
Carlos Allende Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2434851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
2	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
3	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
4	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	7.7	1,166
5	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	7.7	1,158
6	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	4.7	1,100
7	The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astronomical Journal, 2017, 154, 94.	4.7	1,065
8	SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g </i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.	4.7	905
9	The [ITAL]Forbidden[/ITAL] Abundance of Oxygen in the Sun. Astrophysical Journal, 2001, 556, L63-L66.	4.5	844
10	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.	7.7	826
11	THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astrophysical Journal, Supplement Series, 2014, 211, 17.	7.7	820
12	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	7.7	796
13	Line formation in solar granulation. Astronomy and Astrophysics, 2004, 417, 751-768.	5.1	653
14	ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE. Astronomical Journal, 2016, 151, 144.	4.7	497
15	CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK. Astrophysical Journal, 2015, 808, 132.	4.5	468
16	THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS. Astronomical Journal, 2008, 136, 2022-2049.	4.7	417
17	The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory. Astrophysical Journal, Supplement Series, 2017, 233, 25.	7.7	406
18	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	7.7	405

#	Article	IF	CITATIONS
19	ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY. Astronomical Journal, 2015, 150, 148.	4.7	344
20	THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA. Astrophysical Journal, 2012, 759, 131.	4.5	325
21	A Spectroscopic Study of the Ancient Milky Way: F―and Gâ€Type Stars in the Third Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, 2006, 636, 804-820.	4.5	314
22	TARGET SELECTION FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE). Astronomical Journal, 2013, 146, 81.	4.7	312
23	THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astronomical Journal, 2015, 150, 173.	4.7	306
24	S\$mathsf{^4}\$N: A spectroscopic survey of stars in the solar neighborhood. Astronomy and Astrophysics, 2004, 420, 183-205.	5.1	288
25	THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE <i>KEPLER</i> FIELDS. Astrophysical Journal, Supplement Series, 2014, 215, 19.	7.7	268
26	APOGEE Data and Spectral Analysis from SDSS Data Release 16: Seven Years of Observations Including First Results from APOGEE-South. Astronomical Journal, 2020, 160, 120.	4.7	266
27	THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS. Astronomical Journal, 2008, 136, 2050-2069.	4.7	259
28	APOGEE Data Releases 13 and 14: Data and Analysis. Astronomical Journal, 2018, 156, 125.	4.7	220
29	THE SEGUE STELLAR PARAMETER PIPELINE. III. COMPARISON WITH HIGH-RESOLUTION SPECTROSCOPY OF SDSS/SEGUE FIELD STARS. Astronomical Journal, 2008, 136, 2070-2082.	4.7	208
30	The origin of accreted stellar halo populations in the Milky Way using APOGEE, <i>Gaia</i> , and the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3426-3442.	4.4	199
31	OXYGEN ABUNDANCES IN NEARBY FGK STARS AND THE GALACTIC CHEMICAL EVOLUTION OF THE LOCAL DISK AND HALO. Astrophysical Journal, 2013, 764, 78.	4.5	198
32	THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS. Astrophysical Journal, 2010, 716, 1-29.	4.5	185
