or Diazoesters through Cī£¿H Activation. Angewandte Chemie - International Edition, 2014, 53, 1364-1367.	7.2	229
14	C–H bond functionalization based on metal carbene migratory insertion. Chemical Communications, 2015, 51, 7986-7995.	2.2	229
15	Silver-Mediated Trifluoromethylation of Aryldiazonium Salts: Conversion of Amino Group into Trifluoromethyl Group. Journal of the American Chemical Society, 2013, 135, 10330-10333.	6.6	222
16	Cross-Coupling Reactions Involving Metal Carbene: From C╀/C–C Bond Formation to C–H Bond Functionalization. Journal of Organic Chemistry, 2013, 78, 10024-10030.	1.7	219
17	Goldâ€Catalyzed Halogenation of Aromatics by <i>N</i> â€Halosuccinimides. Angewandte Chemie - International Edition, 2010, 49, 2028-2032.	7.2	213
18	Recent Advances in the Synthesis of Aryl Nitrile Compounds. Advanced Synthesis and Catalysis, 2017, 359, 4068-4105.	2.1	208

#	Article	IF	CITATIONS
19	Direct Conversion of Arylamines to Pinacol Boronates: A Metalâ€Free Borylation Process. Angewandte Chemie - International Édition, 2010, 49, 1846-1849.	7.2	206
20	Pd-Catalyzed Three-Component Coupling of <i>N</i> -Tosylhydrazone, Terminal Alkyne, and Aryl Halide. Journal of the American Chemical Society, 2010, 132, 13590-13591.	6.6	200
21	Catalytic asymmetric trifluoromethylthiolation via enantioselective [2,3]-sigmatropic rearrangement of sulfonium ylides. Nature Chemistry, 2017, 9, 970-976.	6.6	188
22	Rhodium(III) atalyzed Transannulation of Cyclopropenes with <i>N</i> â€Phenoxyacetamides through CH Activation. Angewandte Chemie - International Edition, 2014, 53, 13234-13238.	7.2	186
23	Formal Carbene Insertion into C–C Bond: Rh(I)-Catalyzed Reaction of Benzocyclobutenols with Diazoesters. Journal of the American Chemical Society, 2014, 136, 3013-3015.	6.6	182
24	Palladium-Catalyzed Cross-Coupling of α-Diazocarbonyl Compounds with Arylboronic Acids. Journal of the American Chemical Society, 2008, 130, 1566-1567.	6.6	177
25	C(sp)–C(sp ³) Bond Formation through Cu-Catalyzed Cross-Coupling of <i>N</i> -Tosylhydrazones and Trialkylsilylethynes. Journal of the American Chemical Society, 2012, 134, 5742-5745.	6.6	177
26	Synthesis, Structure, and Reactivity of Anionic sp ² –sp ³ Diboron Compounds: Readily Accessible Boryl Nucleophiles. Chemistry - A European Journal, 2015, 21, 7082-7098.	1.7	175
27	Recent advances in catalytic asymmetric synthesis of allenes. Catalysis Science and Technology, 2017, 7, 4570-4579.	2.1	174
28	Pd-Catalyzed Carbonylation of Diazo Compounds at Atmospheric Pressure: A Catalytic Approach to Ketenes. Journal of the American Chemical Society, 2011, 133, 4330-4341.	6.6	173
29	Sequential catalytic process: synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes. Tetrahedron, 2008, 64, 2755-2761.	1.0	169
30	Disposing and Recycling Waste Printed Circuit Boards: Disconnecting, Resource Recovery, and Pollution Control. Environmental Science & Technology, 2015, 49, 721-733.	4.6	168
31	Pd-Catalyzed Câ•€ Double-Bond Formation by Coupling of <i>N</i> -Tosylhydrazones with Benzyl Halides. Organic Letters, 2009, 11, 4732-4735.	2.4	167
32	Transition-Metal-Catalyzed Cross-Coupling with Ketones or Aldehydes via <i>N</i> -Tosylhydrazones. Journal of the American Chemical Society, 2020, 142, 10592-10605.	6.6	167
33	Palladium-Catalyzed Direct Cyanation of Indoles with K ₄ [Fe(CN) ₆]. Organic Letters, 2010, 12, 1052-1055.	2.4	165
34	Transitionâ€Metalâ€Free Synthesis of Pinacol Alkylboronates from Tosylhydrazones. Angewandte Chemie - International Edition, 2012, 51, 2943-2946.	7.2	161
35	Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chemical Reviews, 2021, 121, 5741-5829.	23.0	160
36	Palladiumâ€Catalyzed Oxidative Crossâ€Coupling of <i>N</i> â€Tosylhydrazones or Diazoesters with Terminal Alkynes: A Route to Conjugated Enynes. Angewandte Chemie - International Edition, 2011, 50, 3510-3514.	7.2	157

#	Article	IF	CITATIONS
37	Reaction of Diazo Compounds with Difluorocarbene: An Efficient Approach towards 1,1â€Difluoroolefins. Angewandte Chemie - International Edition, 2016, 55, 273-277.	7.2	155
38	CuBr-Catalyzed Coupling of <i>N-</i> Tosylhydrazones and Terminal Alkynes: Synthesis of Benzofurans and Indoles. Organic Letters, 2011, 13, 968-971.	2.4	153
39	Palladium-Catalyzed Carbene Migratory Insertion Using Conjugated Ene–Yne–Ketones as Carbene Precursors. Journal of the American Chemical Society, 2013, 135, 13502-13511.	6.6	153
40	Palladium atalyzed Carbonylation/Acyl Migratory Insertion Sequence. Angewandte Chemie - International Edition, 2010, 49, 1139-1142.	7.2	152
41	Enantioselective Synthesis of Trisubstituted Allenes via Cu(I)-Catalyzed Coupling of Diazoalkanes with Terminal Alkynes. Journal of the American Chemical Society, 2016, 138, 14558-14561.	6.6	149
42	Formal Carbon Insertion of <i>N-</i> Tosylhydrazone into B–B and B–Si Bonds: <i>gem</i> -Diborylation and <i>gem</i> -Silylborylation of sp ³ Carbon. Organic Letters, 2014, 16, 448-451.	2.4	147
43	Catalytic [2,3]-sigmatropic rearrangement of sulfur ylide derived from metal carbene. Coordination Chemistry Reviews, 2010, 254, 941-953.	9.5	145
44	Pd-catalyzed oxidative cross-coupling of N-tosylhydrazones with arylboronic acids. Chemical Communications, 2010, 46, 1724.	2.2	143
45	Rhodium(II) atalyzed Cyclization of Bis(<i>N</i> â€ŧosylhydrazone)s: An Efficient Approach towards Polycyclic Aromatic Compounds. Angewandte Chemie - International Edition, 2012, 51, 5714-5717.	7.2	143
46	lr(III)-Catalyzed Aromatic C–H Bond Functionalization via Metal Carbene Migratory Insertion. Journal of Organic Chemistry, 2015, 80, 223-236.	1.7	142
47	Silver(I)â€Catalyzed <i>N</i> â€Trifluoroethylation of Anilines and <i>O</i> â€Trifluoroethylation of Amides with 2,2,2â€Trifluorodiazoethane. Angewandte Chemie - International Edition, 2015, 54, 14503-14507.	7.2	141
48	Lewis Acid Catalyzed Direct Cyanation of Indoles and Pyrroles with <i>N</i> -Cyano- <i>N</i> -phenyl- <i>p</i> -toluenesulfonamide (NCTS). Organic Letters, 2011, 13, 5608-5611.	2.4	135
49	Arylation and Vinylation of α-Diazocarbonyl Compounds with Boroxines. Organic Letters, 2009, 11, 1667-1670.	2.4	133
50	Highly Stereoselective [2,3]-Sigmatropic Rearrangement of Sulfur Ylide Generated through Cu(I) Carbene and Sulfides. Journal of the American Chemical Society, 2005, 127, 15016-15017.	6.6	131
51	Synthesis of Pinacol Arylboronates from Aromatic Amines: A Metal-Free Transformation. Journal of Organic Chemistry, 2013, 78, 1923-1933.	1.7	128
52	Palladium(II) atalyzed Direct Conversion of Methyl Arenes into Aromatic Nitriles. Angewandte Chemie - International Edition, 2013, 52, 10573-10576.	7.2	127
53	Renaissance of Sandmeyer-Type Reactions: Conversion of Aromatic C–N Bonds into C–X Bonds (X = B,) Tj E	TQq1 1 0.7	784314 rgBT 124
54	1,2-Aryl and 1,2-Hydride Migration in Transition Metal Complex Catalyzed Diazo Decomposition:  A Novel Approach to α-Aryl-β-enamino Esters. Organic Letters, 2001, 3, 2989-2992.	2.4	122

