Daniel Ketelhuth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436079/publications.pdf

Version: 2024-02-01

76 papers 4,031 citations

35 h-index 123424 61 g-index

78 all docs

78 docs citations

times ranked

78

5711 citing authors

#	Article	IF	Citations
1	The mineralocorticoid receptor blocker spironolactone lowers plasma interferon-13 and interleukin-6 in patients with type 2 diabetes and treatment-resistant hypertension. Journal of Hypertension, 2022, 40, 153-162.	0.5	4
2	ApoB100â€reactive T cells: Does liver tolerance hold the key to modulating adaptive immunity in atherosclerosis?. Journal of Internal Medicine, 2022, 291, 530-532.	6.0	1
3	Inhibition of IL17A Using an Affibody Molecule Attenuates Inflammation in ApoE-Deficient Mice. Frontiers in Cardiovascular Medicine, 2022, 9, 831039.	2.4	O
4	Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clinical Science, 2022, 136, 435-454.	4.3	8
5	Genetic Deficiency of Indoleamine 2,3-dioxygenase Aggravates Vascular but Not Liver Disease in a Nonalcoholic Steatohepatitis and Atherosclerosis Comorbidity Model. International Journal of Molecular Sciences, 2022, 23, 5203.	4.1	3
6	Animal Models of Atherosclerosis–Supportive Notes and Tricks of the Trade. Circulation Research, 2022, 130, 1869-1887.	4.5	26
7	Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. Journal of Internal Medicine, 2021, 289, 53-68.	6.0	33
8	Disruption of GPR35 Signaling in Bone Marrow-Derived Cells Does Not Influence Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Metabolites, 2021, 11, 411.	2.9	6
9	Open Up your Science in <i>EHJ Open</i> Luropean Heart Journal Open, 2021, 1, .	2.3	1
10	The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. Journal of Clinical Investigation, 2021, 131, .	8.2	37
11	3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlrâr'/âr' mice. Cardiovascular Research, 2020, 116, 1948-1957.	3.8	29
12	Platelet factor 4 enhances CD4+ T effector memory cell responses via Aktâ€PGC1αâ€TFAM signalingâ€mediated mitochondrial biogenesis. Journal of Thrombosis and Haemostasis, 2020, 18, 2685-2700.	3.8	18
13	Ikk2-mediated inflammatory activation of arterial endothelial cells promotes the development and progression of atherosclerosis. Atherosclerosis, 2020, 307, 21-31.	0.8	9
14	Exhaustion of CD4+ T-cells mediated by the Kynurenine Pathway in Melanoma. Scientific Reports, 2019, 9, 12150.	3.3	54
15	Quantification of Atherosclerosis in Mice. Journal of Visualized Experiments, 2019, , .	0.3	21
16	Proinflammatory Action of a New Electronegative Low-Density Lipoprotein Epitope. Biomolecules, 2019, 9, 386.	4.0	7
17	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 1385-1392.	3.8	58
18	Germinal Center–Derived Antibodies Promote Atherosclerosis Plaque Size and Stability. Circulation, 2019, 139, 2466-2482.	1.6	51