33	THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK. Astrophysical Journal, 2014, 790, 127.	4.5	181
34	TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS. Astrophysical Journal, 2014, 796, 38.	4.5	181
35	NEW ATLAS9 AND MARCS MODEL ATMOSPHERE GRIDS FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE). Astronomical Journal, 2012, 144, 120.	4.7	179
36	Signatures of Convection in the Spectrum of Procyon: Fundamental Parameters and Iron Abundance. Astrophysical Journal, 2002, 567, 544-565.	4.5	170

#	Article	IF	CITATIONS
37	Chemodynamics of the Milky Way. Astronomy and Astrophysics, 2014, 564, A115.	5.1	166
38	The <i>Gaia</i> -ESO Survey: The analysis of high-resolution UVES spectra of FGK-type stars. Astronomy and Astrophysics, 2014, 570, A122.	5.1	165
39	Oxygen abundances in nearby stars. Astronomy and Astrophysics, 2007, 465, 271-289.	5.1	164
40	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2019, 622, A205.	5.1	164
41	LITHIUM ABUNDANCES IN NEARBY FGK DWARF AND SUBGIANT STARS: INTERNAL DESTRUCTION, GALACTIC CHEMICAL EVOLUTION, AND EXOPLANETS. Astrophysical Journal, 2012, 756, 46.	4.5	161
42	FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS. Astrophysical Journal, 2011, 743, 135.	4.5	159
43	The Pristine survey – I. Mining the Galaxy for the most metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2587-2604.	4.4	156
44	Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 501-524.	4.4	150
45	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A5.	5.1	149
46	THE SDSS-III APOGEE SPECTRAL LINE LIST FOR <i>H</i> -BAND SPECTROSCOPY. Astrophysical Journal, Supplement Series, 2015, 221, 24.	7.7	137
47	CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK. Astronomical Journal, 2014, 147, 116.	4.7	134
48	THE SEGUE STELLAR PARAMETER PIPELINE. V. ESTIMATION OF ALPHA-ELEMENT ABUNDANCE RATIOS FROM LOW-RESOLUTION SDSS/SEGUE STELLAR SPECTRA. Astronomical Journal, 2011, 141, 90.	4.7	133
49	EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY. Astronomical Journal, 2015, 149, 153.	4.7	133
50	Young [<i>α</i> /Fe]-enhanced stars discovered by CoRoT and APOGEE: What is their origin?. Astronomy and Astrophysics, 2015, 576, L12.	5.1	130
51	APOGEE: The Apache Point Observatory Galactic Evolution Experiment. Astronomische Nachrichten, 2008, 329, 1018-1021.	1.2	123
52	Disentangling the Galactic Halo with APOGEE. I. Chemical and Kinematical Investigation of Distinct Metal-poor Populations. Astrophysical Journal, 2018, 852, 49.	4.5	123
53	CALIBRATIONS OF ATMOSPHERIC PARAMETERS OBTAINED FROM THE FIRST YEAR OF SDSS-III APOGEE OBSERVATIONS. Astronomical Journal, 2013, 146, 133.	4.7	119
54	NEW H-BAND STELLAR SPECTRAL LIBRARIES FOR THE SDSS-III/APOGEE SURVEY. Astronomical Journal, 2015, 149, 181.	4.7	114

#	Article	IF	CITATIONS
55	APOGEE Data Releases 13 and 14: Stellar Parameter and Abundance Comparisons with Independent Analyses. Astronomical Journal, 2018, 156, 126.	4.7	113
56	CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION <i>H</i> -BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST. Astrophysical Journal, 2013, 765, 16.	4.5	107
57	<i>Gaia</i> Data Release 2. Astronomy and Astrophysics, 2018, 616, A6.	5.1	106
58	The <i>Gaia</i> -ESO Survey: the chemical structure of the Galactic discs from the first internal data release. Astronomy and Astrophysics, 2014, 572, A33.	5.1	103
59	Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View. Astrophysical Journal, 2018, 854, 147.	4.5	100
60	Centerâ€toâ€Limb Variation of Solar Threeâ€dimensional Hydrodynamical Simulations. Astrophysical Journal, 2008, 680, 764-773.	4.5	92
