Walter J Zahurancik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2434748/publications.pdf

Version: 2024-02-01

20 papers 983 citations

840776 11 h-index 752698 20 g-index

28 all docs 28 docs citations

times ranked

28

2676 citing authors

#	Article	IF	Citations
1	Interlocking activities of DNA polymerase \hat{l}^2 in the base excision repair pathway. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118940119.	7.1	7
2	Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Nucleic Acids Research, 2021, 49, 9444-9458.	14.5	6
3	The many faces of RNA-based RNase P, an RNA-world relic. Trends in Biochemical Sciences, 2021, 46, 976-991.	7.5	25
4	Purification, reconstitution, and mass analysis of archaeal RNase P, a multisubunit ribonucleoprotein enzyme. Methods in Enzymology, 2021, 659, 71-103.	1.0	1
5	Kinetic investigation of the polymerase and exonuclease activities of human DNA polymerase ε holoenzyme. Journal of Biological Chemistry, 2020, 295, 17251-17264.	3.4	10
6	Alternative Protein Topology-Mediated Evolution of a Catalytic Ribonucleoprotein. Trends in Biochemical Sciences, 2020, 45, 825-828.	7.5	5
7	Cancers from Novel <i>Pole </i> -Mutant Mouse Models Provide Insights into Polymerase-Mediated Hypermutagenesis and Immune Checkpoint Blockade. Cancer Research, 2020, 80, 5606-5618.	0.9	14
8	Ramping Recombinant Protein Expression in Bacteria. Biochemistry, 2020, 59, 2122-2124.	2.5	6
9	Dynamic basis for dG•dT misincorporation via tautomerization and ionization. Nature, 2018, 554, 195-201.	27.8	117
10	Structural basis for the D-stereoselectivity of human DNA polymerase \hat{l}^2 . Nucleic Acids Research, 2017, 45, 6228-6237.	14.5	7
11	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	28.9	596
12	Replication studies of carboxymethylated DNA lesions in human cells. Nucleic Acids Research, 2017, 45, 7276-7284.	14.5	17
13	Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases. DNA Repair, 2016, 46, 20-28.	2.8	8
14	Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase É. DNA Repair, 2015, 29, 16-22.	2.8	9
15	DNA Polymerase-Mediated Synthesis of Unbiased Threose Nucleic Acid (TNA) Polymers Requires 7-Deazaguanine To Suppress G:G Mispairing during TNA Transcription. Journal of the American Chemical Society, 2015, 137, 4014-4017.	13.7	27
16	Structural basis for the binding and incorporation of nucleotide analogs with <i>L</i> -stereochemistry by human DNA polymerase î». Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3033-42.	7.1	17
17	Significant contribution of the 3′→5′ exonuclease activity to the high fidelity of nucleotide incorporation catalyzed by human DNA polymerase ϵ. Nucleic Acids Research, 2014, 42, 13853-13860.	14.5	19
18	Kinetic Mechanism of DNA Polymerization Catalyzed by Human DNA Polymerase ε. Biochemistry, 2013, 52, 7041-7049.	2.5	29

#	Article	IF	CITATION
19	Human DNA Polymerase Ϊμ Is Able to Efficiently Extend from Multiple Consecutive Ribonucleotides. Journal of Biological Chemistry, 2012, 287, 42675-42684.	3.4	51
20	RCL Hydrolyzes 2′-Deoxyribonucleoside 5′-Monophosphate via Formation of a Reaction Intermediate. Biochemistry, 2011, 50, 4712-4719.	2.5	12