#	Article	IF	CITATIONS
55	Cu(I)-Catalyzed Cross-Coupling of Terminal Alkynes with Trifluoromethyl Ketone <i>N</i> -Tosylhydrazones: Access to 1,1-Difluoro-1,3-enynes. Organic Letters, 2015, 17, 2474-2477.	2.4	121
56	Transition-Metal-Free Electrophilic Amination of Arylboroxines. Organic Letters, 2012, 14, 4230-4233.	2.4	112
57	Transition metal-catalyzed [2,3]-sigmatropic rearrangements of ylides: An update of the most recent advances. Tetrahedron, 2017, 73, 4011-4022.	1.0	109
58	Copper(I) atalyzed Alkylation of Polyfluoroarenes through Direct CH Bond Functionalization. Angewandte Chemie - International Edition, 2015, 54, 4669-4672.	7.2	107
59	Directing group-assisted transition-metal-catalyzed vinylic C-H bond functionalization. Science China Chemistry, 2015, 58, 1252-1265.	4.2	107
60	Recent advances in transition-metal-catalyzed synthesis of conjugated enynes. Organic and Biomolecular Chemistry, 2016, 14, 6638-6650.	1.5	107
61	Iron(II) atalyzed Direct Cyanation of Arenes with Aryl(cyano)iodonium Triflates. Angewandte Chemie - International Edition, 2014, 53, 2186-2189.	7.2	106
62	Palladium-catalyzed reaction of allyl halides with $\hat{I}\pm$ -diazocarbonyl compounds. Chemical Communications, 2008, , 4198.	2.2	105
63	Transition-Metal-Catalyzed Rearrangement of Allenyl Sulfides: A Route to Furan Derivatives. Angewandte Chemie - International Edition, 2007, 46, 1905-1908.	7.2	102
64	Geminal bis(boron) compounds: Their preparation and synthetic applications. Tetrahedron Letters, 2018, 59, 2128-2140.	0.7	102
65	Trifluoromethylthiolation of Diazo Compounds through Copper Carbene Migratory Insertion. European Journal of Organic Chemistry, 2014, 2014, 3093-3096.	1.2	98
66	Au-catalyzed isomerization of cyclopropenes: a novel approach to indene derivatives. Tetrahedron Letters, 2009, 50, 2956-2959.	0.7	95
67	Cul-Catalyzed Cross-Coupling of <i>N</i> -Tosylhydrazones with Terminal Alkynes: Synthesis of 1,3-Disubstituted Allenes. Journal of Organic Chemistry, 2013, 78, 1236-1241.	1.7	95
68	Palladium-Catalyzed Formal [4 + 1] Annulation via Metal Carbene Migratory Insertion and C(sp ²)–H Bond Functionalization. ACS Catalysis, 2017, 7, 1993-1997.	5.5	95
69	Catalytic Asymmetric [2,3]-Sigmatropic Rearrangement of Sulfur Ylides Generated from Copper(I) Carbenoids and Allyl Sulfides. Journal of Organic Chemistry, 2002, 67, 5621-5625.	1.7	94
70	Gold(III)-Catalyzed Halogenation of Aromatic Boronates with <i>N</i> -Halosuccinimides. Organic Letters, 2010, 12, 5474-5477.	2.4	94
71	Palladium-Catalyzed C–H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions. Journal of the American Chemical Society, 2015, 137, 4435-4444.	6.6	94
72	Pd(0)-Catalyzed Carbene Insertion into Si–Si and Sn–Sn Bonds. Journal of the American Chemical Society, 2015, 137, 12800-12803.	6.6	94

#	Article	IF	CITATIONS
73	Palladiumâ€Catalyzed Threeâ€Component Reaction of Allenes, Aryl Iodides, and Diazo Compounds: Approach to 1,3â€Dienes. Angewandte Chemie - International Edition, 2013, 52, 9305-9308.	7.2	93
74	DBU-promoted condensation of acyldiazomethanes to aldehydes and imines under catalytic conditions. Tetrahedron Letters, 2002, 43, 1285-1287.	0.7	90
75	Copper-Catalyzed Direct Ortho-Alkylation of N-Iminopyridinium Ylides with N-Tosylhydrazones. Journal of Organic Chemistry, 2013, 78, 3879-3885.	1.7	90
76	Gold(I) atalyzed Cycloisomerization of Enynes Containing Cyclopropenes. Angewandte Chemie - International Edition, 2010, 49, 6413-6417.	7.2	89
77	Palladium-Catalyzed Cross-Coupling of Aryl or Vinyl Iodides with Ethyl Diazoacetate. Journal of the American Chemical Society, 2007, 129, 8708-8709.	6.6	84
78	Palladium-Catalyzed Diarylmethyl C(sp ³)–C(sp ²) Bond Formation: A New Coupling Approach toward Triarylmethanes. Organic Letters, 2013, 15, 1784-1787.	2.4	84
79	Switchable 2,2,2â€Trifluoroethylation and <i>gem</i> â€Difluorovinylation of Organoboronic Acids with 2,2,2â€Trifluorodiazoethane. European Journal of Organic Chemistry, 2014, 2014, 4477-4481.	1.2	84
80	Transitionâ€Metalâ€Free Intramolecular Carbene Aromatic Substitution/Büchner Reaction: Synthesis of Fluorenes and [6,5,7]Benzoâ€fused Rings. Angewandte Chemie - International Edition, 2015, 54, 3056-3060.	7.2	84
81	Palladium(0)â€Catalyzed Crossâ€Coupling of 1,1â€Diboronates with Vinyl Bromides and 1,1â€Dibromoalkenes. Angewandte Chemie - International Edition, 2014, 53, 11921-11925.	7.2	82
82	Direct Catalytic Asymmetric Aldol-Type Reaction of Aldehydes with Ethyl Diazoacetate. Organic Letters, 2003, 5, 1527-1530.	2.4	81
83	Catalytic Thia-Sommeletâ^'Hauser Rearrangement: Application to the Synthesis of Oxindoles. Organic Letters, 2011, 13, 1210-1213.	2.4	81
84	Carbonylation of Metal Carbene with Carbon Monoxide: Generation of Ketene. ACS Catalysis, 2011, 1, 1621-1630.	5.5	79
85	Synthesis of αâ€Aryl Esters and Nitriles: Deaminative Coupling of αâ€Aminoesters and αâ€Aminoacetonitriles with Arylboronic Acids. Angewandte Chemie - International Edition, 2014, 53, 10510-10514.	7.2	79
86	Rh(II)-Catalyzed [2,3]-Sigmatropic Rearrangement of Sulfur Ylides Derived from Cyclopropenes and Sulfides. Organic Letters, 2015, 17, 3322-3325.	2.4	79
87	Synthesis of Aryl Trimethylstannanes from Aryl Amines: A Sandmeyerâ€Type Stannylation Reaction. Angewandte Chemie - International Edition, 2013, 52, 11581-11584.	7.2	78
88	1,2-Migration in Rhodium(II) Carbene Transfer Reaction:Â Remarkable Steric Effect on Migratory Aptitude. Journal of Organic Chemistry, 2006, 71, 5789-5791.	1.7	75
89	Rh(I)-Catalyzed Carbonylative Carbocyclization of Tethered Eneâ^' and Yneâ^'cyclopropenes. Organic Letters, 2010, 12, 3082-3085.	2.4	75
90	Expeditious Synthesis of Phenanthrenes via CuBr ₂ -Catalyzed Coupling of Terminal Alkynes and <i>N-</i> Tosylhydrazones Derived from <i>O</i> Formyl Biphenyls. Organic Letters, 2011, 13, 5020-5023.	2.4	74