61	THE OPEN CLUSTER CHEMICAL ANALYSIS AND MAPPING SURVEY: LOCAL GALACTIC METALLICITY GRADIENT WITH APOGEE USING SDSS DR10. Astrophysical Journal Letters, 2013, 777, L1.	8.3	92
62	The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astronomical Journal, 2020, 159, 199.	4.7	86
63	Chemical Cartography with APOGEE: Multi-element Abundance Ratios. Astrophysical Journal, 2019, 874, 102.	4.5	85
64	INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. I. THE ECHOS OF MILKY WAY FORMATION. Astrophysical Journal, 2009, 703, 2177-2204.	4.5	84
65	Galactic archaeology with asteroseismology and spectroscopy: Red giants observed by CoRoT and APOGEE. Astronomy and Astrophysics, 2017, 597, A30.	5.1	84
66	Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations. Astronomy and Astrophysics, 2004, 423, 1109-1117.	5.1	83
67	The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era. Astrophysical Journal, 2017, 840, 17.	4.5	80
68	The Lazy Giants: APOGEE Abundances Reveal Low Star Formation Efficiencies in the Magellanic Clouds. Astrophysical Journal, 2020, 895, 88.	4.5	77
69	The APOGEE Data Release 16 Spectral Line List. Astronomical Journal, 2021, 161, 254.	4.7	72
70	The Lowest Mass White Dwarf. Astrophysical Journal, 2007, 660, 1451-1461.	4.5	71
71	APOGEE chemical abundances of globular cluster giants in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1010-1018.	4.4	71
72	COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS. Astronomical Journal, 2016, 151, 85.	4.7	68

#	Article	IF	CITATIONS
73	APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy. Astrophysical Journal, 2017, 845, 162.	4.5	68
74	Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns. Astrophysical Journal Letters, 2017, 846, L2.	8.3	66
75	Adding the s-Process Element Cerium to the APOCEE Survey: Identification and Characterization of Ce ii Lines in the H-band Spectral Window. Astrophysical Journal, 2017, 844, 145.	4.5	66
76	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code. Astronomy and Astrophysics, 2019, 622, A191.	5.1	63
77	SODIUM AND OXYGEN ABUNDANCES IN THE OPEN CLUSTER NGC 6791 FROM APOGEE H-BAND SPECTROSCOPY. Astrophysical Journal Letters, 2015, 798, L41.	8.3	62
78	Baade's window and APOGEE. Astronomy and Astrophysics, 2017, 600, A14.	5.1	62
79	Deep SDSS optical spectroscopy of distant halo stars. Astronomy and Astrophysics, 2014, 568, A7.	5.1	60
80	Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances. Astronomical Journal, 2018, 155, 68.	4.7	58
81	THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS. Astrophysical Journal Letters, 2012, 755, L25.	8.3	56
82	Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186. Astrophysical Journal, 2017, 835, 239.	4.5	56
83	IMF and [Na/Fe] abundance ratios from optical and NIR spectral features in early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3597-3616.	4.4	56
84	Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars. Astrophysical Journal, 2019, 874, 97.	4.5	55
85	Disentangling the Galactic Halo with APOGEE. II. Chemical and Star Formation Histories for the Two Distinct Populations. Astrophysical Journal, 2018, 852, 50.	4.5	53
86	Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67. Astrophysical Journal, 2018, 857, 14.	4.5	52
87	IDENTIFICATION OF NEODYMIUM IN THE APOGEE H-BAND SPECTRA. Astrophysical Journal, 2016, 833, 81.	4.5	51
88	Metallicity and α-Element Abundance Gradients along the Sagittarius Stream as Seen by APOGEE. Astrophysical Journal, 2020, 889, 63.	4.5	51
89	VERY METAL-POOR STARS IN THE OUTER GALACTIC BULGE FOUND BY THE APOGEE SURVEY. Astrophysical Journal Letters, 2013, 767, L9.	8.3	49
