
William A Catterall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Regulation of Voltage-Gated Ca2+Channels. Annual Review of Cell and Developmental Biology, 2000, 16, 521-555.	4.0	2,115
2	From Ionic Currents to Molecular Mechanisms. Neuron, 2000, 26, 13-25.	3.8	1,920
3	International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacological Reviews, 2005, 57, 397-409.	7.1	1,481
4	The crystal structure of a voltage-gated sodium channel. Nature, 2011, 475, 353-358.	13.7	1,278
5	Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003947-a003947.	2.3	1,156
6	International Union of Pharmacology. XLVIII. Nomenclature and Structure-Function Relationships of Voltage-Gated Calcium Channels. Pharmacological Reviews, 2005, 57, 411-425.	7.1	1,110
7	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	6.5	1,075
8	Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience, 2006, 9, 1142-1149.	7.1	985
9	Modulation of Ca2+ channels $\hat{I}^{2}\hat{I}^{3}$ G-protein py subunits. Nature, 1996, 380, 258-262.	13.7	808
10	Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie, 2000, 82, 883-892.	1.3	656
11	Voltageâ€gated sodium channels at 60: structure, function and pathophysiology. Journal of Physiology, 2012, 590, 2577-2589.	1.3	562
12	Voltage-gated ion channels and gating modifier toxins. Toxicon, 2007, 49, 124-141.	0.8	560
13	Calcium Channel Regulation and Presynaptic Plasticity. Neuron, 2008, 59, 882-901.	3.8	554
14	Autistic-like behaviour in Scn1a+/â^' mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 2012, 489, 385-390.	13.7	543
15	Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 1990, 347, 281-284.	13.7	488
16	Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature, 1999, 399, 155-159.	13.7	457
17	Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron, 1989, 3, 695-704.	3.8	451
18	Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology. Neuron, 2010, 67, 915-928.	3.8	448

#	Article	IF	CITATIONS
19	Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature, 2012, 486, 135-139.	13.7	435
20	Identification of a syntaxin-binding site on N-Type calcium channels. Neuron, 1994, 13, 1303-1313.	3.8	417
21	Molecular Determinants of High Affinity Binding of α-Scorpion Toxin and Sea Anemone Toxin in the S3-S4 Extracellular Loop in Domain IV of the Na+ Channel α Subunit. Journal of Biological Chemistry, 1996, 271, 15950-15962.	1.6	388
22	Na _V 1.1 channels and epilepsy. Journal of Physiology, 2010, 588, 1849-1859.	1.3	357
23	MOLECULAR DETERMINANTS OF DRUG BINDING AND ACTION ON L-TYPE CALCIUM CHANNELS. Annual Review of Pharmacology and Toxicology, 1997, 37, 361-396.	4.2	355
24	Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron, 2018, 98, 466-481.	3.8	346
25	Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature, 1996, 379, 451-454.	13.7	340
26	Voltage Sensor–Trapping. Neuron, 1998, 21, 919-931.	3.8	335
27	Neuromodulation of Na+ channels: An unexpected form of cellular platicity. Nature Reviews Neuroscience, 2001, 2, 397-407.	4.9	334
28	Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature, 2014, 505, 56-61.	13.7	288
29	Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11229-11234.	3.3	283
30	Specific Phosphorylation of a Site in the Full-Length Form of the α1 Subunit of the Cardiac L-Type Calcium Channel by Adenosine 3â€~,5â€~-Cyclic Monophosphate- Dependent Protein Kinaseâ€. Biochemistry, 1996, 35, 10392-10402.	1.2	271
31	Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature, 1993, 364, 240-243.	13.7	270
32	Gating pore current in an inherited ion channelopathy. Nature, 2007, 446, 76-78.	13.7	269
33	Specific deletion of Na _V 1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14646-14651.	3.3	266
34	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 2019, 176, S142-S228.	2.7	242
35	Interactions of Presynaptic Ca2+ Channels and Snare Proteins in Neurotransmitter Release. Annals of the New York Academy of Sciences, 1999, 868, 144-159.	1.8	240
36	Sudden unexpected death in a mouse model of Dravet syndrome. Journal of Clinical Investigation, 2013, 123, 1798-1808.	3.9	237

