
Andrew F Neuwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435796/publications.pdf Version: 2024-02-01

ANDREW F NEUWALD

#	Article	IF	CITATIONS
1	A superfamily of conserved domains in DNA damage―responsive cell cycle checkpoint proteins. FASEB Journal, 1997, 11, 68-76.	O.5	684
2	Gibbs motif sampling: Detection of bacterial outer membrane protein repeats. Protein Science, 1995, 4, 1618-1632.	7.6	371
3	Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies. Journal of the American Statistical Association, 1995, 90, 1156-1170.	3.1	235
4	Extracting protein alignment models from the sequence database. Nucleic Acids Research, 1997, 25, 1665-1677.	14.5	206
5	The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1272-1277.	7.1	199
6	An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Science, 1997, 6, 1764-1767.	7.6	142
7	Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2α. Protein Science, 2004, 13, 2059-2077.	7.6	142
8	Did Protein Kinase Regulatory Mechanisms Evolve Through Elaboration of a Simple Structural Component?. Journal of Molecular Biology, 2005, 351, 956-972.	4.2	137
9	Detecting Patterns in Protein Sequences. Journal of Molecular Biology, 1994, 239, 698-712.	4.2	96
10	Bayesian Models for Multiple Local Sequence Alignment and Gibbs Sampling Strategies. Journal of the American Statistical Association, 1995, 90, 1156.	3.1	77
11	Rapid detection, classification and accurate alignment of up to a million or more related protein sequences. Bioinformatics, 2009, 25, 1869-1875.	4.1	62
12	Markovian Structures in Biological Sequence Alignments. Journal of the American Statistical Association, 1999, 94, 1-15.	3.1	60
13	Ran's C-terminal, Basic Patch, and Nucleotide Exchange Mechanisms in Light of a Canonical Structure for Rab, Rho, Ras, and Ran GTPases. Genome Research, 2003, 13, 673-692.	5.5	41
14	Gapped alignment of protein sequence motifs through Monte Carlo optimization of a hidden Markov model. BMC Bioinformatics, 2004, 5, 157.	2.6	34
15	A survey of TIR domain sequence and structure divergence. Immunogenetics, 2020, 72, 181-203.	2.4	31
16	A Bayesian Sampler for Optimization of Protein Domain Hierarchies. Journal of Computational Biology, 2014, 21, 269-286.	1.6	30
17	Markovian Structures in Biological Sequence Alignments. Journal of the American Statistical Association, 1999, 94, 1.	3.1	21
18	Ataxin-2, global regulators and bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. Journal of Molecular Medicine, 1997, 76, 3-5.	3.9	19

ANDREW F NEUWALD

#	Article	IF	CITATIONS
19	The CHAIN program: forging evolutionary links to underlying mechanisms. Trends in Biochemical Sciences, 2007, 32, 487-493.	7.5	18
20	Bayesian Top-Down Protein Sequence Alignment with Inferred Position-Specific Gap Penalties. PLoS Computational Biology, 2016, 12, e1004936.	3.2	17
21	Surveying the Manifold Divergence of an Entire Protein Class for Statistical Clues to Underlying Biochemical Mechanisms. Statistical Applications in Genetics and Molecular Biology, 2011, 10, Article 36.	0.6	16
22	ldentification and classification of small molecule kinases: insights into substrate recognition and specificity. BMC Evolutionary Biology, 2016, 16, 7.	3.2	16
23	Gleaning structural and functional information from correlations in protein multiple sequence alignments. Current Opinion in Structural Biology, 2016, 38, 1-8.	5.7	15
24	Bayesian shadows of molecular mechanisms cast in the light of evolution. Trends in Biochemical Sciences, 2006, 31, 374-382.	7.5	14
25	Inferring joint sequence-structural determinants of protein functional specificity. ELife, 2018, 7, .	6.0	14
26	Gα–Gβγ dissociation may be due to retraction of a buried lysine and disruption of an aromatic cluster by a GTPâ€sensing Arg–Trp pair. Protein Science, 2007, 16, 2570-2577.	7.6	13
27	The glycine brace: a component of Rab, Rho, and Ran GTPases associated with hinge regions of guanine- and phosphate-binding loops. BMC Structural Biology, 2009, 9, 11.	2.3	12
28	Deep Analysis of Residue Constraints (DARC): identifying determinants of protein functional specificity. Scientific Reports, 2020, 10, 1691.	3.3	12
29	Automated hierarchical classification of protein domain subfamilies based on functionally-divergent residue signatures. BMC Bioinformatics, 2012, 13, 144.	2.6	11
30	Protein domain hierarchy Gibbs sampling strategies. Statistical Applications in Genetics and Molecular Biology, 2014, 13, 497-517.	0.6	11
31	The Charge-dipole Pocket: A Defining Feature of Signaling Pathway GTPase On/Off Switches. Journal of Molecular Biology, 2009, 390, 142-153.	4.2	10
32	Bayesian classification of residues associated with protein functional divergence: Arf and Arf-like GTPases. Biology Direct, 2010, 5, 66.	4.6	9
33	Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations. PLoS Computational Biology, 2016, 12, e1005294.	3.2	9
34	Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine. Nucleic Acids Research, 2006, 34, 5280-5290.	14.5	8
35	Statistical investigations of protein residue direct couplings. PLoS Computational Biology, 2018, 14, e1006237.	3.2	8
36	Evaluating, Comparing, and Interpreting Protein Domain Hierarchies. Journal of Computational Biology, 2014, 21, 287-302.	1.6	7

#	Article	IF	CITATIONS
37	Initial Cluster Analysis. Journal of Computational Biology, 2018, 25, 121-129.	1.6	7
38	Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence. Scientific Reports, 2021, 11, 385.	3.3	6
39	Obtaining extremely large and accurate protein multiple sequence alignments from curated hierarchical alignments. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	4
40	Identifying Function Determining Residues in Neuroimmune Semaphorin 4A. International Journal of Molecular Sciences, 2022, 23, 3024.	4.1	3
41	BICORN: An R package for integrative inference of de novo cis-regulatory modules. Scientific Reports, 2020, 10, 7960.	3.3	2
42	ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements. PLoS Computational Biology, 2021, 17, e1009203.	3.2	2
43	IntAPT: integrated assembly of phenotype-specific transcripts from multiple RNA-seq profiles. Bioinformatics, 2021, 37, 650-658.	4.1	1
44	A Bayesian approach for accurate de novo transcriptome assembly. Scientific Reports, 2021, 11, 17663.	3.3	1
45	ChIP-BIT2: a software tool to detect weak binding events using a Bayesian integration approach. BMC Bioinformatics, 2021, 22, 193.	2.6	0
46	eCOMPASS: evaluative comparison of multiple protein alignments by statistical score. Bioinformatics, 2021, 37, 3456-3463.	4.1	0
47	SPARC: Structural properties associated with residue constraints. Computational and Structural Biotechnology Journal, 2022, 20, 1702-1715.	4.1	Ο