#	Article	IF	CITATIONS
91	Oxidative Cross oupling of Allenyl Ketones and Organoboronic Acids: Expeditious Synthesis of Highly Substituted Furans. Angewandte Chemie - International Edition, 2014, 53, 3917-3921.	7.2	74
92	Pd–Carbene Migratory Insertion: Application to the Synthesis of Trifluoromethylated Alkenes and Dienes. Chemistry - A European Journal, 2014, 20, 961-965.	1.7	71
93	Cu(I)-Catalyzed Cross-Coupling of Conjugated Ene-yne-ketones and Terminal Alkynes: Synthesis of Furan-Substituted Allenes. Organic Letters, 2014, 16, 4082-4085.	2.4	70
94	Investigation of the Transition-Metal- and Acid-Catalyzed Reactions of β-(N-Tosyl)amino Diazo Carbonyl Compounds. Journal of Organic Chemistry, 2003, 68, 893-900.	1.7	69
95	Highly efficient [2,3]-sigmatropic rearrangement of sulfur ylide derived from Rh(ii) carbene and sulfides in water. Green Chemistry, 2007, 9, 184-188.	4.6	69
96	Catalystâ€Free Intramolecular Formal Carbon Insertion into Ïfâ€CC Bonds: A New Approach toward Phenanthrols and Naphthols. Angewandte Chemie - International Edition, 2013, 52, 2543-2546.	7.2	69
97	Recent advances in C(sp ³)–H bond functionalization via metal–carbene insertions. Beilstein Journal of Organic Chemistry, 2016, 12, 796-804.	1.3	68
98	Synthesis of 3-trifluoromethylpyrazoles via trifluoromethylation/cyclization of α,β-alkynic hydrazones using a hypervalent iodine reagent. Chemical Communications, 2014, 50, 4361-4363.	2.2	67
99	Rhodium(I) atalyzed Sequential C(sp)C(sp ³) and C(sp ³)C(sp ³) Bond Formation through Migratory Carbene Insertion. Angewandte Chemie - International Edition, 2015, 54, 7891-7894.	7.2	67
100	Distalâ€Bondâ€5elective Câ^'C Activation of Ringâ€Fused Cyclopentanones: An Efficient Access to Spiroindanones. Angewandte Chemie - International Edition, 2017, 56, 2376-2380.	7.2	64
101	Rh(II)-Catalyzed Sommeletâ^'Hauser Rearrangement. Organic Letters, 2008, 10, 693-696.	2.4	62
102	Copper(I)â€Catalyzed Threeâ€Component Coupling of <i>N</i> â€Tosylhydrazones, Alkynes and Azides: Synthesis of Trisubstituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2015, 357, 2277-2286.	2.1	62
103	Pd(0)-Catalyzed Cross-Coupling of 1,1-Diboronates with 2,2′-Dibromobiphenyls: Synthesis of 9 <i>H</i> -Fluorenes. Journal of Organic Chemistry, 2015, 80, 7779-7784.	1.7	61
104	Copper(I) atalyzed Chemoselective Coupling of Cyclopropanols with Diazoesters: Ringâ€Opening Câ^'C Bond Formations. Angewandte Chemie - International Edition, 2017, 56, 3945-3950.	7.2	61
105	Catalytic asymmetric [2,3] sigmatropic rearrangement of sulfur ylides generated from carbenoids and propargyl sulfides. Tetrahedron: Asymmetry, 2003, 14, 891-895.	1.8	60
106	Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones. Topics in Current Chemistry, 2012, 327, 239-269.	4.0	59
107	Evolution of electronic waste toxicity: Trends in innovation and regulation. Environment International, 2016, 89-90, 147-154.	4.8	59
108	Pd-Catalyzed Cyclization and Carbene Migratory Insertion: New Approach to 3-Vinylindoles and 3-Vinylbenzofurans. Organic Letters, 2013, 15, 5032-5035.	2.4	57

#	Article	IF	CITATIONS
109	1,2-Vinyl and 1,2-Acetylenyl Migration in Rh(II) Carbene Reaction:Â Remarkable Bystander Effect. Journal of Organic Chemistry, 2005, 70, 4318-4322.	1.7	56
110	Synthesis of Phenanthrenes through Copper-Catalyzed Cross-Coupling of <i>N</i> -Tosylhydrazones with Terminal Alkynes. Journal of Organic Chemistry, 2014, 79, 8689-8699.	1.7	56
111	Synthesis of Terminal Allenes through Copper-Mediated Cross-Coupling of Ethyne with <i>N</i> -Tosylhydrazones or α-Diazoesters. Journal of Organic Chemistry, 2015, 80, 647-652.	1.7	55
112	Reaction of Diazo Compounds with Organoboron Compounds. Synthesis, 2013, 45, 3090-3098.	1.2	54
113	Synthesis of Allyl Allenes through Threeâ€Component Crossâ€Coupling Reaction of <i>Nâ€</i> Tosylhydrazones, Terminal Alkynes, and Allyl Halides. Chemistry - an Asian Journal, 2013, 8, 1404-1407.	1.7	53
114	Palladium-Catalyzed Enantioselective Carbene Insertion into Carbon–Silicon Bonds of Silacyclobutanes. Journal of the American Chemical Society, 2021, 143, 12968-12973.	6.6	53
115	DBU-catalyzed condensation of acyldiazomethanes to aldehydes in water and a new approach to ethyl β-hydroxy α-arylacrylates. Tetrahedron Letters, 2007, 48, 1147-1149.	0.7	51
116	Au(PPh3)Cl–AgSbF6-catalyzed rearrangement of propargylic 1,3-dithianes: formation of 8-membered 1,3-bisthio-substituted cyclic allenes. Chemical Communications, 2009, , 2535.	2.2	51
117	Rhodium(II)―or Copper(I)â€Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp ²)âr'H Bonds: Access to Substituted 1 <i>H</i> â€Indenes. Angewandte Chemie - International Edition, 2017, 56, 16013-16017.	7.2	51
118	Pd-catalyzed cross-coupling of terminal alkynes with ene-yne-ketones: access to conjugated enynes via metal carbene migratory insertion. Chemical Communications, 2015, 51, 11233-11235.	2.2	50
119	Cyclopropylmethyl Palladium Species from Carbene Migratory Insertion: New Routes to 1,3-Butadienes. Organic Letters, 2012, 14, 922-925.	2.4	49
120	Palladium atalyzed Oxygenative Crossâ€Coupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion. Angewandte Chemie - International Edition, 2018, 57, 2716-2720.	7.2	49
121	A Kinetic Study on the Pairwise Competition Reaction of α-Diazo Esters with Rhodium(II) Catalysts:Â Implication for the Mechanism of Rh(II)-Carbene Transfer. Journal of Organic Chemistry, 2001, 66, 8139-8144.	1.7	48
122	Electronic Effects of Rh(II)-Mediated Carbenoid Intramolecular Câ^'H Insertion:Â A Linear Free Energy Correlation Study. Journal of Organic Chemistry, 1998, 63, 1853-1862.	1.7	47
123	A Highly Stereoselective Addition of the Anion Derived from ?-Diazoacetamide to AromaticN-Tosylimines. Angewandte Chemie - International Edition, 2004, 43, 5977-5980.	7.2	47
124	Microwave-Assisted, Pd(0)-Catalyzed Cross-Coupling of Diazirines with Aryl Halides. Organic Letters, 2010, 12, 5580-5583.	2.4	46
125	Copper-catalyzed cascade coupling/cyclization of terminal alkynes with diazoacetates: a straightforward route for trisubstituted furans. Tetrahedron Letters, 2011, 52, 5484-5487.	0.7	46
126	Lewis Acid Catalyzed Propargylation of Arenes with <i>O</i> -Propargyl Trichloroacetimidates: Synthesis of 1,3-Diarylpropynes. Journal of Organic Chemistry, 2007, 72, 7431-7434.	1.7	45

