
William A Catterall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synaptotagmin-7 Enhances Facilitation of Ca _v 2.1 Calcium Channels. ENeuro, 2022, , ENEURO.0081-22.2022.	0.9	Ο
2	Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin. Molecular Cell, 2021, 81, 38-48.e4.	4.5	40
3	Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nature Communications, 2021, 12, 128.	5.8	54
4	Expression and purification of the cardiac sodium channel NaV1.5 for cryo-EM structure determination. Methods in Enzymology, 2021, 653, 89-101.	0.4	6
5	Voltage-gated calcium channels in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	1
6	Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell, 2021, 184, 5151-5162.e11.	13.5	56
7	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
8	Voltage-gated sodium channels (Na _V) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
9	Voltage-gated calcium channels (Ca _V) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	2
10	Sodium channelopathies of skeletal muscle and brain. Physiological Reviews, 2021, 101, 1633-1689.	13.1	55
11	Sharp-Wave Ripple Frequency and Interictal Epileptic Discharges Increase in Tandem During Thermal Induction of Seizures in a Mouse Model of Genetic Epilepsy. Frontiers in Cellular Neuroscience, 2021, 15, 751762.	1.8	6
12	Autism-associated mutations in K _V 7 channels induce gating pore current. Proceedings of the United States of America, 2021, 118, .	3.3	12
13	Structure of the Cardiac Sodium Channel. Cell, 2020, 180, 122-134.e10.	13.5	217
14	The conformational cycle of a prototypical voltage-gated sodium channel. Nature Chemical Biology, 2020, 16, 1314-1320.	3.9	33
15	Computational design of transmembrane pores. Nature, 2020, 585, 129-134.	13.7	120
16	Voltage-gated calcium channels (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1
17	Hippocampal deletion of Na _V 1.1 channels in mice causes thermal seizures and cognitive deficit characteristic of Dravet Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16571-16576.	3.3	50
18	Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell, 2019, 178, 993-1003.e12.	13.5	142

#	Article	IF	CITATIONS
19	A more efficient conditional mouse model of Dravet syndrome: Implications for epigenetic selection and sex-dependent behaviors. Journal of Neuroscience Methods, 2019, 325, 108315.	1.3	13
20	Structural Basis for Diltiazem Block of a Voltage-Gated Ca ²⁺ Channel. Molecular Pharmacology, 2019, 96, 485-492.	1.0	35
21	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
22	Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome. Journal of Neuroscience, 2019, 39, 9251-9260.	1.7	18
23	Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels. Toxins, 2019, 11, 513.	1.5	13
24	The Role of CaV2.1 Channel Facilitation in Synaptic Facilitation. Cell Reports, 2019, 26, 2289-2297.e3.	2.9	14
25	IgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26816-26822.	3.3	11
26	Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb. Journal of General Physiology, 2019, 151, 174-185.	0.9	23
27	Voltage-gated sodium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
28	Voltage-gated calcium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	4
29	Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends in Neurosciences, 2018, 41, 442-456.	4.2	210
30	Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels. Journal of Neuroscience, 2018, 38, 4430-4440.	1.7	20
31	Dravet syndrome: a sodium channel interneuronopathy. Current Opinion in Physiology, 2018, 2, 42-50.	0.9	103
32	Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron, 2018, 98, 466-481.	3.8	346
33	Fenestrations control resting-state block of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13111-13116.	3.3	74
34	Structural basis for gating pore current in periodic paralysis. Nature, 2018, 557, 590-594.	13.7	55
35	The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels. Journal of General Physiology, 2018, 150, 883-889.	0.9	22
36	Voltage-Gated Sodium and Calcium Channels at Atomic Resolution: Structure, Function, and Pharmacology. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, CL-10.	0.0	0

