
David H Rowitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicenter Consensus Approach to Evaluation of Neonatal Hypotonia in the Genomic Era: A Review. JAMA Neurology, 2022, 79, 405.	4.5	7
2	Refinements and considerations for trio whole-genome sequence analysis when investigating Mendelian diseases presenting in early childhood. Human Genetics and Genomics Advances, 2022, 3, 100113.	1.0	4
3	Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development (Cambridge), 2022, 149, .	1.2	8
4	A classification of videoconferencing related illness: the Zoomnotic diseases. QJM - Monthly Journal of the Association of Physicians, 2021, 114, 159-162.	0.2	1
5	On-chip perivascular <i>niche</i> supporting stemness of patient-derived glioma cells in a serum-free, flowable culture. Lab on A Chip, 2021, 21, 2343-2358.	3.1	19
6	Letter to Editor Response to: Is zoomnosis a human-driven human zoonosis? A call for action. QJM - Monthly Journal of the Association of Physicians, 2021, 114, 143-143.	0.2	0
7	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
8	Behaviorally consequential astrocytic regulation of neural circuits. Neuron, 2021, 109, 576-596.	3.8	150
9	Neuroprotective effects of Sonic hedgehog agonist SAG in a rat model of neonatal stroke. Pediatric Research, 2021, 90, 1161-1170.	1.1	10
10	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	2.9	41
11	Evidence for glutamine synthetase function in mouse spinal cord oligodendrocytes. Glia, 2021, 69, 2812-2827.	2.5	13
12	MC3R links nutritional state to childhood growth and the timing of puberty. Nature, 2021, 599, 436-441.	13.7	59
13	Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron, 2020, 105, 855-866.e5.	3.8	143
14	Wnt-Dependent Oligodendroglial-Endothelial Interactions Regulate White Matter Vascularization and Attenuate Injury. Neuron, 2020, 108, 1130-1145.e5.	3.8	52
15	Origins and Proliferative States of Human Oligodendrocyte Precursor Cells. Cell, 2020, 182, 594-608.e11.	13.5	110
16	Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nature Neuroscience, 2020, 23, 500-509.	7.1	290
17	Oxygen Tension and the VHL-Hif1α Pathway Determine Onset of Neuronal Polarization and Cerebellar Germinal Zone Exit. Neuron, 2020, 106, 607-623.e5.	3.8	31
18	Applying support-vector machine learning algorithms toward predicting host–guest interactions with cucurbit[7]uril. Physical Chemistry Chemical Physics, 2020, 22, 14976-14982.	1.3	3

#	Article	IF	CITATIONS
19	An update on human astrocytes and their role in development and disease. Glia, 2020, 68, 685-704.	2.5	46
20	Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature, 2019, 573, 130-134.	13.7	311
21	Long-Term Safety, Immunologic Response, and Imaging Outcomes following Neural Stem Cell Transplantation for Pelizaeus-Merzbacher Disease. Stem Cell Reports, 2019, 13, 254-261.	2.3	34
22	Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 2019, 573, 75-82.	13.7	385
23	Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	3.7	97
24	Identifying the Zika Virus Target Cell in Malignant Glioma. Neuro-Oncology, 2019, 21, iv2-iv2.	0.6	0
25	Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell, 2019, 25, 531-541.e6.	5.2	60
26	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	12.5	0
27	Ferret brain possesses young interneuron collections equivalent to human postnatal migratory streams. Journal of Comparative Neurology, 2019, 527, 2843-2859.	0.9	13
28	Single-cell genomics identifies cell type–specific molecular changes in autism. Science, 2019, 364, 685-689.	6.0	600
29	Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Medicine, 2019, 45, 627-636.	3.9	183
30	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	12.5	540
31	803. Critical Care Medicine, 2019, 47, 380.	0.4	0
32	Cucurbit[8]uril-Derived Graphene Hydrogels. ACS Macro Letters, 2019, 8, 1629-1634.	2.3	15
33	The neurointensive nursery: concept, development, and insights gained. Current Opinion in Pediatrics, 2019, 31, 202-209.	1.0	16
34	A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell, 2018, 33, 874-889.e7.	7.7	180
35	Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron, 2018, 98, 306-319.e7.	3.8	110
36	<i>Dlx1<i>and</i>Dlx2</i> Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cerebral Cortex, 2018, 28, 3797-3815.	1.6	72