#	Article	IF	CITATIONS
127	Highly Diastereoselective Addition of the Lithium Enolate of α-Diazoacetoacetate to N-Sulfinyl Imines: Enantioselective Synthesis of 2-Oxo and 3-Oxo Pyrrolidines. Journal of Organic Chemistry, 2008, 73, 1971-1974.	1.7	45
128	Palladium-catalyzed coupling of N-tosylhydrazones and β-bromostyrene derivatives: new approach to 2H-chromenes. Organic and Biomolecular Chemistry, 2014, 12, 9333-9336.	1.5	45
129	New Approaches to Polysubstituted Pyrroles and γ-Lactams Based on Nucleophilic Addition of Ti(IV) Enolates Derived from α-Diazo-β-keto Carbonyl Compounds toN-Tosylimines. Journal of Organic Chemistry, 2006, 71, 5560-5564.	1.7	44
130	Palladium-catalyzed cyclopropanation of electron-deficient olefins with aryldiazocarbonyl compounds. Tetrahedron Letters, 2008, 49, 6781-6783.	0.7	44
131	Rh(I)-Catalyzed Coupling of Conjugated Enynones with Arylboronic Acids: Synthesis of Furyl-Containing Triarylmethanes. Journal of Organic Chemistry, 2016, 81, 10484-10490.	1.7	44
132	Palladium atalyzed [3+3] Annulation of Vinyl Chromium(0) Carbene Complexes through Carbene Migratory Insertion/Tsuji–Trost Reaction. Angewandte Chemie - International Edition, 2017, 56, 13140-13144.	7.2	44
133	1,2-Thio Group Migration in Rh(II) Carbene Reactions. Journal of Organic Chemistry, 2005, 70, 4191-4194.	1.7	43
134	Synthesis of Alkenylphosphonates through Palladium-Catalyzed Coupling of α-Diazo Phosphonates with Benzyl or Allyl Halides. Journal of Organic Chemistry, 2015, 80, 6109-6118.	1.7	43
135	Cu(I)-Catalyzed Synthesis of Furan-Substituted Allenes by Use of Conjugated Ene-yne Ketones as Carbene Precursors. Journal of Organic Chemistry, 2016, 81, 3275-3285.	1.7	43
136	Cu(I)â€Catalyzed Crossâ€Coupling of Diazo Compounds with Terminal Alkynes: An Efficient Access to Allenes. Chemical Record, 2018, 18, 1548-1559.	2.9	43
137	Gold(III)-Catalyzed Direct Acetoxylation of Arenes with Iodobenzene Diacetate. Organic Letters, 2011, 13, 4988-4991.	2.4	42
138	Metal-Free Aromatic Carbon–Phosphorus Bond Formation via a Sandmeyer-Type Reaction. Journal of Organic Chemistry, 2016, 81, 11603-11611.	1.7	42
139	Lewis Acid Controlled Regioselective 1,2 and 1,4 Reaction of ,-Unsaturated Carbonyl Compounds with TiIV Enolates Derived from -Diazo -Keto Carbonyl Compounds. Angewandte Chemie - International Edition, 2002, 41, 2773-2776.	7.2	41
140	Synthesis of Aryldiazoacetates through Palladium(0)â€Catalyzed Deacylative Crossâ€Coupling of Aryl Iodides with Acyldiazoacetates. Angewandte Chemie - International Edition, 2014, 53, 11625-11628.	7.2	40
141	Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Organoboronic Acids. Journal of Organic Chemistry, 2015, 80, 7856-7864.	1.7	40
142	Linear Free Energy Correlation Analysis on the Electronic Effects of Rh(II) Carbene Oâ^'H Insertion. Journal of Organic Chemistry, 2004, 69, 217-219.	1.7	39
143	Application of carbene chemistry in the synthesis of organofluorine compounds. Tetrahedron, 2019, 75, 949-964.	1.0	39
144	Orthorhombic Nb2O5- for Durable High-Rate Anode of Li-Ion Batteries. IScience, 2020, 23, 100767.	1.9	39

#	Article	IF	CITATIONS
145	1,2-Sulfanyl Group Migration as a Driving Force:  New Approach to Pyrroles by Reaction of Allenic Aldehydes with Amines. Organic Letters, 2007, 9, 1445-1448.	2.4	38
146	Sequential Copper(I)â€Catalyzed Reaction of Amines with <i>o</i> â€Acetylenylâ€Substituted Phenyldiazoacetates. Advanced Synthesis and Catalysis, 2008, 350, 2359-2364.	2.1	38
147	Cu(I)-Catalyzed Tandem Reaction of Carbene Coupling and Horner–Wadsworth–Emmons Type Olefination: Access toward Enynes. Organic Letters, 2016, 18, 2024-2027.	2.4	38
148	Autoâ€Tandem Catalysis: Synthesis of Acridines by Pdâ€Catalyzed C=C Bond Formation and C(<i>sp²</i>)–N Crossâ€Coupling. European Journal of Organic Chemistry, 2012, 2012, 6586-6593.	1.2	36
149	Rh(II)-catalyzed [2,3]-sigmatropic rearrangement of sulfur ylides derived from N-tosylhydrazones and sulfides. Tetrahedron, 2012, 68, 5234-5240.	1.0	36
150	Synthesis of Trimethylstannyl Arylboronate Compounds by Sandmeyer-Type Transformations and Their Applications in Chemoselective Cross-Coupling Reactions. Journal of Organic Chemistry, 2014, 79, 1979-1988.	1.7	36
151	Cu(I)-catalyzed reaction of diazo compounds with terminal alkynes: a direct synthesis of trisubstituted furans. Tetrahedron, 2014, 70, 6957-6962.	1.0	36
152	Direct synthesis of arylboronic pinacol esters from arylamines. Organic Chemistry Frontiers, 2014, 1, 422-425.	2.3	36
153	Rhodium(II)―or Copper(I)â€Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp ²)âr'H Bonds: Access to Substituted 1 <i>H</i> â€Indenes. Angewandte Chemie, 2017, 129, 16229-16233.	1.6	36
154	A base-free, one-pot diazotization/cross-coupling of anilines with arylboronic acids. Tetrahedron Letters, 2011, 52, 518-522.	0.7	35
155	Synthesis of 1H-indazoles from N-tosylhydrazones and nitroaromatic compounds. Chemical Communications, 2014, 50, 5061-5063.	2.2	35
156	Pd(0)-catalyzed cross-coupling of allyl halides with α-diazocarbonyl compounds or N-mesylhydrazones: synthesis of 1,3-diene compounds. Organic and Biomolecular Chemistry, 2016, 14, 3809-3820.	1.5	34
157	Cathode ray tubes glass recycling: A review. Science of the Total Environment, 2019, 650, 2842-2849.	3.9	34
158	Synthesis of Alkenylboronates from <i>N</i> -Tosylhydrazones through Palladium-Catalyzed Carbene Migratory Insertion. Journal of the American Chemical Society, 2021, 143, 9769-9780.	6.6	34
159	Catalytic asymmetric S-H insertion reaction of carbenoids. Arkivoc, 2003, 2003, 84-91.	0.3	34
160	Intramolecular N–H insertion of α-diazocarbonyls catalyzed by Cu(acac)2: An efficient route to derivatives of 3-oxoazetidines, 3-oxopyrrolidines and 3-oxopiperidines. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2277-2280.	0.9	33
161	Stereoselective Intramolecular 1,3 Câ^'H Insertion in Rh(II) Carbene Reactions. Organic Letters, 2005, 7, 3103-3106.	2.4	33
162	Palladium-Catalyzed Cross-Coupling Reaction of Diazo Compounds and Vinyl Boronic Acids: An Approach to 1,3-Diene Compounds. Journal of Organic Chemistry, 2014, 79, 7711-7717.	1.7	33