#	Article	IF	CITATIONS
37	Phosphorylation of Ser ¹⁹²⁸ mediates the enhanced activity of the L-type Ca ²⁺ channel Ca _v 1.2 by the β ₂ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
38	The chemical basis for electrical signaling. Nature Chemical Biology, 2017, 13, 455-463.	3.9	147
39	Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochemical Research, 2017, 42, 2495-2504.	1.6	125
40	Structures of closed and open states of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3051-E3060.	3.3	139
41	Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11229-11234.	3.3	283
42	Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective. Handbook of Experimental Pharmacology, 2017, 246, 53-72.	0.9	12
43	Phosphorylation of Ca _v 1.2 on S1928 uncouples the Lâ€type Ca ²⁺ channel from the β ₂ adrenergic receptor. EMBO Journal, 2016, 35, 1330-1345.	3.5	61
44	Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature, 2016, 537, 117-121.	13.7	162
45	Loss of β-adrenergic–stimulated phosphorylation of Ca _V 1.2 channels on Ser1700 leads to heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7976-E7985.	3.3	28
46	Calcium sensor regulation of the Ca _V 2.1 Ca ²⁺ channel contributes to long-term potentiation and spatial learning. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13209-13214.	3.3	35
47	KATP channel gain-of-function leads to increased myocardial L-type Ca2+ current and contractility in Cantu syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6773-6778.	3.3	29
48	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	6.5	1,075
49	Calcium sensor regulation of the Ca _V 2.1 Ca ²⁺ channel contributes to short-term synaptic plasticity in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1062-1067.	3.3	34
50	Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic Ca _V 2.1 Ca ²⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1068-1073.	3.3	13
51	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
52	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	2.7	176
53	Finding Channels. Journal of Biological Chemistry, 2015, 290, 28357-28373.	1.6	8
54	Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends in Biochemical Sciences, 2015, 40, 526-534.	3.7	64

#	Article	IF	CITATIONS
55	Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain, 2015, 138, 2219-2233.	3.7	106
56	Sleep impairment and reduced interneuron excitability in a mouse model of Dravet Syndrome. Neurobiology of Disease, 2015, 77, 141-154.	2.1	79
57	Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Molecular Pharmacology, 2015, 88, 141-150.	1.0	154
58	Phosphorylation sites in the Hook domain of $CaV\hat{l}^2$ subunits differentially modulate CaV1.2 channel function. Journal of Molecular and Cellular Cardiology, 2015, 87, 248-256.	0.9	13
59	Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiology of Disease, 2015, 73, 106-117.	2.1	84
60	Basal and Î ² -adrenergic regulation of the cardiac calcium channel Ca _V 1.2 requires phosphorylation of serine 1700. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16598-16603.	3.3	64
61	Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3139-48.	3.3	216
62	Enhancement of Inhibitory Neurotransmission by GABA A Receptors Having α 2,3 -Subunits Ameliorates Behavioral Deficits in a Mouse Model of Autism. Neuron, 2014, 81, 1282-1289.	3.8	207
63	Structure and function of voltageâ€gated sodium channels at atomic resolution. Experimental Physiology, 2014, 99, 35-51.	0.9	182
64	Sodium Channels, Inherited Epilepsy, and Antiepileptic Drugs. Annual Review of Pharmacology and Toxicology, 2014, 54, 317-338.	4.2	153
65	Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature, 2014, 505, 56-61.	13.7	288
66	Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. Journal of General Physiology, 2014, 144, 147-157.	0.9	26
67	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
68	Catalysis of Na ⁺ permeation in the bacterial sodium channel Na _V Ab. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11331-11336.	3.3	113
69	Distribution and function of sodium channel subtypes in human atrial myocardium. Journal of Molecular and Cellular Cardiology, 2013, 61, 133-141.	0.9	58
70	Synergistic GABA-Enhancing Therapy against Seizures in a Mouse Model of Dravet Syndrome. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 215-224.	1.3	49
71	Calcium Channels and Short-term Synaptic Plasticity. Journal of Biological Chemistry, 2013, 288, 10742-10749.	1.6	116
72	Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels, 2013, 7, 468-472.	1.5	55

