Lizhong Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436003/publications.pdf

Version: 2024-02-01

172457 189892 3,001 127 29 50 citations h-index g-index papers 128 128 128 4044 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intrinsic spin Hall conductivity plateau in topological semimetals with triply degenerate points. Physica B: Condensed Matter, 2022, 629, 413626.	2.7	0
2	Slater–Koster parametrization for the phonons of monolayer MoX ₂ (X = S, Se or Te). Journal of Physics Condensed Matter, 2022, 34, 195702.	1.8	1
3	Dirac Semimetals in Homogeneous Holey Carbon Nitride Monolayers. Journal of Physical Chemistry C, 2021, 125, 6082-6089.	3.1	17
4	Dirac Semimetal Protected by Nonsymmorphic Mirror Symmetries in TPHâ€Graphene. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100039.	2.4	7
5	High temperature clarifier sulfate enhancing the infrared emission of Oxyfluorosilicate glass ceramics containing CaF2 nanocrystals. Journal of Non-Crystalline Solids, 2021, 561, 120753.	3.1	2
6	Nontrivial topological states in new two-dimensional CdAs. Journal of Physics Condensed Matter, 2021, 33, 365701.	1.8	2
7	ZnS enhancing the infrared emission of Er3+ doped oxyfluorosulfide glasses with low hydroxyl content. Journal of Non-Crystalline Solids, 2021, 566, 120906.	3.1	2
8	1T-CrO ₂ monolayer: a high-temperature Dirac half-metal for high-speed spintronics. Nanoscale Advances, 2021, 3, 3093-3099.	4.6	15
9	Enhanced 1–5Âμm near- and mid-infrared emission in Ho3+/Yb3+ codoped TeO2-ZnF2 oxyfluorotellurite glasses. Journal of Rare Earths, 2020, 38, 1044-1052.	4.8	26
10	Removal of hydroxyl groups to enhance the near- and mid-infrared emission of heavy-metal oxyfluoride glasses by chemical clarification: Nitrate ions. Journal of Non-Crystalline Solids, 2020, 544, 120165.	3.1	10
11	Topological Phase Transition in 2D 1T′â€WSTe. Physica Status Solidi (B): Basic Research, 2020, 257, 2000010.	1.5	2
12	Valley Polarization in Monolayer Ferromagnetic FeCl: A Firstâ€Principles Study. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000206.	2.4	2
13	Topological nodal lines in three-dimensional single wall carbon nanotube network. Computational Materials Science, 2019, 169, 109123.	3.0	2
14	Lowâ€Energy GeP Monolayers with Natural Typeâ€I Homojunctions for SunLightâ€Driven Water Splitting. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900470.	2.4	12
15	Coexistence of Weyl and Typeâ€II Triply Degenerate Fermions in a Ternary Topological Semimetal YPtP. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900421.	2.4	2
16	Increasing ZnF2 content enhancing the near- and mid-infrared emission in Er3+/Yb3+ codoped oxyfluorotellurite glasses with decreased hydroxyl. Journal of Luminescence, 2019, 216, 116683.	3.1	11
17	A constitutive model coupling irradiation with two-phase lithiation for lithium-ion battery electrodes. Philosophical Magazine, 2019, 99, 992-1013.	1.6	9
18	First-principles study on the magnetic properties of \hat{l}^2 -Ti68.75Nb25X6.25 (X=Mo, Sn, Ta, Zr, Fe) alloys. AIP Advances, 2019, 9, 065102.	1.3	0