#	Article	IF	CITATIONS
163	CuSO4-catalyzed diazo decomposition in water: a practical synthesis of β-keto esters. Tetrahedron Letters, 2006, 47, 8859-8861.	0.7	32
164	Sequential Au(I)-catalyzed reaction of water with <i>o</i> -acetylenyl-substituted phenyldiazoacetates. Beilstein Journal of Organic Chemistry, 2011, 7, 631-637.	1.3	32
165	Pd-Catalyzed ring-opening cross-coupling of cyclopropenes with aryl iodides. Chemical Communications, 2014, 50, 8050-8052.	2.2	32
166	The Generation of Difluoroketenimine and Its Application in the Synthesis of α,αâ€Difluoroâ€Î²â€amino Amides. Angewandte Chemie - International Edition, 2019, 58, 5744-5748.	7.2	32
167	Wolff rearrangement of diazo ketones derived from N-p-tolylsulfonyl-protected α- and β-amino acids. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1919-1924.	0.9	31
168	Palladium-catalyzed three-component reaction of N-tosylhydrazone, norbornene and aryl halide. Organic and Biomolecular Chemistry, 2014, 12, 3590-3593.	1.5	31
169	Rh(I)-Catalyzed Cross-Coupling of α-Diazoesters with Arylsiloxanes. Organic Letters, 2015, 17, 956-959.	2.4	31
170	Construction of All-Carbon Quaternary Centers through Cu-Catalyzed Sequential Carbene Migratory Insertion and Nucleophilic Substitution/Michael Addition. Journal of Organic Chemistry, 2015, 80, 8748-8757.	1.7	31
171	Coupling of arylboronic acids with benzyl halides or mesylates without adding transition metal catalysts. Tetrahedron, 2016, 72, 8022-8030.	1.0	31
172	An efficient synthesis of α-aryl β-(N-tosyl)amino phosphonate derivatives from α-diazophosphonate. Tetrahedron Letters, 2003, 44, 8339-8342.	0.7	30
173	Unusual Reaction of β-Hydroxy α-Diazo Carbonyl Compounds with Cl3CCN/NaH and Rh(II)-Catalyzed Reaction of β-Trichloroacetylamino α-Diazo Carbonyl Compounds. Organic Letters, 2003, 5, 2243-2246.	2.4	30
174	Synthesis of oxygen-containing heterocyclic compounds based on the intramolecular O–H insertion and Wolff rearrangement of α-diazocarbonyl compounds. Tetrahedron Letters, 2006, 47, 4537-4540.	0.7	30
175	Rh(I) atalyzed Reaction of Trifluoromethylketone <i>N</i> â€Tosylhydrazones and Arylboronates. Chinese Journal of Chemistry, 2016, 34, 473-476.	2.6	30
176	Palladium-Catalyzed Synthesis of Indoles and Isoquinolines with <i>in Situ</i> Generated Phosphinimine. Journal of Organic Chemistry, 2017, 82, 48-56.	1.7	30
177	Palladiumâ€Catalyzed [3+3] Annulation of Vinyl Chromium(0) Carbene Complexes through Carbene Migratory Insertion/Tsuji–Trost Reaction. Angewandte Chemie, 2017, 129, 13320-13324.	1.6	30
178	Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors. Journal of Organic Chemistry, 2018, 83, 1026-1032.	1.7	30
179	Palladium(0)-catalyzed C(sp ³)–Si bond formation <i>via</i> formal carbene insertion into a Si–H bond. Chemical Communications, 2018, 54, 11419-11422.	2.2	30
180	An efficient synthesis of aryl α-keto esters. Tetrahedron Letters, 2005, 46, 3927-3929.	0.7	29

#	Article	IF	CITATIONS
181	Palladium-catalyzed cross-coupling of aryl fluorides with N-tosylhydrazones via C–F bond activation. Chemical Communications, 2015, 51, 13321-13323.	2.2	29
182	Geminal difunctionalization of α-diazo arylmethylphosphonates: synthesis of fluorinated phosphonates. Organic and Biomolecular Chemistry, 2016, 14, 10444-10453.	1.5	29
183	Recycling lithium cobalt oxide from its spent batteries: An electrochemical approach combining extraction and synthesis. Journal of Hazardous Materials, 2021, 405, 124211.	6.5	29
184	Chemical Modification of Tb@C82 by Copper(I)-Catalyzed Cycloadditions. Chemistry of Materials, 2002, 14, 4021-4022.	3.2	28
185	Transition-Metal-Catalyzed Cross-Coupling with Non-Diazo Carbene Precursors. Synlett, 2019, 30, 542-551.	1.0	28
186	AuPPh3Cl/AgOTf-catalyzed reaction of terminal alkynes: nucleophilic addition to activated CO bond. Tetrahedron Letters, 2009, 50, 6053-6056.	0.7	27
187	Rhodium(I) atalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie - International Edition, 2016, 55, 15401-15405.	7.2	27
188	Copper(<scp>i</scp>)-catalyzed olefination of N-sulfonylhydrazones with sulfones. Chemical Communications, 2016, 52, 4478-4480.	2.2	26
189	Concise and diastereoselective approach to syn- and anti-N-tosyl-α-hydroxy β-amino acid derivatives. Tetrahedron, 2005, 61, 6546-6552.	1.0	25
190	Cu(I)-catalyzed coupling of diaryldiazomethanes with terminal alkynes: an efficient synthesis of tri-aryl-substituted allenes. Tetrahedron, 2015, 71, 9196-9201.	1.0	25
191	Cu(I)â€Catalyzed Threeâ€Component Coupling of Trifluoromethyl Ketone <i>N</i> â€Tosylhydrazones, Alkynes and Azides: Synthesis of Difluoromethylene Substituted 1,2,3â€Triazoles. Chinese Journal of Chemistry, 2017, 35, 387-391.	2.6	25
192	Pd-catalyzed coupling of β-hydroxy α-diazocarbonyl compounds with aryl iodides: a migratory insertion/β-hydroxy elimination sequence. Chemical Communications, 2011, 47, 3622.	2.2	24
193	Zn(II)- or Rh(I)-Catalyzed Rearrangement of Silylated [1,1′-Bi(cyclopropan)]-2′-en-1-ols. Journal of Organic Chemistry, 2014, 79, 6286-6293.	1.7	24
194	Transition-metal-free cascade reaction of α-halo-N-tosylhydrazones, indoles and arylboronic acids. Chemical Communications, 2016, 52, 5266-5268.	2.2	24
195	Palladium-Catalyzed Reductive Cross-Coupling Reaction of Aryl Chromium(0) Fischer Carbene Complexes with Aryl Iodides. Organometallics, 2018, 37, 1-10.	1.1	24
196	Stereoselective synthesis of enantiomerically pure 4,5-disubstituted pyrrolidinones from β-amino esters. Tetrahedron: Asymmetry, 1999, 10, 4553-4561.	1.8	23
197	Study of the Rh2(OAc)4- or BF3·OEt2-Mediated Reaction of Thioacetic S-Acid with α-Diazocarbonyl Compounds. European Journal of Organic Chemistry, 2003, 2003, 1784-1788.	1.2	23
198	Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions With N -Tosylhydrazones. Advances in Organometallic Chemistry, 2017, 67, 151-219.	0.5	22