#	Article	IF	CITATIONS
19	The immunometabolic role of indoleamine 2,3-dioxygenase in atherosclerotic cardiovascular disease: immune homeostatic mechanisms in the artery wall. Cardiovascular Research, 2019, 115, 1408-1415.	3.8	26
20	Immunomodulatory effects of interferon- \hat{I}^3 on human fetal cardiac mesenchymal stromal cells. Stem Cell Research and Therapy, 2019, 10, 371.	5.5	5
21	Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 10-19.	3.8	72
22	The interplay between cytokines and the Kynurenine pathway in inflammation and atherosclerosis. Cytokine, 2019, 122, 154148.	3.2	99
23	Increased uptake of oxLDL does not exert lipotoxic effects in insulin-secreting cells. Journal of Molecular Endocrinology, 2019, 62, 159-168.	2.5	3
24	Fatal demyelinating disease is induced by monocyte-derived macrophages in the absence of TGF- \hat{l}^2 signaling. Nature Immunology, 2018, 19, 1-7.	14.5	62
25	Lipid-driven immunometabolic responses in atherosclerosis. Current Opinion in Lipidology, 2018, 29, 375-380.	2.7	33
26	Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice. European Journal of Preventive Cardiology, 2018, 25, 948-955.	1.8	46
27	Apoptosis and Mobilization of Lymphocytes to Cardiac Tissue Is Associated with Myocardial Infarction in a Reperfused Porcine Model and Infarct Size in Post-PCI Patients. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	4.0	16
28	Activation of the Regulatory T-Cell/Indoleamine 2,3-Dioxygenase Axis Reduces Vascular Inflammation and Atherosclerosis in Hyperlipidemic Mice. Frontiers in Immunology, 2018, 9, 950.	4.8	29
29	Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation, 2018, 138, 2513-2526.	1.6	49
30	Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. European Heart Journal, 2018, 39, 2562-2573.	2.2	126
31	ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. Circulation, 2018, 138, 1693-1705.	1.6	106
32	Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e145-e158.	2.4	38
33	Abstract 454: Repression of Map1lc3a During Atherosclerosis Progression Plays an Important Role in the Regulation of Vascular Smooth Muscle Cell Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
34	Vaccination against Tâ€cell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. Journal of Internal Medicine, 2017, 281, 383-397.	6.0	51
35	Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circulation Research, 2017, 120, 1740-1753.	4.5	55
36	Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Scientific Reports, 2017, 7, 15655.	3.3	51

#	Article	IF	CITATIONS
37	Microvesicles in vascular homeostasis and diseases. Thrombosis and Haemostasis, 2017, 117, 1296-1316.	3.4	193
38	The inflammatory cytokine interferonâ€gamma inhibits sortilinâ€1 expression in hepatocytes via the JAK/STAT pathway. European Journal of Immunology, 2017, 47, 1918-1924.	2.9	15
39	Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice. Scientific Reports, 2016, 6, 28337.	3.3	26
40	Atherosclerosis Susceptibility in Mice Is Independent of the <i>V1</i> Immunoglobulin Heavy Chain Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 25-36.	2.4	17
41	Adaptive Response of T and B Cells in Atherosclerosis. Circulation Research, 2016, 118, 668-678.	4.5	209
42	Modulation of Autoimmunity and Atherosclerosis $\tilde{a} \in \hat{a} \in \hat{a}$ Common Targets and Promising Translational Approaches Against Disease $\hat{a} \in \hat{a}$. Circulation Journal, 2015, 79, 924-933.	1.6	38
43	The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. Hamostaseologie, 2015, 35, 128-136.	1.9	85
44	Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2030-8.	7.1	62
45	Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoeâ^'/â^' mice. Cardiovascular Research, 2015, 106, 295-302.	3.8	77
46	Toll-Like Receptor 3 Influences Glucose Homeostasis and \hat{l}^2 -Cell Insulin Secretion. Diabetes, 2015, 64, 3425-3438.	0.6	18
47	Immunostaining of Lymphocytes in Mouse Atherosclerotic Plaque. Methods in Molecular Biology, 2015, 1339, 149-159.	0.9	13
48	The leukotriene B4 receptor (BLT) antagonist BIIL284 decreases atherosclerosis in ApoE \hat{a} mice. Prostaglandins and Other Lipid Mediators, 2015, 121, 105-109.	1.9	26
49	<i>Mycobacterium bovis </i> <scp>BCG</scp> killed by extended freezeâ€drying induces an immunoregulatory profile and protects against atherosclerosis. Journal of Internal Medicine, 2014, 275, 49-58.	6.0	35
50	Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thrombosis and Haemostasis, 2014, 112, 332-341.	3.4	10
51	Lymphocytes in Atherosclerosis. , 2014, , 686-691.		0
52	Transforming Growth Factor‑β Signaling in T Cells Promotes Stabilization of Atherosclerotic Plaques Through an Interleukin-17–Dependent Pathway. Science Translational Medicine, 2013, 5, 196ra100.	12.4	162
53	Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. Journal of Clinical Investigation, 2013, 123, 1323-1334.	8.2	304
54	Lack of Invariant Natural Killer T Cells Affects Lipid Metabolism in Adipose Tissue of Diet-Induced Obese Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1189-1196.	2.4	21