#	Article	IF	CITATIONS
73	Sudden unexpected death in a mouse model of Dravet syndrome. Journal of Clinical Investigation, 2013, 123, 1798-1808.	3.9	237
74	Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E93-102.	3.3	223
75	Molecular Determinants of Modulation of CaV2.1 Channels by Visinin-like Protein 2*. Journal of Biological Chemistry, 2012, 287, 504-513.	1.6	10
76	Na _V 1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E368-77.	3.3	87
77	An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. Journal of General Physiology, 2012, 140, 587-594.	0.9	179
78	Specific deletion of Na _V 1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14646-14651.	3.3	266
79	Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels. Journal of Biological Chemistry, 2012, 287, 30719-30728.	1.6	67
80	Autistic-like behaviour in Scn1a+/â^' mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 2012, 489, 385-390.	13.7	543
81	Voltageâ€gated sodium channels at 60: structure, function and pathophysiology. Journal of Physiology, 2012, 590, 2577-2589.	1.3	562
82	The Hodgkin-Huxley Heritage: From Channels to Circuits. Journal of Neuroscience, 2012, 32, 14064-14073.	1.7	86
83	Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature, 2012, 486, 135-139.	13.7	435
84	Voltage-Gated Na+ Channels. , 2012, , 41-54.		16
85	Mapping the receptor site for α-scorpion toxins on a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15426-15431.	3.3	125
86	Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003947-a003947.	2.3	1,156
87	Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia, 2011, 52, 2050-2056.	2.6	51
88	Structure-Function Map of the Receptor Site for β-Scorpion Toxins in Domain II of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 33641-33651.	1.6	76
89	The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475, 353-358.	13.7	1,278
90	Molecular Determinants of CaV2.1 Channel Regulation by Calcium-binding Protein-1*. Journal of Biological Chemistry, 2011, 286, 41917-41923.	1.6	13

#	Article	IF	CITATIONS
91	Gating charge interactions with the S1 segment during activation of a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18825-18830.	3.3	74
92	Voltage-gated Na+ channels and epilepsy. Epilepsia, 2010, 51, 9-9.	2.6	5
93	Na+ channel mutations and epilepsy. Epilepsia, 2010, 51, 59-59.	2.6	9
94	Na _V 1.1 channels and epilepsy. Journal of Physiology, 2010, 588, 1849-1859.	1.3	357
95	Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. Journal of General Physiology, 2010, 136, 225-236.	0.9	63
96	Helical motion of an S4 voltage sensor revealed by gating pore currents. Channels, 2010, 4, 75-77.	1.5	6
97	Edwin G. Krebs (1918–2009). Science, 2010, 327, 537-537.	6.0	1
98	Signaling complexes of voltage-gated sodium and calcium channels. Neuroscience Letters, 2010, 486, 107-116.	1.0	117
99	Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology. Neuron, 2010, 67, 915-928.	3.8	448
100	Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3994-3999.	3.3	200
101	Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proceedings of the United States of America, 2009, 106, 22498-22503.	3.3	133
102	A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation. Neurobiology of Disease, 2009, 35, 91-102.	2.1	91
103	Inherited Neuronal Ion Channelopathies: New Windows on Complex Neurological Diseases. Journal of Neuroscience, 2008, 28, 11768-11777.	1.7	225
104	Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity. Neuron, 2008, 57, 210-216.	3.8	144
105	Calcium Channel Regulation and Presynaptic Plasticity. Neuron, 2008, 59, 882-901.	3.8	554
106	Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15142-15147.	3.3	121
107	Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19980-19985.	3.3	87
108	Reduced Sodium Current in Purkinje Neurons from Na _V 1.1 Mutant Mice: Implications for Ataxia in Severe Myoclonic Epilepsy in Infancy. Journal of Neuroscience, 2007, 27, 11065-11074.	1.7	226