#	Article	IF	CITATIONS
199	Palladium-catalyzed oxidative borylation of conjugated enynones through carbene migratory insertion: synthesis of furyl-substituted alkenylboronates. Chemical Communications, 2019, 55, 59-62.	2.2	22
200	Visibleâ€Lightâ€Promoted Ringâ€Opening Alkynylation, Alkenylation, and Allylation of Cyclic Hemiacetals through βâ€Scission of Alkoxy Radicals. Chemistry - A European Journal, 2019, 25, 8992-8995.	1.7	22
201	Catalyst-free cross-coupling of N-tosylhydrazones with chromium(0) Fischer carbene complexes: a new approach to diarylethanone. Organic Chemistry Frontiers, 2015, 2, 1450-1456.	2.3	21
202	Cu(I)-Catalyzed Coupling of Bis(trimethylsilyl)diazomethane with Terminal Alkynes: A Synthesis of 1,1-Disilyl Allenes. Journal of Organic Chemistry, 2018, 83, 6186-6192.	1.7	21
203	Formal Carbene C–H Bond Insertion in the Cu(I)-Catalyzed Reaction of Bis(trimethylsilyl)diazomethane with Benzoxazoles and Oxazoles. Organic Letters, 2019, 21, 1809-1812.	2.4	21
204	Effects of Elevated CO2 and Nitrogen Deposition on Ecosystem Carbon Fluxes on the Sanjiang Plain Wetland in Northeast China. PLoS ONE, 2013, 8, e66563.	1.1	21
205	Emission of PAHs, PCBs, PBDEs and heavy metals in air, water and soil around a waste plastic recycling factory in an industrial park, Eastern China. Chemosphere, 2022, 294, 133734.	4.2	21
206	Catalytic Asymmetric Homologation of 4‣ubstituted Cyclohexanones with CF ₃ CHN ₂ : Enantioselective Synthesis of α <i>â€</i> Trifluoromethyl Cycloheptanones. Angewandte Chemie - International Edition, 2022, 61, e202115098.	7.2	21
207	Enantioselective synthesis of condensed and transannular ring skeletons containing pyrrolidine moiety. Tetrahedron, 2010, 66, 1274-1279.	1.0	20
208	Cu(I)â€Catalyzed Asymmetric Crossâ€Coupling of <i>N</i> â€Tosylhydrazones and Trialkylsilylethynes: Enantioselective Construction of C(sp)—C(sp ³) Bonds. Chinese Journal of Chemistry, 2018, 36, 217-222.	2.6	20
209	Palladium-catalyzed carbene coupling of <i>N</i> -tosylhydrazones and arylbromides to synthesize cross-conjugated polymers. Polymer Chemistry, 2019, 10, 569-573.	1.9	20
210	Gold(I)-catalyzed arylmethylation of terminal alkynes. Tetrahedron Letters, 2009, 50, 2533-2535.	0.7	19
211	One-carbon homologation of arylboronic acids: a convenient approach to the synthesis of pinacol benzylboronates. Organic Chemistry Frontiers, 2016, 3, 817-822.	2.3	19
212	Metal-free oxidative cross-coupling of diazirines with arylboronic acids. Chemical Communications, 2016, 52, 1961-1963.	2.2	19
213	Synthesis of Benzyltributylstannanes by the Reaction of <i>N</i> -Tosylhydrazones with Bu ₃ SnH. Journal of Organic Chemistry, 2017, 82, 624-632.	1.7	19
214	Identifying Extraction Technology of Gold from Solid Waste in Terms of Environmental Friendliness. ACS Sustainable Chemistry and Engineering, 2019, 7, 7260-7267.	3.2	19
215	Cu(I)/Chiral Bisoxazoline-Catalyzed Enantioselective Sommelet–Hauser Rearrangement of Sulfonium Ylides. Journal of Organic Chemistry, 2020, 85, 12343-12358.	1.7	19
216	Ring-opening iodination and bromination of unstrained cycloalkanols through β-scission of alkoxy radicals. Chemical Communications, 2020, 56, 5002-5005.	2.2	19

#	Article	IF	CITATIONS
217	Difluoroketenimine: Generation from Difluorocarbene and Isocyanide and Its [3 + 2] Cycloadditions with Alkenes or Alkynes. Journal of Organic Chemistry, 2020, 85, 9791-9800.	1.7	19
218	Diastereoselective intermolecular Oî—,H insertions by Cu(II)-mediated carbenoids derived from phenyldiazoacetamide. Tetrahedron Letters, 2001, 42, 8511-8513.	0.7	18
219	A novel approach to bicyclic fused cyclopentenone derivatives. Tetrahedron Letters, 2003, 44, 587-589.	0.7	18
220	2,3-Migration in Rh(II)-Catalyzed Reactions of β-Trifluoroacetamido α-Diazocarbonyl Compounds. Organic Letters, 2006, 8, 3207-3210.	2.4	18
221	Palladium(<scp>ii</scp>)-catalyzed direct conversion of allyl arenes into alkenyl nitriles. Organic Chemistry Frontiers, 2014, 1, 1123-1127.	2.3	18
222	Transitionâ€Metalâ€Free Intramolecular Carbene Aromatic Substitution/BÃ1⁄4chner Reaction: Synthesis of Fluorenes and [6,5,7]Benzoâ€fused Rings. Angewandte Chemie, 2015, 127, 3099-3103.	1.6	18
223	Cp(Ï€-Allyl)Pd-Initiated Polymerization of Diazoacetates: Reaction Development, Kinetic Study, and Chain Transfer with Alcohols. Macromolecules, 2021, 54, 10914-10922.	2.2	18
224	Cu(I)-catalyzed cascade reaction of N-tosylhydrazones with 3-butyn-1-ol: A new synthesis of tetrahydrofurans. Chinese Journal of Catalysis, 2017, 38, 115-122.	6.9	17
225	Palladium-Catalyzed Oxidative Cross-Coupling of Conjugated Enynones with Allylarenes: Synthesis of Furyl-Substituted 1,3-Dienes. Journal of Organic Chemistry, 2019, 84, 8275-8283.	1.7	17
226	Metal-free synthesis of <i>gem</i> -silylboronate esters and their Pd(0)-catalyzed cross-coupling with aryliodides. Organic and Biomolecular Chemistry, 2019, 17, 5714-5724.	1.5	17
227	Fe(<scp>ii</scp>)-Catalyzed alkenylation of benzylic C–H bonds with diazo compounds. Chemical Communications, 2019, 55, 4047-4050.	2.2	17
228	Palladium-Catalyzed Cascade Cyclization/Dearomatization/Arylation of Alkyne-Containing Phenol-Based Biaryls with Aryl Halides: An Entry to Diversely Functionalized Spirocyclohexadienones. Journal of Organic Chemistry, 2020, 85, 6687-6696.	1.7	17
229	Investigation of Electronic Effects of Rh(II)-Mediated α-Methyl-Substituted Carbenoid Intramolecular Câ°'H Insertion. Journal of Organic Chemistry, 1998, 63, 8589-8594.	1.7	16
230	InI ₃ ―or ZnI ₂ â€Catalyzed Reaction of Hydroxylated 1,5â€Allenynes with Thiols: A New Access to 3,5â€Disubstituted Toluene Derivatives. Chemistry - an Asian Journal, 2010, 5, 2214-2220.	1.7	16
231	Regioselective copper-catalyzed aminoborylation of styrenes with bis(pinacolato)diboron and diazo compounds. Chemical Communications, 2018, 54, 12266-12269.	2.2	16
232	Palladium-Catalyzed Living/Controlled Vinyl Addition Polymerization of Cyclopropenes. Journal of the American Chemical Society, 2021, 143, 17806-17815.	6.6	16
233	Stereoselective nucleophilic addition of chiral lithium enolates to (N-tosyl)imines: enantioselective synthesis of β-aryl-β-amino acid derivatives. Tetrahedron Letters, 2002, 43, 3209-3212.	0.7	15
234	Reaction of β-trimethylsiloxy α-diazocarbonyl compounds with trimethylsilyl halides: a novel diazo decomposition process. Tetrahedron Letters, 2005, 46, 8873-8875.	0.7	15