#	Article	IF	CITATIONS
55	Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovascular Research, 2013, 99, 364-373.	3.8	94
56	Uptake of oxLDL and IL-10 Production by Macrophages Requires PAFR and CD36 Recruitment into the Same Lipid Rafts. PLoS ONE, 2013, 8, e76893.	2.5	42
57	T Cell-based Therapies for Atherosclerosis. Current Pharmaceutical Design, 2013, 19, 5850-5858.	1.9	36
58	Abstract 129: Investigation of Atherosclerosis in Association with Arthritic Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0
59	The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice. European Heart Journal, 2012, 33, 2025-2034.	2.2	92
60	Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoeâ^'/â^' mice. Immunobiology, 2012, 217, 540-547.	1.9	49
61	Immunotherapy With Tolerogenic Apolipoprotein B-100–Loaded Dendritic Cells Attenuates Atherosclerosis in Hypercholesterolemic Mice. Circulation, 2011, 123, 1083-1091.	1.6	175
62	Cellular immunity, low-density lipoprotein and atherosclerosis: Break of tolerance in the artery wall. Thrombosis and Haemostasis, 2011, 106, 779-786.	3.4	103
63	The Role of Matrix Metalloproteinases in Atherothrombosis. Current Atherosclerosis Reports, 2011, 13, 162-169.	4.8	84
64	Identification of a Danger-Associated Peptide From Apolipoprotein B100 (ApoBDS-1) That Triggers Innate Proatherogenic Responses. Circulation, 2011, 124, 2433-2443.	1.6	45
65	Matrix Metalloproteinases in Atherothrombosis. Progress in Cardiovascular Diseases, 2010, 52, 410-428.	3.1	164
66	High-Density Lipoprotein Inhibits the Uptake of Modified Low- Density Lipoprotein and the Expression of CD36 and Fcl ³ RI. Journal of Atherosclerosis and Thrombosis, 2010, 17, 844-857.	2.0	11
67	Intranasal Immunization With an Apolipoprotein B-100 Fusion Protein Induces Antigen-Specific Regulatory T Cells and Reduces Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 946-952.	2.4	179
68	Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. Journal of Experimental Medicine, 2010, 207, 1081-1093.	8.5	212
69	Autoantibody Response to Chromatographic Fractions from Oxidized LDL in Unstable Angina Patients and Healthy Controls. Scandinavian Journal of Immunology, 2008, 68, 456-462.	2.7	22
70	Role of PPAR-gamma in the Modulation of CD36 and FcgammaRII induced by LDL with Low and High Degrees of Oxidation During the Differentiation of the Monocytic THP-1 Cell Line. Cellular Physiology and Biochemistry, 2008, 22, 549-556.	1.6	21
71	Soy protein containing isoflavones favorably influences macrophage lipoprotein metabolism but not the development of atherosclerosis in CETP transgenic mice. Lipids, 2006, 41, 655-662.	1.7	3
72	Atherosclerosis is enhanced by testosterone deficiency and attenuated by CETP expression in transgenic mice. Journal of Lipid Research, 2006, 47, 1526-1534.	4.2	32

#	Article	IF	CITATION
73	The Autoantibody Repertoire Against Copper- or Macrophage-Modified LDL Differs in Normolipidemics and Hypercholesterolemic Patients. Journal of Clinical Immunology, 2004, 24, 170-176.	3.8	34
74	Increased microvascular permeability in the hamster cheek pouch induced by oxidized low density lipoprotein (oxLDL) and some fragmented apolipoprotein B proteins. Inflammation Research, 2003, 52, 215-220.	4.0	23
75	Isolation, characterization and biological activity of acidic phospholipase A2 isoforms from Bothrops jararacussu snake venom. Biochimie, 2003, 85, 983-991.	2.6	45
76	Macrophages take up triacylglycerol-rich emulsions at a faster rate upon co-incubation with native and modified LDL: An investigation on the role of natural chylomicrons in atherosclerosis. Journal of Cellular Biochemistry, 2002, 84, 309-323.	2.6	18