#	Article	IF	Citations
19	Strong anisotropic nodal lines in the TiBe family. Physical Chemistry Chemical Physics, 2019, 21, 8402-8407.	2.8	10
20	New type of hybrid nodal line semimetal in Be ₂ Si. New Journal of Physics, 2019, 21, 033018.	2.9	20
21	Topological dual double node-line semimetals NaAlSi(Ge) and their potential as cathode material for sodium ion batteries. Journal of Materials Chemistry C, 2019, 7, 15375-15381.	5. 5	34
22	First-principles prediction of two atomic-thin phosphorene allotropes with potentials for sun-light-driven water splitting. Journal of Physics Condensed Matter, 2019, 31, 075702.	1.8	7
23	Two dimensional topological insulators in bilayer BiB. Computational Materials Science, 2019, 160, 82-85.	3.0	1
24	Lithiation-induced interfacial failure of electrode-collector: A first-principles study. Materials Chemistry and Physics, 2019, 222, 193-199.	4.0	9
25	Domain Wall Motion in Perovskite Ferroelectrics Studied by the Nudged Elastic Band Method. Journal of Physical Chemistry C, 2018, 122, 3091-3100.	3.1	31
26	Coexistence of open and closed type nodal line topological semimetals in two dimensional B ₂ C. Journal of Materials Chemistry C, 2018, 6, 1206-1214.	5.5	68
27	Removal of hydroxyl routes enhancing 2.85 μm mid-infrared luminescence in oxyfluorotellurite glass with high ZnF2 content. Journal of Non-Crystalline Solids, 2018, 502, 97-105.	3.1	16
28	Two-dimensional semiconductors XY 2 (XÂ=ÂGe,Sn;YÂ=ÂS,Se) with promising piezoelectric properties. Computational Condensed Matter, 2017, 11, 33-39.	2.1	10
29	Ferrimagnetic half-metallic properties of Cr/Fe \hat{l} doped MoS ₂ monolayer. RSC Advances, 2017, 7, 20116-20122.	3.6	12
30	Prediction of twoâ€dimensional BiSb with puckered structure. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700051.	2.4	11
31	Large gap two dimensional topological insulators: the bilayer triangular lattice TIM (M = N, P, As, Sb). Journal of Materials Chemistry C, 2017, 5, 4268-4274.	5.5	6
32	Threeâ€Dimensional Dirac Semimetal <i>β</i> â€PbO ₂ . Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700271.	2.4	9
33	Response to "Comment on  Nanoindentation models and Young's modulus of monolayer graphene: A molecular dynamics study'―[Appl. Phys. Lett. 110 , 176101 (2017)]. Applied Physics Letters, 2017, 3.	1 1803	1
34	Magnetic control of single transition metal doped MoS2 through H/F chemical decoration. Journal of Magnetism and Magnetic Materials, 2017, 422, 243-248.	2.3	7
35	Dead layer effect and its elimination in ferroelectric thin film with oxide electrodes. Acta Materialia, 2016, 112, 216-223.	7.9	30
36	Two Dimensional Antiferromagnetic Chern Insulator: NiRuCl ₆ . Nano Letters, 2016, 16, 6325-6330.	9.1	45

#	Article	IF	Citations
37	3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene. Scientific Reports, 2016, 6, 27830.	3.3	10
38	High temperature spin-polarized semiconductivity with zero magnetization in two-dimensional Janus MXenes. Journal of Materials Chemistry C, 2016, 4, 6500-6509.	5 . 5	127
39	High-temperature behavior of monolayer graphyne and graphdiyne. Carbon, 2016, 99, 547-555.	10.3	27
40	Two-dimensional tricycle arsenene with a direct band gap. Physical Chemistry Chemical Physics, 2016, 18, 8723-8729.	2.8	27
41	Hydroxylated graphyne and graphdiyne: First-principles study. Applied Surface Science, 2016, 361, 206-212.	6.1	22
42	Prediction of two planar carbon allotropes with large meshes. Physical Chemistry Chemical Physics, 2016, 18, 1172-1177.	2.8	12
43	Anisotropic optical properties of graphene/graphane superlattices. Solid State Sciences, 2015, 40, 71-76.	3.2	6
44	A first-principles study of oxygen vacancy induced changes in structural, electronic and magnetic properties of La2/3Sr1/3MnO3. Journal of Alloys and Compounds, 2015, 649, 973-980.	5.5	13
45	Electronic and transmission properties of magnetotunnel junctions of cobalt/iron intercalated bilayer two dimensional sheets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2661-2666.	2.1	1
46	Prediction of half-semiconductor antiferromagnets with vanishing net magnetization. RSC Advances, 2015, 5, 46640-46647.	3.6	21
47	Stability of two-dimensional PN monolayer sheets and their electronic properties. Physical Chemistry Chemical Physics, 2015, 17, 32009-32015.	2.8	47
48	Strain control of the electronic structures, magnetic states, and magnetic anisotropy of Fe doped single-layer MoS2. Computational Materials Science, 2015, 110, 102-108.	3.0	51
49	Reduction mechanism of hydroxyl group from graphene oxide with and without –NH2 agent. Physica B: Condensed Matter, 2015, 477, 70-74.	2.7	16
50	Phonon mean free path spectrum and thermal conductivity for Silâ^'xGex nanowires. Applied Physics Letters, 2014, 104, .	3.3	46
51	Transport properties of graphene/metal planar junction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1321-1325.	2.1	14
52	Effective Fermi level tuning of Bi2Se3 by introducing CdBi/CaBi dopant. RSC Advances, 2014, 4, 10499.	3.6	1
53	Spin Switch of the Transition-Metal-Doped Boron Nitride Sheet through H/F Chemical Decoration. Journal of Physical Chemistry C, 2014, 118, 8899-8906.	3.1	27
54	Stable configurations and electronic structures of hydrogenated graphyne. Computational Materials Science, 2014, 91, 274-278.	3.0	7

