Wolfgang Norenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cellular and Molecular Life Sciences, 2022, 79, 225.	5.4	10
2	TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. Journal of General Physiology, 2016, 147, 467-483.	1.9	14
3	Lack of functional P2X7 receptor aggravates brain edema development after middle cerebral artery occlusion. Purinergic Signalling, 2016, 12, 453-463.	2.2	20
4	TRPM7 is a molecular substrate of ATP-evoked P2X7-like currents in tumor cells. Journal of Cell Biology, 2016, 213, 21350IA112.	5.2	0
5	Tanshinone II A Sulfonate, but Not Tanshinone II A, Acts as Potent Negative Allosteric Modulator of the Human Purinergic Receptor P2X7. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 531-542.	2.5	7
6	The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology, 2013, 75, 365-379.	4.1	31
7	P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone. Neuropharmacology, 2013, 73, 122-137.	4.1	67
8	Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. British Journal of Pharmacology, 2012, 167, 48-66.	5.4	83
9	Purinergic modulation of the excitatory synaptic input onto rat striatal neurons. Neuropharmacology, 2012, 62, 1756-1766.	4.1	10
10	Stimulation of GluN receptors decreases the surface density of GluN1/GluN2B subunits in cultured neocortical interneurons. Journal of Neurochemistry, 2012, 121, 587-596.	3.9	6
11	GluA and GluN receptors regulate the surface density of GluN receptor subunits in cultured neocortical interneurons. Journal of Neurochemistry, 2012, 121, 597-606.	3.9	3
12	Rodent Cortical Astroglia Express In Situ Functional P2X7 Receptors Sensing Pathologically High ATP Concentrations. Cerebral Cortex, 2011, 21, 806-820.	2.9	77
13	Clemastine Potentiates the Human P2X7 Receptor by Sensitizing It to Lower ATP Concentrations. Journal of Biological Chemistry, 2011, 286, 11067-11081.	3.4	68
14	Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia. British Journal of Pharmacology, 2010, 160, 1941-1952.	5.4	53
15	Increase of intracellular Ca2+ by adenine and uracil nucleotides in human midbrain-derived neuronal progenitor cells. Cell Calcium, 2009, 45, 485-498.	2.4	17
16	Increase of intracellular Ca ²⁺ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. Journal of Comparative Neurology, 2009, 516, 343-359.	1.6	12
17	Increase of intracellular Ca2+by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. Journal of Comparative Neurology, 2009, 516, spc1-spc1.	1.6	0
18	Increase of intracellular Ca2+by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat. Journal of Comparative Neurology, 2009, 516, spc1-spc1.	1.6	0

#	Article	IF	CITATIONS
19	Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience, 2009, 160, 767-783.	2.3	55
20	Regulation of the pH sensitivity of human P2X ₃ receptors by Nâ€linked glycosylation. Journal of Neurochemistry, 2008, 107, 1216-1224.	3.9	6
21	Decrease of current responses at human recombinant P2X3 receptors after substitution by Asp of Ser/Thr residues in protein kinase C phosphorylation sites of their ecto-domains. Neuroscience Letters, 2006, 393, 78-83.	2.1	16
22	Neuroprotection associated with alternative splicing of NMDA receptors in rat cortical neurons. British Journal of Pharmacology, 2006, 147, 622-633.	5.4	12
23	Regulation of intracellular Ca2+ by P2Y1 receptors may depend on the developmental stage of cultured rat striatal neurons. Journal of Cellular Physiology, 2006, 209, 81-93.	4.1	23
24	Modulation of NMDA Receptor Current in Layer V Pyramidal Neurons of the Rat Prefrontal Cortex by P2Y Receptor Activation. Cerebral Cortex, 2006, 17, 621-631.	2.9	45
25	Metabotropic Glutamate Receptors Modulate the NMDA- and AMPA-Induced Gene Expression in Neocortical Interneurons. Cerebral Cortex, 2006, 16, 1662-1677.	2.9	10
26	Supersensitivity of P2X7 receptors in cerebrocortical cell cultures after inâ€∫vitro ischemia. Journal of Neurochemistry, 2005, 95, 1421-1437.	3.9	81
27	Inhibition of N-Type Voltage-Activated Calcium Channels in Rat Dorsal Root Ganglion Neurons by P2Y Receptors Is a Possible Mechanism of ADP-Induced Analgesia. Journal of Neuroscience, 2004, 24, 797-807.	3.6	114
28	P2X2 and P2Y1 immunofluorescence in rat neostriatal medium-spiny projection neurones and cholinergic interneurones is not linked to respective purinergic receptor function. British Journal of Pharmacology, 2004, 143, 119-131.	5.4	21
29	Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology, 2004, 46, 994-1007.	4.1	78
30	Stimulation of mouse cultured sympathetic neurons by uracil but not adenine nucleotides. Neuroscience, 2001, 103, 227-236.	2.3	14
31	Interaction between the transmitters ATP and glutamate in the central nervous system. Drug Development Research, 2001, 52, 76-82.	2.9	13
32	Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in rat neostriatal neurons. British Journal of Pharmacology, 2000, 130, 259-269.	5.4	69
33	Neuronal P2X receptors: localisation and functional properties. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 324-339.	3.0	198
34	Regulation of Somatodendritic GABA _A Receptor Channels in Rat Hippocampal Neurons: Evidence for a Role of the Small GTPase Rac1. Journal of Neuroscience, 2000, 20, 6743-6751.	3.6	56
35	Rundown of somatodendritic N -methyl-D -aspartate (NMDA) receptor channels in rat hippocampal neurones: evidence for a role of the small GTPase RhoA. British Journal of Pharmacology, 1999, 127, 1060-1063.	5.4	28
36	Role of action potentials and calcium influx in ATP- and UDP-induced noradrenaline release from rat cultured sympathetic neurones. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 359, 360-369.	3.0	29