#	Article	IF	CITATIONS
37	Reduced Sodium Current in Purkinje Neurons from Na _V 1.1 Mutant Mice: Implications for Ataxia in Severe Myoclonic Epilepsy in Infancy. Journal of Neuroscience, 2007, 27, 11065-11074.	1.7	226
38	Inherited Neuronal Ion Channelopathies: New Windows on Complex Neurological Diseases. Journal of Neuroscience, 2008, 28, 11768-11777.	1.7	225
39	Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E93-102.	3.3	223
40	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
41	Structure of the Cardiac Sodium Channel. Cell, 2020, 180, 122-134.e10.	13.5	217
42	Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3139-48.	3.3	216
43	Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends in Neurosciences, 2018, 41, 442-456.	4.2	210
44	Enhancement of Inhibitory Neurotransmission by GABA A Receptors Having α 2,3 -Subunits Ameliorates Behavioral Deficits in a Mouse Model of Autism. Neuron, 2014, 81, 1282-1289.	3.8	207
45	Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3994-3999.	3.3	200
46	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
47	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. British Journal of Pharmacology, 2021, 178, S157-S245.	2.7	187
48	Ca ²⁺ /Calmodulin-Dependent Facilitation and Inactivation of P/Q-Type Ca ²⁺ Channels. Journal of Neuroscience, 2000, 20, 6830-6838.	1.7	185
49	Structure and function of voltageâ€gated sodium channels at atomic resolution. Experimental Physiology, 2014, 99, 35-51.	0.9	182
50	The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Human Molecular Genetics, 2007, 16, 2892-2899.	1.4	180
51	An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. Journal of General Physiology, 2012, 140, 587-594.	0.9	179
52	Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nature Neuroscience, 2002, 5, 210-217.	7.1	176
53	The Concise Guide to PHARMACOLOGY 2015/16: Voltageâ€gated ion channels. British Journal of Pharmacology, 2015, 172, 5904-5941.	2.7	176
54	A sodium channel signaling complex: modulation by associated receptor protein tyrosine phosphatase β. Nature Neuroscience, 2000, 3, 437-444.	7.1	172

#	Article	IF	CITATIONS
55	Sodium channel β1 and β3 subunits associate with neurofascin through their extracellular immunoglobulin-like domain. Journal of Cell Biology, 2001, 154, 427-434.	2.3	167
56	A Critical Role for the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel α-Subunit in Fast Inactivation. Journal of Biological Chemistry, 1998, 273, 1121-1129.	1.6	165
57	Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature, 2016, 537, 117-121.	13.7	162
58	A Critical Role for Transmembrane Segment IVS6 of the Sodium Channel α Subunit in Fast Inactivation. Journal of Biological Chemistry, 1995, 270, 12025-12034.	1.6	160
59	Structural Basis for Pharmacology of Voltage-Gated Sodium and Calcium Channels. Molecular Pharmacology, 2015, 88, 141-150.	1.0	154
60	Sodium Channels, Inherited Epilepsy, and Antiepileptic Drugs. Annual Review of Pharmacology and Toxicology, 2014, 54, 317-338.	4.2	153
61	Molecular determinants of Ca2+/calmodulin-dependent regulation of Cav2.1 channels. Proceedings of the United States of America, 2003, 100, 16059-16064.	3.3	150
62	Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nature Neuroscience, 1999, 2, 939-941.	7.1	147
63	The chemical basis for electrical signaling. Nature Chemical Biology, 2017, 13, 455-463.	3.9	147
64	Regulation of Presynaptic CaV2.1 Channels by Ca2+ Sensor Proteins Mediates Short-Term Synaptic Plasticity. Neuron, 2008, 57, 210-216.	3.8	144
65	Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell, 2019, 178, 993-1003.e12.	13.5	142
66	Structures of closed and open states of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3051-E3060.	3.3	139
67	Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22498-22503.	3.3	133
68	Solution Structure of the Sodium Channel Inactivation Gate,. Biochemistry, 1999, 38, 855-861.	1.2	130
69	Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin. Journal of Biological Chemistry, 2006, 281, 21332-21344.	1.6	128
70	Ion Permeation through a Voltage- Sensitive Gating Pore in Brain Sodium Channels Having Voltage Sensor Mutations. Neuron, 2005, 47, 183-189.	3.8	127
71	Mapping the receptor site for α-scorpion toxins on a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15426-15431.	3.3	125
72	Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochemical Research, 2017, 42, 2495-2504.	1.6	125