#	Article	IF	Citations
55	Magnetic Exchange Coupling and Anisotropy of 3d Transition Metal Nanowires on Graphyne. Scientific Reports, 2014, 4, 4014.	3.3	56
56	Carbon nanotube oscillators encapsulating a platinum nanocluster: A molecular dynamics study. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 237-241.	2.7	4
57	First-principles study of native point defects in Bi2Se3. AIP Advances, 2013, 3, .	1.3	73
58	Tunable differential conductance of single wall C/BN nanotube heterostructure. Journal of Molecular Modeling, 2013, 19, 2965-2969.	1.8	9
59	Electronic properties of graphene on the C-decorated Si(111) surface: An ab initio study. Current Applied Physics, 2013, 13, 1512-1519.	2.4	2
60	Two viable three-dimensional carbon semiconductors with an entirely sp ² configuration. Physical Chemistry Chemical Physics, 2013, 15, 680-684.	2.8	48
61	Hydrogen–Te antisite complex impurity (H–TeHg) in Hg0.75Cd0.25Te: First-principles study. Journal of Physics and Chemistry of Solids, 2013, 74, 1086-1092.	4.0	4
62	A molecular dynamics study of the Si-nanowire@carbon-nanotube nanocomposite with sp3 interfacial bonding. Computational Materials Science, 2013, 79, 650-655.	3.0	6
63	Nanoindentation models and Young's modulus of monolayer graphene: A molecular dynamics study. Applied Physics Letters, 2013, 102, .	3.3	72
64	Surface work function of chemically derived graphene: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1760-1765.	2.1	7
65	Stability, electronic structures and transport properties of armchair (10, 10) BN/C nanotubes. Journal of Solid State Chemistry, 2013, 200, 294-298.	2.9	10
66	Low energy three-dimensional hydrocarbon crystal from cold compression of benzene. Journal of Physics Condensed Matter, 2013, 25, 205403.	1.8	10
67	Electric and Magnetic Manipulation in Graphene Absorption by the Electric Field. Journal of Computational and Theoretical Nanoscience, 2013, 10, 515-520.	0.4	2
68	Work Functions of Boron Nitride Nanoribbons: First-Principles Study. Journal of Computational and Theoretical Nanoscience, 2012, 9, 16-22.	0.4	21
69	Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets. AIP Advances, 2012, 2, .	1.3	18
70	Magnetic Properties of Single Transition-Metal Atom Absorbed Graphdiyne and Graphyne Sheet from DFT+U Calculations. Journal of Physical Chemistry C, 2012, 116, 26313-26321.	3.1	264
71	Effects of contact oxidization on the transport properties of Au/ZGNR junctions. Physica Status Solidi - Rapid Research Letters, 2012, 6, 457-459.	2.4	4
72	Size effect of half-metallic properties of BN/C hybrid nanoribbons. Physica B: Condensed Matter, 2012, 407, 4770-4772.	2.7	11