90	A collection of model stellar spectra for spectral types B to early-M. Astronomy and Astrophysics, 2018, 618, A25.	5.1	48

#	Article	IF	CITATIONS
91	Project overview and update on WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope. Proceedings of SPIE, 2014, , .	0.8	47
92	Warm terrestrial planet with half the mass of Venus transiting a nearby star. Astronomy and Astrophysics, 2021, 653, A41.	5.1	46
93	EXTINCTION MAPS TOWARD THE MILKY WAY BULGE: TWO-DIMENSIONAL AND THREE-DIMENSIONAL TESTS WITH APOGEE. Astronomical Journal, 2014, 148, 24.	4.7	45
94	J0023+0307: A Mega Metal-poor Dwarf Star from SDSS/BOSS*. Astrophysical Journal Letters, 2018, 854, L34.	8.3	44
95	Nonâ€LTE Model Atmospheres for Lateâ€Type Stars. I. A Collection of Data for Light Neutral and Singly Ionized Atoms. Astrophysical Journal, Supplement Series, 2003, 147, 363-368.	7.7	41
96	THE APOGEE SPECTROSCOPIC SURVEY OF <i>KEPLER</i> PLANET HOSTS: FEASIBILITY, EFFICIENCY, AND FIRST RESULTS. Astronomical Journal, 2015, 149, 143.	4.7	40
97	Solar and stellar photospheric abundances. Living Reviews in Solar Physics, 2016, 13, 1.	22.0	39
98	THE SDSS-III APOGEE RADIAL VELOCITY SURVEY OF M DWARFS. I. DESCRIPTION OF THE SURVEY AND SCIENCE GOALS. Astronomical Journal, 2013, 146, 156.	4.7	38
99	Deep SDSS optical spectroscopy of distant halo stars. Astronomy and Astrophysics, 2015, 577, A81.	5.1	38
100	Back to the Lithium Plateau with the [Fe/H]Â<Ââ^'6 Star J0023+0307 ^{â^—} . Astrophysical Journal Letters, 2019, 874, L21.	8.3	38
101	Preliminary Target Selection for the DESI Milky Way Survey (MWS). Research Notes of the AAS, 2020, 4, 188.	0.7	38
102	Chemical abundance gradients from open clusters in the Milky Way disk: Results from the APOGEE survey. Astronomische Nachrichten, 2016, 337, 922-925.	1.2	37
103	Identifying Sagittarius Stream Stars by Their APOGEE Chemical Abundance Signatures. Astrophysical Journal, 2019, 872, 58.	4.5	37
104	NLTE for APOGEE: simultaneous multi-element NLTE radiative transfer. Astronomy and Astrophysics, 2020, 637, A80.	5.1	37
105	The Bulge Metallicity Distribution from the APOGEE Survey. Astrophysical Journal, 2018, 852, 91.	4.5	36
106	WASP-127b: a misaligned planet with a partly cloudy atmosphere and tenuous sodium signature seen by ESPRESSO. Astronomy and Astrophysics, 2020, 644, A155.	5.1	36
107	An equatorial ultra iron-poor star identified in BOSS. Astronomy and Astrophysics, 2015, 579, A98.	5.1	34
108	WHT follow-up observations of extremely metal-poor stars identified from SDSS and LAMOST. Astronomy and Astrophysics, 2017, 605, A40.	5.1	33

#	Article	IF	CITATIONS
109	INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. III. STATISTICAL CHEMICAL TAGGING IN THE SMOOTH HALO. Astrophysical Journal, 2012, 749, 77.	4.5	32
110	DISCOVERY OF A DYNAMICAL COLD POINT IN THE HEART OF THE SAGITTARIUS dSph GALAXY WITH OBSERVATIONS FROM THE APOGEE PROJECT. Astrophysical Journal Letters, 2013, 777, L13.	8.3	32
111	<i>Gaia</i> Early Data Release 3. Astronomy and Astrophysics, 2021, 653, A160.	5.1	32
112	Variability of the mesospheric nightglow sodium D2/D1ratio. Journal of Geophysical Research, 2005, 110, .	3.3	31
113	Fundamental physics with ESPRESSO: Precise limit on variations in the fine-structure constant towards the bright quasar HE 0515â°'4414. Astronomy and Astrophysics, 2022, 658, A123.	5.1	30
114	J0815+4729: A Chemically Primitive Dwarf Star in the Galactic Halo Observed with Gran Telescopio Canarias [*] . Astrophysical Journal Letters, 2018, 852, L20.	8.3	29
115	INSIGHT INTO THE FORMATION OF THE MILKY WAY THROUGH COLD HALO SUBSTRUCTURE. II. THE ELEMENTAL ABUNDANCES OF ECHOS. Astrophysical Journal, 2011, 734, 49.	4.5	28