#	Article	IF	CITATIONS
235	Conversion of Aromatic Amino into Trifluoromethyl Groups through a SandmeyerÂ-Type Transformation. Synthesis, 2014, 46, 2143-2148.	1.2	15
236	Rh ^I atalyzed Carbonylative [3+1] Construction of Cyclobutenones via Câ^'C Ïfâ€Bond Activation of Cyclopropenes. Chemistry - A European Journal, 2018, 24, 15786-15790.	1.7	15
237	Unusual reaction of β-hydroxy α-diazo carbonyl compounds with TsNHNĩ`CHCOCl/Et3N. Tetrahedron Letters, 2004, 45, 4563-4566.	0.7	14
238	Rh ^{II} â€Catalyzed Reaction of αâ€Diazocarbonyl Compounds Bearing βâ€Trichloroacetylamino Substituent: CH Insertion versus 1,2â€Hâ€Shift. Chemistry - an Asian Journal, 2010, 5, 1112-1119.	1.7	14
239	N-Tosylhydrazine-mediated deoxygenative hydrogenation ofÂaldehydes and ketones catalyzed by Pd/C. Tetrahedron, 2013, 69, 6083-6087.	1.0	14
240	Pd-Catalyzed Cross-Coupling of Terminal Alkynes with Chromium(0) Fischer Carbene Complexes. Organic Letters, 2017, 19, 2861-2864.	2.4	14
241	Palladium atalyzed Oxygenative Cross oupling of Ynamides and Benzyl Bromides by Carbene Migratory Insertion. Angewandte Chemie, 2018, 130, 2746-2750.	1.6	14
242	Study of Gold Leaching Behavior in the Chlorination Process from Waste Printed Circuit Boards. ACS Sustainable Chemistry and Engineering, 2021, 9, 284-290.	3.2	14
243	Synthesis of Di- and Triarylmethanes through Palladium-Catalyzed Reductive Coupling of N-Tosylhydrazones and Aryl Bromides. Synthesis, 2017, 49, 1073-1086.	1.2	13
244	Catalyst-free phosphorylation of aryl halides with trialkyl phosphites through electrochemical reduction. Chemical Communications, 2019, 55, 14035-14038.	2.2	13
245	Synthesis of 2-cyclopropyl-4-pyrones and 5-cyclopropyl-2-alkylene-3(2H)-furanones based on tandem cyclization-cyclopropanation strategy. Tetrahedron, 2019, 75, 855-861.	1.0	13
246	Ligandâ€Controlled Site―and Enantioselective Carbene Insertion into Carbonâ€Silicon Bonds of Benzosilacyclobutanes. Chemistry - A European Journal, 2022, 28, .	1.7	13
247	Diazo Decomposition in the Presence of Tributyltin Hydride. Reduction of α-Diazo Carbonyl Compounds. Tetrahedron, 2000, 56, 7457-7461.	1.0	12
248	A new method for the synthesis of 2-cyclopenten-1-one-5-carboxylic ester derivatives via Rh2(OAc)4-mediated intramolecular C–H insertion reaction of 4Z-β-vinyl-α-diazo β-ketoesters. Tetrahedron, 2005, 61, 10811-10817.	1.0	12
249	Palladium-Catalyzed Coupling Reaction of α-Diazocarbonyl Compounds with Aromatic Boronic Acids or Halides. Synthesis, 2010, 2010, 4154-4168.	1.2	12
250	Palladiumâ€Catalyzed Cascade Reactions of <i>α</i> â€Haloâ€ <i>N</i> â€Tosylhydrazones, Indoles, and Aryl Iodides. Asian Journal of Organic Chemistry, 2016, 5, 874-877.	1.3	12
251	C–H Bond Functionalization of Benzoxazoles with Chromium(0) Fischer Carbene Complexes. Organometallics, 2016, 35, 1409-1414.	1.1	12
252	Synthesis of Allenylphosphonates through Cu(I)-Catalyzed CouplingÂ-of Terminal Alkynes with Diazophosphonates. Synthesis, 2016, 48, 751-760.	1.2	12

#	Article	IF	CITATIONS
253	Distalâ€Bondâ€Selective Câ^'C Activation of Ringâ€Fused Cyclopentanones: An Efficient Access to Spiroindanones. Angewandte Chemie, 2017, 129, 2416-2420.	1.6	12
254	When diazo compounds meet with organoboron compounds. Pure and Applied Chemistry, 2018, 90, 617-623.	0.9	12
255	Transitionâ€Metalâ€Free [4+1] Cycloaddition for the Synthesis of 1,2,3â€Triazole from α,αâ€Difluoro―N â€Tosylhydrazone and Amine through Câ€F Bond Cleavage. Asian Journal of Organic Chemistry, 2019, 8, 646-649.	1.3	12
256	Synthesis and Rhodium(II)-Mediated Cascade Cyclopropanation/Rearrangement/Isomerization of Diazo 2,3,5-Trisubstituted Furans: The Construction of Penta-substituted Aromatic Compounds. Journal of Organic Chemistry, 2020, 85, 2395-2405.	1.7	12
257	Environmentally Friendly Technology for Separating Gold from Waste Printed Circuit Boards: A Combination of Suspension Electrolysis and a Chlorination Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 16952-16959.	3.2	12
258	Generation of αâ€Boryl Radicals and Their Conjugate Addition to Enones: Transitionâ€Metalâ€Free Alkylation of <i>gem</i> â€Diborylalkanes. Chemistry - A European Journal, 2021, 27, 2294-2298.	1.7	12
259	Rhodium(I) atalyzed Sequential C(sp)C(sp ³) and C(sp ³)C(sp ³) Bond Formation through Migratory Carbene Insertion. Angewandte Chemie, 2015, 127, 8002-8005.	1.6	11
260	Copper(I)â€Catalyzed Chemoselective Coupling of Cyclopropanols with Diazoesters: Ringâ€Opening Câ^'C Bond Formations. Angewandte Chemie, 2017, 129, 4003-4008.	1.6	11
261	Rh(I)â€Catalyzed Arylation of <i>α</i> â€Diazo Phosphonates with Aryl Boronic Acids: Synthesis of Diarylmethylphosphonates. Chinese Journal of Chemistry, 2017, 35, 621-627.	2.6	11
262	Construction of <scp>Alkenylâ€Functionalized</scp> Spirocarbocyclic Scaffolds from <scp>Alkyneâ€Containing Phenolâ€Based</scp> Biaryls <i>via</i> Sequential <scp>Iodineâ€Induced</scp> Cyclization/Dearomatization and <scp>Pdâ€Catalyzed</scp> Coupling of <scp><i>N</i>â€Tosylhydrazones</scp> . Chinese Journal of Chemistry, 2020, 38, 1257-1262.	2.6	11
263	Synthesis of Poly(β-hydroxyketone)s with Three-Component Polymerization of Diazocarbonyl Compounds, Triethylboron, and Aldehydes. Macromolecules, 2022, 55, 2424-2432.	2.2	11
264	1,2-Migration in the reactions of ruthenium vinyl carbene with propargyl alcohols. Organic Chemistry Frontiers, 2014, 1, 1077-1082.	2.3	10
265	RhI-Catalyzed Stille-Type Coupling of Diazoesters with Aryl Trimethylstannanes. Australian Journal of Chemistry, 2015, 68, 1379.	0.5	10
266	Pd ⁰ atalyzed Four omponent Reaction of Aryl Halide, CO, <i>N</i> â€Tosylhydrazone, and Amine. Chemistry - an Asian Journal, 2018, 13, 3658-3663.	1.7	10
267	Pdâ€catalyzed Oxidative Crossâ€coupling of Alkyl Chromium(0) Fischer Carbene Complexes with Organoboronic Acids. Chemistry - an Asian Journal, 2018, 13, 3165-3168.	1.7	10
268	Polymerization with the Cu(<scp>i</scp>)-catalyzed Doyle–Kirmse reaction of bis(allyl sulfides) and bis(α-diazoesters). Polymer Chemistry, 2022, 13, 2123-2131.	1.9	10
269	Copper(I)â€Catalyzed Stereoselective Synthesis of (<i>E</i>)â€Î±â€Alkynylâ€Î±,βâ€unsaturated Esters from a Te Alkyne, Diazoesters and Aldehydes. Advanced Synthesis and Catalysis, 2016, 358, 2480-2488.	rminal 2.1	9
270	Experimental and Computational Studies on Rh(I)-Catalyzed Reaction of Siloxyvinylcyclopropanes and Diazoesters. Journal of the American Chemical Society, 2020, 142, 21032-21039.	6.6	9