#	Article	IF	CITATIONS
109	Voltage-gated ion channels and gating modifier toxins. Toxicon, 2007, 49, 124-141.	0.8	560
110	The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Human Molecular Genetics, 2007, 16, 2892-2899.	1.4	180
111	Gating pore current in an inherited ion channelopathy. Nature, 2007, 446, 76-78.	13.7	269
112	Regulation of Sodium and Calcium Channels by Signaling Complexes. Journal of Receptor and Signal Transduction Research, 2006, 26, 577-598.	1.3	35
113	Painful Channels. Neuron, 2006, 52, 743-744.	3.8	15
114	Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 2006, 9, 1142-1149.	7.1	985
115	Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin. Journal of Biological Chemistry, 2006, 281, 21332-21344.	1.6	128
116	Molecular Determinants for Modulation of Persistent Sodium Current by G-Protein ÂÂ Subunits. Journal of Neuroscience, 2005, 25, 3341-3349.	1.7	80
117	International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacological Reviews, 2005, 57, 397-409.	7.1	1,481
118	International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels. Pharmacological Reviews, 2005, 57, 411-425.	7.1	1,110
119	Ion Permeation through a Voltage- Sensitive Gating Pore in Brain Sodium Channels Having Voltage Sensor Mutations. Neuron, 2005, 47, 183-189.	3.8	127
120	International Union of Pharmacology. XXXIX. Compendium of Voltage-Gated Ion Channels: Sodium Channels. Pharmacological Reviews, 2003, 55, 575-578.	7.1	122
121	Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels. Proceedings of the United States of America, 2003, 100, 16059-16064.	3.3	150
122	Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2813-2818.	3.3	69
123	Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2819-2824.	3.3	117
124	Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nature Neuroscience, 2002, 5, 210-217.	7.1	176
125	Distribution of high-voltage-activated calcium channels in cultured γ-aminobutyric acidergic neurons from mouse cerebral cortex. , 2002, 67, 48.		2
126	Molecular mechanisms of gating and drug block of sodium channels. Novartis Foundation Symposium, 2002, 241, 206-18; discussion 218-32.	1.2	70

#	Article	IF	CITATIONS
127	A 3D view of sodium channels. Nature, 2001, 409, 988-991.	13.7	58
128	Neuromodulation of Na+ channels: An unexpected form of cellular platicity. Nature Reviews Neuroscience, 2001, 2, 397-407.	4.9	334
129	Sodium channel β1 and β3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. Journal of Cell Biology, 2001, 154, 427-434.	2.3	167
130	A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β. Nature Neuroscience, 2000, 3, 437-444.	7.1	172
131	Structure and Regulation of Voltage-Gated Ca2+Channels. Annual Review of Cell and Developmental Biology, 2000, 16, 521-555.	4.0	2,115
132	Ca ²⁺ /Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca ²⁺ Channels. Journal of Neuroscience, 2000, 20, 6830-6838.	1.7	185
133	Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie, 2000, 82, 883-892.	1.3	656
134	From Ionic Currents to Molecular Mechanisms. Neuron, 2000, 26, 13-25.	3.8	1,920
135	Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature, 1999, 399, 155-159.	13.7	457
136	Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nature Neuroscience, 1999, 2, 939-941.	7.1	147
137	Interactions of Presynaptic Ca2+ Channels and Snare Proteins in Neurotransmitter Release. Annals of the New York Academy of Sciences, 1999, 868, 144-159.	1.8	240
138	Solution Structure of the Sodium Channel Inactivation Gate,. Biochemistry, 1999, 38, 855-861.	1.2	130
139	Interaction of Presynaptic Calcium channels with SNARE Proteins in Neurotransmitter Release. Biochemical Society Transactions, 1999, 27, A71-A71.	1.6	0
140	Yeasty brew yields novel calcium channel inhibitor. Nature Biotechnology, 1998, 16, 906-906.	9.4	6
141	Voltage Sensor–Trapping. Neuron, 1998, 21, 919-931.	3.8	335
142	A Critical Role for the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel α-Subunit in Fast Inactivation. Journal of Biological Chemistry, 1998, 273, 1121-1129.	1.6	165
143	Molecular Analysis of the Putative Inactivation Particle in the Inactivation Gate of Brain Type IIA Na+ Channels. Journal of General Physiology, 1997, 109, 589-605.	0.9	80
144	Molecular Analysis of Potential Hinge Residues in the Inactivation Gate of Brain Type IIA Na+ Channels. Journal of General Physiology, 1997, 109, 607-617.	0.9	55