116	Cosmic variance in [O/Fe] in the Galactic disk. Astronomy and Astrophysics, 2016, 590, A74.	5.1	28
117	Automated analysis of stellar spectra. Astronomische Nachrichten, 2004, 325, 604-609.	1.2	27
118	THE PUZZLING Li-RICH RED GIANT ASSOCIATED WITH NGC 6819. Astrophysical Journal, 2015, 802, 7.	4.5	27
119	CHEMICAL ABUNDANCES IN A SAMPLE OF RED GIANTS IN THE OPEN CLUSTER NGC 2420 FROM APOGEE. Astrophysical Journal, 2016, 830, 35.	4.5	27
120	INFRARED LABORATORY OSCILLATOR STRENGTHS OF Fe I IN THE <i>H</i> BAND. Astrophysical Journal, 2013, 779, 17.	4.5	26
121	Stellar Characterization of M Dwarfs from the APOGEE Survey: A Calibrator Sample for M-dwarf Metallicities. Astrophysical Journal, 2020, 890, 133.	4.5	26
122	Follow-up observations of extremely metal-poor stars identified from SDSS. Astronomy and Astrophysics, 2016, 593, A10.	5.1	26
123	REDSHIFT MEASUREMENT AND SPECTRAL CLASSIFICATION FOR eBOSS GALAXIES WITH THE REDMONSTER SOFTWARE. Astronomical Journal, 2016, 152, 205.	4.7	25
124	A detailed non-LTE analysis of LB-1: Revised parameters and surface abundances. Astronomy and Astrophysics, 2020, 634, L7.	5.1	24
125	Evidence for a metal-poor population in the inner Galactic bulge. Astronomy and Astrophysics, 2015, 584, A45.	5.1	23
126	Timing the Evolution of the Galactic Disk with NGC 6791: An Open Cluster with Peculiar High-α Chemistry as Seen by APOGEE. Astrophysical Journal, 2017, 842, 49.	4.5	22

#	Article	IF	CITATIONS
127	Ca line formation in late-type stellar atmospheres. Astronomy and Astrophysics, 2019, 623, A103.	5.1	22
128	A stellar stream remnant of a globular cluster below the metallicity floor. Nature, 2022, 601, 45-48.	27.8	22
129	SEGUE-2: Old Milky Way Stars Near and Far. Astrophysical Journal, Supplement Series, 2022, 259, 60.	7.7	22
130	NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. I. NEUTRAL SILICON*. Astrophysical Journal, 2016, 833, 137.	4.5	21
131	New ultra metal-poor stars from SDSS: follow-up GTC medium-resolution spectroscopy. Astronomy and Astrophysics, 2017, 604, A9.	5.1	21
132	Disk stars in the Milky Way detected beyond 25 kpc from its center. Astronomy and Astrophysics, 2018, 612, L8.	5.1	21
133	The Stellar Velocity Distribution Function in the Milky Way Galaxy. Astronomical Journal, 2020, 160, 43.	4.7	18
134	On the interpolation of model atmospheres and high-resolution synthetic stellar spectra. Monthly Notices of the Royal Astronomical Society, 2013, 430, 3285-3291.	4.4	17
135	NEW RED JEWELS IN COMA BERENICES. Astrophysical Journal, 2014, 782, 61.	4.5	17
136	NLTE ANALYSIS OF HIGH-RESOLUTION H-BAND SPECTRA. II. NEUTRAL MAGNESIUM*. Astrophysical Journal, 2017, 835, 90.	4.5	16
137	12C/13C isotopic ratios in red-giant stars of the open cluster NGC 6791. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4810-4817.	4.4	16
138	Machine learning in APOGEE. Astronomy and Astrophysics, 2018, 612, A98.	5.1	15
139	sMILES: a library of semi-empirical MILES stellar spectra with variable [<i>α</i> /Fe] abundances. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2286-2311.	4.4	12
140	Detailed Chemical Abundances for a Benchmark Sample of M Dwarfs from the APOGEE Survey. Astrophysical Journal, 2022, 927, 123.	4.5	12
141	Machine learning in APOGEE. Astronomy and Astrophysics, 2019, 629, A34.	5.1	11
142	The Origin of the 300 km s ^{â^'1} Stream near Segue 1. Astrophysical Journal, 2018, 866, 42.	4.5	10
143	The Extreme CNO-enhanced Composition of the Primitive Iron-poor Dwarf Star J0815+4729*. Astrophysical Journal Letters, 2020, 889, L13.	8.3	10