#	Article	IF	Citations
73	Structures, stability and electronic properties of two- or four-segment BN/C nanotubes., 2012,,.		0
74	New superhard carbon phases between graphite and diamond. Solid State Communications, 2012, 152, 1560-1563.	1.9	89
7 5	A DFT-LDA study of electronic and optical properties of hexagonal boron nitride under uniaxial strain. Computational Materials Science, 2012, 54, 165-169.	3.0	14
76	Structure, stability and electronic properties of tricycle type graphane. Physica Status Solidi - Rapid Research Letters, 2012, 6, 427-429.	2.4	43
77	Four superhard carbon allotropes: a first-principles study. Physical Chemistry Chemical Physics, 2012, 14, 8410.	2.8	66
78	Prediction of superhard carbon allotropes from the segment combination method. Journal of Superhard Materials, 2012, 34, 386-399.	1.2	17
79	Transport properties of zigzag graphene nanoribbons with oxygen edge decoration. Organic Electronics, 2012, 13, 2494-2501.	2.6	15
80	Z-BN: a novel superhard boron nitride phase. Physical Chemistry Chemical Physics, 2012, 14, 10967.	2.8	72
81	Transport properties of hybrid graphene/graphane nanoribbons. Applied Physics Letters, 2012, 100, 103109.	3.3	10
82	Hydrogenated graphene: Structures and surface work function. , 2012, , .		2
83	Structural, electronic and magnetic properties of single transition-metal adsorbed BN sheet: A density functional study. Chemical Physics Letters, 2012, 532, 40-46.	2.6	42
84	Zigzag graphene nanoribbons: Flexible and robust transparent conductors. Solid State Sciences, 2012, 14, 711-714.	3.2	6
85	Effects of oxygen-containing defect complex on the electronic structures and transport properties of single-walled carbon nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1686-1691.	2.1	12
86	Transport Properties of Zigzag Graphene Nanoribbons Decorated by Carboxyl Group Chains. Journal of Physical Chemistry C, 2011, 115, 21893-21898.	3.1	8
87	Tunneling Magnetoresistance of Bilayer Hexagonal Boron Nitride and Its Linear Response to External Uniaxial Strain. Journal of Physical Chemistry C, 2011, 115, 8260-8264.	3.1	38
88	Hydrogen passivation and multiple hydrogen–Hg vacancy complex impurities (nH–V <i>Hg</i> , n =  in Hg0.75Cd0.25Te. Journal of Applied Physics, 2011, 110,	1,2,3,4)	5
89	xmins:mmi="http://www.w3.org/1998/Math/Math/MathML" display="inline"> <mmi:msub><mmi:mrow< td=""><td>3.2</td><td>101</td></mmi:mrow<></mmi:msub>	3.2	101
90	Transport Properties of Hybrid Zigzag Graphene and Boron Nitride Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 10836-10841.	3.1	45

#	Article	IF	Citations
91	Configuration and electronic properties of graphene nanoribbons on Si(211) surface. Applied Surface Science, 2011, 257, 2474-2480.	6.1	2
92	Direct or indirect semiconductor: The role of stacking fault in h-BN. Physica B: Condensed Matter, 2011, 406, 2293-2297.	2.7	12
93	Electronic structures and optical properties of hexagonal boron nitride under hydrostatic pressures. Journal of Applied Physics, 2011, 109, 073708.	2.5	14
94	First-Principles Study of the Initial Growth Stages of Carbon Chain on Ni(111) Surface. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2063-2067.	0.4	3
95	Nucleation effect of Sia of 6H–SiC-(0 0 0 1)–(â^š3×â^š3)R30° surface: First-principles study. Physica B: Condensed Matter, 2010, 405, 3576-3580.	2.7	5
96	Resonant transmission in three-terminal triangle graphene nanojunctions with zigzag edges. Solid State Communications, 2010, 150, 675-679.	1.9	5
97	Transport properties of corrugated graphene nanoribbons. Applied Physics Letters, 2010, 96, .	3.3	33
98	Novel transport properties of gold-single wall carbon nanotubes composite contacts. Journal of Applied Physics, 2010, 108, 064318.	2.5	2
99	Electronic properties of the Au impurity in : First-principles study. Physica B: Condensed Matter, 2009, 404, 131-137.	2.7	6
100	The effect of corner form on electron transport of L-shaped graphene nanoribbons. Physica B: Condensed Matter, 2009, 404, 1771-1775.	2.7	12
101	Binding energy of hydrogen–Cd vacancy complex in CdTe. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 791-794.	2.1	5
102	Bonding mechanism and relaxation energy of (): First-principles study. Journal of Physics and Chemistry of Solids, 2009, 70, 707-712.	4.0	8
103	Evolution of the bonding mechanism of ZnO under isotropic compression: A first-principles study. Physica B: Condensed Matter, 2008, 403, 2832-2837.	2.7	9
104	Thermal decomposition behaviour of RDX by first-principles molecular dynamics simulation. Molecular Simulation, 2008, 34, 961-965.	2.0	13
105	Molecular dynamics study of ripples in graphene nanoribbons on 6H-SiC(0001): Temperature and size effects. Journal of Applied Physics, 2008, 104, 113536.	2.5	33
106	Asymmetric transport in asymmetric T-shaped graphene nanoribbons. Applied Physics Letters, 2008, 93, 092104.	3.3	45
107	Effects of lattice strain and ion displacement on the bonding mechanism of the ferroelectric perovskite material BaTiO3: first-principles study. Journal of Physics Condensed Matter, 2007, 19, 276213.	1.8	4
108	Improved ferroelectric properties of bismuth titanate films by Nd and Mn cosubstitution. Applied Physics Letters, 2007, 90, 012906.	3.3	29