#	Article	IF	CITATIONS
73	International Union of Pharmacology. XXXIX. Compendium of Voltage-Gated Ion Channels: Sodium Channels. Pharmacological Reviews, 2003, 55, 575-578.	7.1	122
74	Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15142-15147.	3.3	121
75	Computational design of transmembrane pores. Nature, 2020, 585, 129-134.	13.7	120
76	Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2819-2824.	3.3	117
77	Signaling complexes of voltage-gated sodium and calcium channels. Neuroscience Letters, 2010, 486, 107-116.	1.0	117
78	Calcium Channels and Short-term Synaptic Plasticity. Journal of Biological Chemistry, 2013, 288, 10742-10749.	1.6	116
79	Catalysis of Na ⁺ permeation in the bacterial sodium channel Na _V Ab. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11331-11336.	3.3	113
80	Na+ channel subunits and Ig domains. Nature, 1996, 383, 307-308.	13.7	109
81	Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain, 2015, 138, 2219-2233.	3.7	106
82	Dravet syndrome: a sodium channel interneuronopathy. Current Opinion in Physiology, 2018, 2, 42-50.	0.9	103
83	A BAC transgenic mouse model reveals neuron subtype-specific effects of a Generalized Epilepsy with Febrile Seizures Plus (GEFS+) mutation. Neurobiology of Disease, 2009, 35, 91-102.	2.1	91
84	Phosphorylation of Ser ¹⁹²⁸ mediates the enhanced activity of the L-type Ca ²⁺ channel Ca _v 1.2 by the l² ₂ -adrenergic receptor in neurons. Science Signaling, 2017, 10, .	1.6	91
85	Depolarization-activated gating pore current conducted by mutant sodium channels in potassium-sensitive normokalemic periodic paralysis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19980-19985.	3.3	87
86	Na _V 1.1 channels are critical for intercellular communication in the suprachiasmatic nucleus and for normal circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E368-77.	3.3	87
87	The Hodgkin-Huxley Heritage: From Channels to Circuits. Journal of Neuroscience, 2012, 32, 14064-14073.	1.7	86
88	Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiology of Disease, 2015, 73, 106-117.	2.1	84
89	Molecular Analysis of the Putative Inactivation Particle in the Inactivation Gate of Brain Type IIA Na+ Channels. Journal of General Physiology, 1997, 109, 589-605.	0.9	80
90	Molecular Determinants for Modulation of Persistent Sodium Current by G-Protein ÂÂ Subunits. Journal of Neuroscience, 2005, 25, 3341-3349.	1.7	80

#	Article	IF	CITATIONS
91	Sleep impairment and reduced interneuron excitability in a mouse model of Dravet Syndrome. Neurobiology of Disease, 2015, 77, 141-154.	2.1	79
92	Molecular properties of sodium and calcium channels. Journal of Bioenergetics and Biomembranes, 1996, 28, 219-230.	1.0	78
93	Structure-Function Map of the Receptor Site for β-Scorpion Toxins in Domain II of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 33641-33651.	1.6	76
94	Gating charge interactions with the S1 segment during activation of a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18825-18830.	3.3	74
95	Fenestrations control resting-state block of a voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13111-13116.	3.3	74
96	Differential Proteolysis of the Fullâ€Length Form of the Lâ€Type Calcium Channel α1 Subunit by Calpain. Journal of Neurochemistry, 1994, 63, 1558-1564.	2.1	73
97	Molecular mechanisms of gating and drug block of sodium channels. Novartis Foundation Symposium, 2002, 241, 206-18; discussion 218-32.	1.2	70
98	Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2813-2818.	3.3	69
99	Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels. Journal of Biological Chemistry, 2012, 287, 30719-30728.	1.6	67
100	Basal and β-adrenergic regulation of the cardiac calcium channel Ca _V 1.2 requires phosphorylation of serine 1700. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16598-16603.	3.3	64
101	Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends in Biochemical Sciences, 2015, 40, 526-534.	3.7	64
102	Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations. Journal of General Physiology, 2010, 136, 225-236.	0.9	63
103	Phosphorylation of Ca _v 1.2 on S1928 uncouples the Lâ€ŧype Ca ²⁺ channel from the β ₂ adrenergic receptor. EMBO Journal, 2016, 35, 1330-1345.	3.5	61
104	A 3D view of sodium channels. Nature, 2001, 409, 988-991.	13.7	58
105	Distribution and function of sodium channel subtypes in human atrial myocardium. Journal of Molecular and Cellular Cardiology, 2013, 61, 133-141.	0.9	58
106	Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell, 2021, 184, 5151-5162.e11.	13.5	56
107	Molecular Analysis of Potential Hinge Residues in the Inactivation Gate of Brain Type IIA Na+ Channels. Journal of General Physiology, 1997, 109, 607-617.	0.9	55
108	Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels, 2013, 7, 468-472.	1.5	55