144	Radial Velocities in the Outermost Disk toward the Anticenter. Astronomical Journal, 2019, 157, 26.	4.7	9

#	Article	IF	CITATIONS
145	Benchmark stars, benchmark spectrographs. Astronomy and Astrophysics, 2020, 642, A182.	5.1	7
146	Geometry of the Draco C1 Symbiotic Binary. Astrophysical Journal Letters, 2020, 900, L43.	8.3	7
147	Signatures of the Galactic bar on stellar kinematics unveiled by APOGEE. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1231-1243.	4.4	6
148	HD 22496 b: The first ESPRESSO stand-alone planet discovery. Astronomy and Astrophysics, 2021, 654, A60.	5.1	6
149	White Dwarfs in Close Binaries: A Systematic Search for Mass-transfer Systems and Supernova Ia Progenitors in the APOGEE Survey. Research Notes of the AAS, 2020, 4, 127.	0.7	6
150	Solar chemical peculiarities?. , 2008, , 30-35.		5
151	ESPRESSO highlights the binary nature of the ultra-metal-poor giant HE 0107â^'5240. Astronomy and Astrophysics, 2020, 633, A129.	5.1	5
152	Probing 3D and NLTE models using APOGEE observations of globular cluster stars. Astronomy and Astrophysics, 2021, 647, A24.	5.1	5
153	Automated pipelines for spectroscopic analysis. Astronomische Nachrichten, 2016, 337, 837-843.	1.2	4
154	The GTC gains high spectral resolution. Nature Astronomy, 2021, 5, 105-105.	10.1	4
155	Helium Enhancement in the Metal-rich Red Giants of ï‰ Centauri. Astrophysical Journal, 2020, 897, 32.	4.5	4
156	Strong CO absorption features in massive ETGs. Monthly Notices of the Royal Astronomical Society, 2022, 512, 378-400.	4.4	4
157	Symbiotic Stars in the Apache Point Observatory Galactic Evolution Experiment Survey: The Case of LIN 358 and SMC N73 (LIN 445a). Astrophysical Journal, 2021, 918, 19.	4.5	3
158	Interpolation of spectra from 3D model atmospheres. Astronomy and Astrophysics, 2022, 661, A76.	5.1	3
159	Accurate Metallicities for Very Metal-poor Stars from the Ca ii Infrared Triplet. Astrophysical Journal, 2022, 928, 173.	4.5	3
160	Bridging model and observed stellar spectra. Monthly Notices of the Royal Astronomical Society, 2011, 411, 807-812.	4.4	2
161	Signatures of the Galactic bar in high-order moments of proper motions measured by Gaia. Astronomy and Astrophysics, 2020, 634, A90.	5.1	2
162	Analysis of Previously Classified White Dwarf–Main-sequence Binaries Using Data from the APOGEE Survey. Astronomical Journal, 2021, 161, 143.	4.7	2

#	Article	IF	CITATIONS
163	Chemical composition of the solar surface. Journal of Astrophysics and Astronomy, 2020, 41, 1.	1.0	1
164	An extension of the MILES library with derived <i>T</i> eff, log <i>g</i> , [Fe/H], and [α/Fe]. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4496-4514.	4.4	1
165	The Mass of the Galaxy from Large Samples of Field Horizontal-Branch Stars in the SDSS Early Data Release. Symposium - International Astronomical Union, 2004, 220, 195-200.	0.1	Ο
166	The Initial–Final Mass Relationship of White Dwarfs in Common Proper Motion Pairs and Open Clusters. Proceedings of the International Astronomical Union, 2006, 2, 380-382.	0.0	0
167	First Results from ROTES: The ROtse Telescope Eclipsing-binary Survey. Astrophysics and Space Science, 2006, 304, 231-233.	1.4	0
168	Revised Parameter Estimates For The Most Metalâ€₽oor Candidates In SDSSâ€I And SEGUE. , 2008, , .		0
169	The Lithium-, r- and s-Enhanced Metal-Poor Giant HK-II 17435-00532. AIP Conference Proceedings, 2008, , .	0.4	0
170	An abundance survey of the Galactic thick disk. , 0, , 69-74.		0
171	Strategies for flux calibration in massive spectroscopic surveys. Proceedings of the International Astronomical Union, 2018, 14, 454-454.	0.0	0