#	ARTICLE: ition-dependent electronic properties, optical transitions, and anionic relaxations of <mmi:math <="" th="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mit."><th>IF</th><th>Citations</th></mmi:math>	IF	Citations
109	display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Cd<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:mi </mml:msub></mml:mrow>		
110	mathvariant="normal">Zn./mml:mi> <mml:mi><mml:mi><mml:mi>in stub><mml:mi mathvariant="normal">In stub><mml:mi> mathvariant="normal">In stub><mml:mathvariant="normal">In stub><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi mathvariant="normal">Te</mml:mi><mml:mi></mml:mi>: First-principles study. Physical Review</mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mathvariant="normal"></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi>	د/mmౢl;mi>	
111	B, 2007, 76, . Ferroelectric and dielectric properties of Nd3+â^•Zr4+ cosubstituted Bi4Ti3O12 thin films. Applied Physics Letters, 2007, 90, 102906.	3.3	13
112	Effects of carrier degeneracy and conduction band non-parabolicity on the simulation of HgCdTe photovoltaic devices. Infrared Physics and Technology, 2007, 50, 1 -8.	2.9	20
113	First-principle study on bonding mechanism of ZnO by LDA+U method. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 112-116.	2.1	49
114	Relaxations and bonding mechanism of arsenic in-situ impurities in MCT: first-principles study. Transactions of Nonferrous Metals Society of China, 2006, 16, 907-911.	4.2	1
115	Raman scattering and high temperature ferromagnetism of Mn-doped ZnO nanoparticles. Applied Physics Letters, 2006, 88, 252502.	3.3	224
116	The influence of the additional confining potentials on ferromagnetism in Ill–V digital ferromagnetic heterostructures. Journal of Applied Physics, 2006, 99, 113903.	2.5	6
117	Relaxations and bonding mechanism in Hg1 \hat{a} °xCdxTewith mercury vacancy defect: First-principles study. Physical Review B, 2006, 73, .	3.2	18
118	Formation Energy of Arsenic Impurities in MCT: First-Principles Study., 2006,,.		0
119	First principle study on the bonding mechanism of nanoring structure Ga8As8. European Physical Journal D, 2005, 34, 47-50.	1.3	5
120	Structural and magnetic properties of ultrathin bcc Fe films on Ge(001). Journal Physics D: Applied Physics, 2005, 38, 1055-1060.	2.8	1
121	FERROMAGNETISM IN Co-DOPED TiO2 ANATASE DUE TO THE COBALT CLUSTERING. International Journal of Modern Physics B, 2005, 19, 2520-2525.	2.0	O
122	Structural and electronic properties of thein situimpurityAsHginHg0.5Cd0.5Te: First-principles study. Physical Review B, 2005, 71, .	3.2	20
123	Ferromagnetism of 3d-impurities substituted in Ge. Journal of Magnetism and Magnetic Materials, 2004, 284, 253-259.	2.3	8
124	Local structural distortions and Mn random distributions in (Ga,Mn)As: A first-principles study. Physical Review B, 2004, 69, .	3.2	12
125	Electronic band structure of Nb doped SrTiO3 from first principles calculation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 317, 501-506.	2.1	70
126	Nanoring structure and optical properties of Ga8As8. Chemical Physics Letters, 2003, 381, 397-403.	2.6	150

#	Article	IF	CITATIONS
127	Computational discovery of spin-polarized semimetals in spinel materials. Materials Advances, 0, , .	5.4	0