Wolfgang Norenberg

#	Article	IF	CITATIONS
37	Chapter 14 P2-receptors controlling neurotransmitter release from postganglionic sympathetic neurones. Progress in Brain Research, 1999, 120, 173-182.	1.4	19
38	Chapter 17 Electrophysiological analysis of P2-receptor mechanisms in rat sympathetic neurones. Progress in Brain Research, 1999, 120, 209-221.	1.4	6
39	Adenosine A2A receptors inhibit the conductance of NMDA receptor channels in rat neostriatal neurons. Amino Acids, 1998, 14, 33-39.	2.7	41
40	Inhibition of GABAergic inhibitory postsynaptic currents by cannabinoids in rat corpus striatum. Neuroscience, 1998, 85, 395-403.	2.3	204
41	Correspondence. Neuroscience, 1997, 78, 935-941.	2.3	31
42	Coexistence of purino- and pyrimidinoceptors on activated rat microglial cells. British Journal of Pharmacology, 1997, 121, 1087-1098.	5.4	59
43	Effect of adenosine and some of its structural analogues on the conductance of NMDA receptor channels in a subset of rat neostriatal neurones. British Journal of Pharmacology, 1997, 122, 71-80.	5.4	68
44	Subtype determination of soma-dendritic α2-autoreceptors in slices of rat locus coeruleus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 356, 159-165.	3.0	31
45	Modulation of locus coeruleus neurons by extra- and intracellular adenosine 5'-triphosphate. Brain Research Bulletin, 1994, 35, 513-519.	3.0	32
46	Expression of an outwardly rectifying K+ channel in rat microglia cultivated on teflon. Neuroscience Letters, 1993, 160, 69-72.	2.1	40
47	Neuronal ATP receptors and their mechanism of action. Trends in Pharmacological Sciences, 1993, 14, 50-54.	8.7	116
48	Inflammatory stimuli induce a new K+ outward current in cultured rat microglia. Neuroscience Letters, 1992, 147, 171-174.	2.1	106
49	Excitatory effects of adenosine 5′-triphosphate on rat locus coeruleus neurones. European Journal of Pharmacology, 1992, 213, 71-77.	3.5	73
50	Neuropeptide Y inhibits nicotinic cholinergic currents but not voltage-dependent calcium currents in bovine chromaffin cells. Pflugers Archiv European Journal of Physiology, 1991, 418, 346-352.	2.8	19
51	Receptor Interactions at Noradrenergic Neur ones. Annals of the New York Academy of Sciences, 1990, 604, 197-210.	3.8	12
52	Electrophysiological evidence for an α2-adrenergic inhibitory control of transmitter release in the rabbit mesenteric artery. European Journal of Pharmacology, 1987, 143, 151-161.	3.5	12