7

#	Article	IF	CITATIONS
109	Structural basis for gating pore current in periodic paralysis. Nature, 2018, 557, 590-594.	13.7	55
110	Sodium channelopathies of skeletal muscle and brain. Physiological Reviews, 2021, 101, 1633-1689.	13.1	55
111	Structural basis for voltage-sensor trapping of the cardiac sodium channel by a deathstalker scorpion toxin. Nature Communications, 2021, 12, 128.	5.8	54
112	Protective effect of the ketogenic diet in Scn1a mutant mice. Epilepsia, 2011, 52, 2050-2056.	2.6	51
113	Hippocampal deletion of Na _V 1.1 channels in mice causes thermal seizures and cognitive deficit characteristic of Dravet Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16571-16576.	3.3	50
114	Synergistic GABA-Enhancing Therapy against Seizures in a Mouse Model of Dravet Syndrome. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 215-224.	1.3	49
115	Structural Basis for High-Affinity Trapping of the NaV1.7 Channel in Its Resting State by Tarantula Toxin. Molecular Cell, 2021, 81, 38-48.e4.	4.5	40
116	Regulation of Sodium and Calcium Channels by Signaling Complexes. Journal of Receptor and Signal Transduction Research, 2006, 26, 577-598.	1.3	35
117	Calcium sensor regulation of the Ca _V 2.1 Ca ²⁺ channel contributes to long-term potentiation and spatial learning. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13209-13214.	3.3	35
118	Structural Basis for Diltiazem Block of a Voltage-Gated Ca ²⁺ Channel. Molecular Pharmacology, 2019, 96, 485-492.	1.0	35
119	Calcium sensor regulation of the Ca _V 2.1 Ca ²⁺ channel contributes to short-term synaptic plasticity in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1062-1067.	3.3	34
120	The conformational cycle of a prototypical voltage-gated sodium channel. Nature Chemical Biology, 2020, 16, 1314-1320.	3.9	33
121	Molecular Properties of Calcium Channels in Skeletal Muscle and Neurons. Annals of the New York Academy of Sciences, 1993, 681, 342-355.	1.8	31
122	KATP channel gain-of-function leads to increased myocardial L-type Ca2+ current and contractility in Cantu syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6773-6778.	3.3	29
123	Loss of β-adrenergic–stimulated phosphorylation of Ca _V 1.2 channels on Ser1700 leads to heart failure. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7976-E7985.	3.3	28
124	Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac. Journal of General Physiology, 2014, 144, 147-157.	0.9	26
125	Molecular dissection of multiphase inactivation of the bacterial sodium channel NaVAb. Journal of General Physiology, 2019, 151, 174-185.	0.9	23
126	Down regulation of sodium channels in nerve terminals of spontaneously epileptic mice. Cellular and Molecular Neurobiology, 1986, 6, 213-220.	1.7	22