#	Article	IF	CITATIONS
271	Synthesis of Trifluoromethylated Cycloheptatrienes from N-Tosylhydrazones: Transition-Metal-Free BA1⁄4 chner Ring Expansion. Synlett, 2014, 26, 59-62.	1.0	8
272	The Generation of Difluoroketenimine and Its Application in the Synthesis of α,αâ€Difluoroâ€Î²â€amino Amides. Angewandte Chemie, 2019, 131, 5800-5804.	1.6	8
273	Palladium-catalyzed Cross-coupling of Aryl Iodides with β-Trimethylsiloxy-α-diazoesters: A Novel Approach toward β-Keto-α-arylesters. Chemistry Letters, 2011, 40, 1009-1011.	0.7	7
274	Rhodium(I) atalyzed Câ^'C Bond Activation of Siloxyvinylcyclopropanes with Diazoesters. Angewandte Chemie, 2016, 128, 15627-15631.	1.6	7
275	Rh(<scp>i</scp>)-Catalyzed coupling of 2-bromoethyl aryldiazoacetates with tertiary propargyl alcohols through carbene migratory insertion. Organic Chemistry Frontiers, 2016, 3, 1691-1698.	2.3	7
276	Gold-catalyzed chemo- and site-selective direct C-H functionalization of phenols with diazo compounds. Science China Chemistry, 2014, 57, 1057-1057.	4.2	6
277	Transition-metal-free three-component reaction of cyclopropenes, aldehydes and amines. Chemical Communications, 2016, 52, 13285-13287.	2.2	6
278	Palladium-Catalyzed Oxidative Coupling of the Allenic C–H Bond with α-Diazo Esters: Synthesis of [3]Dendralenes. Journal of Organic Chemistry, 2021, 86, 5371-5379.	1.7	6
279	Synthesis of furan from allenic sulfide derivatives. Science in China Series B: Chemistry, 2009, 52, 1622-1630.	0.8	5
280	Studies toward the Synthesis of (<i>R</i>)â€(+)â€Harmicine. Chinese Journal of Chemistry, 2012, 30, 2297-2302.	2.6	5
281	Catalystâ€Free Imidation of Allyl Sulfides with Chloramineâ€T and Subsequent [2,3]â€Sigmatropic Rearrangement. Chinese Journal of Chemistry, 2012, 30, 2029-2035.	2.6	5
282	Trifluoromethylation of graphene. APL Materials, 2014, 2, .	2.2	5
283	Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted <i>N</i> -tosylhydrazones: synthesis of <i>trans</i> -alkenyl MIDA boronates. Chemical Communications, 2022, 58, 399-402.	2.2	5
284	Synthesis of polyallenoates through copper-mediated cross-coupling of dialkynes and bis-α-diazoesters. Chemical Communications, 2022, 58, 3909-3912.	2.2	5
285	Ru(II)-Catalyzed rearrangement of 2-aryl-2-(phenylthio)penta-3,4-dienyl 2,2,2-trichloroacetimidates. Journal of Organometallic Chemistry, 2011, 696, 118-122.	0.8	4
286	Ru(<scp>ii</scp>)-catalyzed rearrangement of the allenic sulfide bearing propargyl moiety: efficient formation of benzene derivatives. Organic Chemistry Frontiers, 2014, 1, 235-239.	2.3	4
287	Metal-catalyzed rearrangement of allenylsulfides to furan: A theoretical mechanistic approach. Molecular Catalysis, 2017, 443, 148-154.	1.0	4
288	Palladium(0) atalyzed Si—Si Bond Insertion by the Terminal Nitrogen of Diazo Compounds. Chinese Journal of Chemistry, 2018, 36, 945-949.	2.6	4

#	Article	IF	CITATIONS
289	Tracing and elucidating visible-light mediated oxidation and C–H functionalization of amines using mass spectrometry. Chemical Communications, 2020, 56, 2163-2166.	2.2	4
290	Palladium-catalyzed carbene coupling polymerization: synthesis of <i>E</i> -poly(arylene vinylene)s. Chemical Communications, 2022, 58, 4032-4035.	2.2	4
291	Cu(I)/Chiral Bisoxazolineâ€Catalyzed Enantioselective Doyleâ€Kirmse Reaction of Allenyl Sulfides with <i>α</i> â€Diazoesters. Chemistry - A European Journal, 2022, 28, .	1.7	4
292	Transition-Metal-Catalyzed Polymerization of Cyclopropenes. Chinese Journal of Organic Chemistry, 2021, , 1888.	0.6	3
293	Azacycle-Directed Formal Aromatic C(sp ²)–H Insertion with Cr(0) Fischer Carbene Complex via Oxidative Hydrogen Migration. Organometallics, 2021, 40, 3526-3534.	1.1	3
294	Catalytic Asymmetric Homologation of 4â€5ubstituted Cyclohexanones with CF ₃ CHN ₂ : Enantioselective Synthesis of α <i>â€</i> Trifluoromethyl Cycloheptanones. Angewandte Chemie, 2022, 134, .	1.6	3
295	Carbene insertion into acyl C-H bonds: Rh(III)-catalyzed cross-coupling of 2-aminobenzaldehydes with conjugated enynones. Tetrahedron, 2021, 92, 132274.	1.0	2
296	Mass spectrometric study on methyl 5-methyl-2-oxo-3-[2-(4-R-phenyl)-1-ethyl]cyclopentanecarboxylates and methyl 2-oxo-5-(4-R-phenyl)-3-propylcyclopentanecarboxylates. Rapid Communications in Mass Spectrometry, 1997, 11, 1818-1822.	0.7	1
297	Increments for ¹ H and ¹³ C NMR chemical shifts in pinacol arylboronates. Canadian Journal of Chemistry, 2012, 90, 71-74.	0.6	1
298	Synthesis of Heterocyclic Compounds Based on Transition-Metal-Catalyzed Carbene Coupling Reactions. , 2018, , 129-191.		1
299	Rh(i)-Catalyzed intramolecular [2 + 2 + 1] cycloaddition of diynes with the N-terminal of the diazo group. Organic Chemistry Frontiers, 2019, 6, 2329-2333.	2.3	1
300	Unusual Reaction of β-Hydroxy α-Diazo Carbonyl Compounds with TsNHN=CHCOCl/Et3N ChemInform, 2004, 35, no.	0.1	0
301	A Highly Stereoselective Addition of the Anion Derived from ?-Diazoacetamide to Aromatic N-Tosylimines ChemInform, 2005, 36, no.	0.1	0
302	An Efficient Synthesis of Aryl α-Keto Esters ChemInform, 2005, 36, no.	0.1	0
303	Concise and Diastereoselective Approach to syn- and anti-N-Tosyl-α-hydroxy β-Amino Acid Derivatives ChemInform, 2005, 36, no.	0.1	0
304	Diastereoselective addition of lithium enolate of γ-substituted α-diazoacetoacetate to N-sulfinyl imines. Science Bulletin, 2010, 55, 2847-2854.	1.7	0
305	Lewis Acid Controlled Regioselective 1,2 and 1,4 Reaction of α,βâ€Unsaturated Carbonyl Compounds with Ti ^{IV} Enolates Derived from αâ€Diazo βâ€Keto Carbonyl Compounds ChemInform, 2002, 33, 53-53.	0.1	0
306	Reactions of Ylides Generated from M C Bonds. , 2021, , .		0