#	Article	IF	CITATIONS
145	MOLECULAR DETERMINANTS OF DRUG BINDING AND ACTION ON L-TYPE CALCIUM CHANNELS. Annual Review of Pharmacology and Toxicology, 1997, 37, 361-396.	4.2	355
146	Specific Phosphorylation of a Site in the Full-Length Form of the α1 Subunit of the Cardiac L-Type Calcium Channel by Adenosine 3â€~,5â€~-Cyclic Monophosphate- Dependent Protein Kinaseâ€. Biochemistry, 1996, 35, 10392-10402.	1.2	271
147	Introduction: Ion channels in plasma membrane signal transduction. Journal of Bioenergetics and Biomembranes, 1996, 28, 217-218.	1.0	6
148	Molecular properties of sodium and calcium channels. Journal of Bioenergetics and Biomembranes, 1996, 28, 219-230.	1.0	78
149	Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature, 1996, 379, 451-454.	13.7	340
150	Modulation of Ca2+ channels $\hat{l}^2 \hat{l}^3$ G-protein py subunits. Nature, 1996, 380, 258-262.	13.7	808
151	Na+ channel subunits and Ig domains. Nature, 1996, 383, 307-308.	13.7	109
152	Molecular Determinants of High Affinity Binding of α-Scorpion Toxin and Sea Anemone Toxin in the S3-S4 Extracellular Loop in Domain IV of the Na+ Channel α Subunit. Journal of Biological Chemistry, 1996, 271, 15950-15962.	1.6	388
153	Detection of Marine Toxins Using Reconstituted Sodium Channels. Journal of AOAC INTERNATIONAL, 1995, 78, 570-573.	0.7	14
154	A Critical Role for Transmembrane Segment IVS6 of the Sodium Channel α Subunit in Fast Inactivation. Journal of Biological Chemistry, 1995, 270, 12025-12034.	1.6	160
155	Ins and outs. Nature, 1994, 371, 444-444.	13.7	13
156	Identification of a syntaxin-binding site on N-Type calcium channels. Neuron, 1994, 13, 1303-1313.	3.8	417
157	Differential Proteolysis of the Fullâ€Length Form of the Lâ€Type Calcium Channel α1 Subunit by Calpain. Journal of Neurochemistry, 1994, 63, 1558-1564.	2.1	73
158	Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature, 1993, 364, 240-243.	13.7	270
159	Selective Dephosphorylation of the Subunits of Skeletal Muscle Calcium Channels by Purified Phosphoprotein Phosphatases. Journal of Neurochemistry, 1993, 61, 1333-1339.	2.1	21
160	Molecular Properties of Calcium Channels in Skeletal Muscle and Neurons. Annals of the New York Academy of Sciences, 1993, 681, 342-355.	1.8	31
161	Structure and Modulation of Voltage-Gated Ion Channels. Annals of the New York Academy of Sciences, 1991, 625, 174-180.	1.8	21
162	Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 1990, 347, 281-284.	13.7	488

#	Article	IF	CITATIONS
163	Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron, 1989, 3, 695-704.	3.8	451
164	Molecular Properties of Dihydropyridine-Sensitive Calcium Channels. Annals of the New York Academy of Sciences, 1988, 522, 162-175.	1.8	18
165	Down regulation of sodium channels in nerve terminals of spontaneously epileptic mice. Cellular and Molecular Neurobiology, 1986, 6, 213-220.	1.7	22
166	Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. Journal of Supramolecular Structure, 1980, 14, 295-303.	2.3	16