#	Article	IF	CITATIONS
127	The AKAP Cypher/Zasp contributes to β-adrenergic/PKA stimulation of cardiac CaV1.2 calcium channels. Journal of General Physiology, 2018, 150, 883-889.	0.9	22
128	Structure and Modulation of Voltage-Gated Ion Channels. Annals of the New York Academy of Sciences, 1991, 625, 174-180.	1.8	21
129	Selective Dephosphorylation of the Subunits of Skeletal Muscle Calcium Channels by Purified Phosphoprotein Phosphatases. Journal of Neurochemistry, 1993, 61, 1333-1339.	2.1	21
130	Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels. Journal of Neuroscience, 2018, 38, 4430-4440.	1.7	20
131	Molecular Properties of Dihydropyridine-Sensitive Calcium Channels. Annals of the New York Academy of Sciences, 1988, 522, 162-175.	1.8	18
132	Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome. Journal of Neuroscience, 2019, 39, 9251-9260.	1.7	18
133	Interaction of polypeptide neurotoxins with a receptor site associated with voltage-sensitive sodium channels. Journal of Supramolecular Structure, 1980, 14, 295-303.	2.3	16
134	Voltage-Gated Na+ Channels. , 2012, , 41-54.		16
135	Painful Channels. Neuron, 2006, 52, 743-744.	3.8	15
136	Detection of Marine Toxins Using Reconstituted Sodium Channels. Journal of AOAC INTERNATIONAL, 1995, 78, 570-573.	0.7	14
137	The Role of CaV2.1 Channel Facilitation in Synaptic Facilitation. Cell Reports, 2019, 26, 2289-2297.e3.	2.9	14
138	Ins and outs. Nature, 1994, 371, 444-444.	13.7	13
139	Molecular Determinants of CaV2.1 Channel Regulation by Calcium-binding Protein-1*. Journal of Biological Chemistry, 2011, 286, 41917-41923.	1.6	13
140	Phosphorylation sites in the Hook domain of CaVβ subunits differentially modulate CaV1.2 channel function. Journal of Molecular and Cellular Cardiology, 2015, 87, 248-256.	0.9	13
141	Altered short-term synaptic plasticity and reduced muscle strength in mice with impaired regulation of presynaptic Ca _V 2.1 Ca ²⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1068-1073.	3.3	13
142	A more efficient conditional mouse model of Dravet syndrome: Implications for epigenetic selection and sex-dependent behaviors. Journal of Neuroscience Methods, 2019, 325, 108315.	1.3	13
143	Molecular Determinants of Brevetoxin Binding to Voltage-Gated Sodium Channels. Toxins, 2019, 11, 513.	1.5	13
144	Structural and Functional Analysis of Sodium Channels Viewed from an Evolutionary Perspective. Handbook of Experimental Pharmacology, 2017, 246, 53-72.	0.9	12

#	Article	IF	CITATIONS
145	Autism-associated mutations in K _V 7 channels induce gating pore current. Proceedings of the United States of America, 2021, 118, .	3.3	12
146	IgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26816-26822.	3.3	11
147	Molecular Determinants of Modulation of CaV2.1 Channels by Visinin-like Protein 2*. Journal of Biological Chemistry, 2012, 287, 504-513.	1.6	10
148	Na+ channel mutations and epilepsy. Epilepsia, 2010, 51, 59-59.	2.6	9
149	Finding Channels. Journal of Biological Chemistry, 2015, 290, 28357-28373.	1.6	8
150	Voltage-gated sodium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	7
151	Introduction: Ion channels in plasma membrane signal transduction. Journal of Bioenergetics and Biomembranes, 1996, 28, 217-218.	1.0	6
152	Yeasty brew yields novel calcium channel inhibitor. Nature Biotechnology, 1998, 16, 906-906.	9.4	6
153	Helical motion of an S4 voltage sensor revealed by gating pore currents. Channels, 2010, 4, 75-77.	1.5	6
154	Expression and purification of the cardiac sodium channel NaV1.5 for cryo-EM structure determination. Methods in Enzymology, 2021, 653, 89-101.	0.4	6
155	Sharp-Wave Ripple Frequency and Interictal Epileptic Discharges Increase in Tandem During Thermal Induction of Seizures in a Mouse Model of Genetic Epilepsy. Frontiers in Cellular Neuroscience, 2021, 15, 751762.	1.8	6
156	Voltage-gated Na+ channels and epilepsy. Epilepsia, 2010, 51, 9-9.	2.6	5
157	Voltage-gated calcium channels (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	4
158	Voltage-gated calcium channels (Ca _V) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	2
159	Distribution of high-voltage-activated calcium channels in cultured Î ³ -aminobutyric acidergic neurons from mouse cerebral cortex. , 2002, 67, 48.		2
160	Edwin G. Krebs (1918–2009). Science, 2010, 327, 537-537.	6.0	1
161	Voltage-gated calcium channels in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021,	0.2	1
162	Voltage-gated calcium channels (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	1

#	Article	IF	CITATIONS
163	Interaction of Presynaptic Calcium channels with SNARE Proteins in Neurotransmitter Release. Biochemical Society Transactions, 1999, 27, A71-A71.	1.6	Ο
164	Voltage-gated sodium channels (Na _V) in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
165	Voltage-Gated Sodium and Calcium Channels at Atomic Resolution: Structure, Function, and Pharmacology. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, CL-10.	0.0	Ο
166	Synaptotagmin-7 Enhances Facilitation of Ca _v 2.1 Calcium Channels. ENeuro, 2022, , ENEURO.0081-22.2022.	0.9	0