#	Article	IF	CITATIONS
37	Sonic Hedgehog Agonist Protects Against Complex Neonatal Cerebellar Injury. Cerebellum, 2018, 17, 213-227.	1.4	22
38	Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia, 2018, 66, 221-238.	2.5	188
39	Single-cell reconstruction of the early maternal–fetal interface in humans. Nature, 2018, 563, 347-353.	13.7	1,547
40	New Recipes for Myelinating Oligodendrocytes. Cell Stem Cell, 2018, 23, 464-465.	5.2	0
41	Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. ELife, 2018, 7, .	2.8	71
42	Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541, 481-487.	13.7	4,977
43	<i>Olig1</i> is required for nogginâ€induced neonatal myelin repair. Annals of Neurology, 2017, 81, 560-571.	2.8	13
44	Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience, 2017, 18, 31-41.	4.9	448
45	The role of prenatal steroids at 34–36 weeks of gestation. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2017, 102, F284-F285.	1.4	12
46	A Sequentially Priming Phosphorylation Cascade Activates the Gliomagenic Transcription Factor Olig2. Cell Reports, 2017, 18, 3167-3177.	2.9	32
47	Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron, 2017, 96, 1003-1012.e7.	3.8	131
48	Reactive astrocyte COX2â€₽GE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia, 2017, 65, 2024-2037.	2.5	81
49	Systematic Three-Dimensional Coculture Rapidly Recapitulates Interactions between Human Neurons and Astrocytes. Stem Cell Reports, 2017, 9, 1745-1753.	2.3	90
50	Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells, 2017, 35, 311-315.	1.4	28
51	Moderate-Grade Germinal Matrix Haemorrhage Activates Cell Division in the Neonatal Mouse Subventricular Zone. Developmental Neuroscience, 2016, 38, 430-444.	1.0	12
52	Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nature Communications, 2016, 7, 13866.	5.8	63
53	Sustaining careers of physician-scientists in neonatology and pediatric critical care medicine: formulating supportive departmental policies. Pediatric Research, 2016, 80, 635-640.	1.1	9
54	Lineage-Restricted OLIG2-RTK Signaling Governs the Molecular Subtype of Glioma Stem-like Cells. Cell Reports, 2016, 16, 2838-2845.	2.9	41

#	Article	lF	CITATIONS
55	Extensive migration of young neurons into the infant human frontal lobe. Science, 2016, 354, .	6.0	293
56	Identification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination. Journal of Neuroscience, 2016, 36, 7925-7935.	1.7	90
57	The Role of the Neurointensive Care Nursery for Neonatal Encephalopathy. Clinics in Perinatology, 2016, 43, 547-557.	0.8	17
58	Identification of proliferative progenitors associated with prominent postnatal growth of the pons. Nature Communications, 2016, 7, 11628.	5.8	29
59	Astrocytes: The Final Frontier…. Neuron, 2016, 89, 1-2.	3.8	59
60	Oligodendrocytes: Cells of Origin for White Matter Injury in the Developing Brain. Neuromethods, 2016, , 281-301.	0.2	3
61	Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathologica, 2015, 130, 171-183.	3.9	45
62	Disease specific therapies in leukodystrophies and leukoencephalopathies. Molecular Genetics and Metabolism, 2015, 114, 527-536.	0.5	45
63	Dysregulation of astrocyte extracellular signaling in Costello syndrome. Science Translational Medicine, 2015, 7, 286ra66.	5.8	70
64	Astrocyte Development and Heterogeneity. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020362.	2.3	275
65	Postnatal growth of the human pons: A morphometric and immunohistochemical analysis. Journal of Comparative Neurology, 2015, 523, 449-462.	0.9	39
66	Hypomyelinating leukodystrophies: Translational research progress and prospects. Annals of Neurology, 2014, 76, 5-19.	2.8	132
67	Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nature Neuroscience, 2014, 17, 506-512.	7.1	98
68	Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature, 2014, 509, 189-194.	13.7	266
69	Olig1 Function Is Required to Repress Dlx1/2 and Interneuron Production in Mammalian Brain. Neuron, 2014, 81, 574-587.	3.8	63
70	Oligodendrocyte-Encoded HIF Function Couples Postnatal Myelination and White Matter Angiogenesis. Cell, 2014, 158, 383-396.	13.5	314
71	An Amino Terminal Phosphorylation Motif Regulates Intranuclear Compartmentalization of Olig2 in Neural Progenitor Cells. Journal of Neuroscience, 2014, 34, 8507-8518.	1.7	21
72	Cerebellar cortical lamination and foliation require cyclin A2. Developmental Biology, 2014, 385, 328-339.	0.9	19

#	Article	IF	CITATIONS
73	A Dramatic Increase of C1q Protein in the CNS during Normal Aging. Journal of Neuroscience, 2013, 33, 13460-13474.	1.7	361
74	Evolving Concepts of Gliogenesis: A Look Way Back and Ahead to the Next 25 Years. Neuron, 2013, 80, 613-623.	3.8	161
75	The role of <i>Tal2</i> and <i>Tal1</i> in the differentiation of midbrain GABAergic neuron precursors. Biology Open, 2013, 2, 990-997.	0.6	57
76	Missense mutation in mouse GALC mimics human gene defect and offers new insights into Krabbe disease. Human Molecular Genetics, 2013, 22, 3397-3414.	1.4	47
77	Expression profiling of Aldh1l1â€precursors in the developing spinal cord reveals glial lineageâ€specific genes and direct Sox9â€Nfe2l1 interactions. Glia, 2013, 61, 1518-1532.	2.5	61
78	Nuclear Localization of the Mitochondrial Factor HIGD1A during Metabolic Stress. PLoS ONE, 2013, 8, e62758.	1.1	32
79	Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1299-1304.	3.3	196
80	Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development (Cambridge), 2012, 139, 1863-1873.	1.2	51
81	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development (Cambridge), 2012, 139, 2477-2487.	1.2	112
82	Voltage-gated potassium channel EAG2 controls mitotic entry and tumor growth in medulloblastoma via regulating cell volume dynamics. Genes and Development, 2012, 26, 1780-1796.	2.7	68
83	Separated at birth? The functional and molecular divergence of OLIG1 and OLIG2. Nature Reviews Neuroscience, 2012, 13, 819-831.	4.9	141
84	Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27 ^{Kip1} Expression. Journal of Neuroscience, 2012, 32, 14775-14793.	1.7	82
85	Neural Stem Cell Engraftment and Myelination in the Human Brain. Science Translational Medicine, 2012, 4, 155ra137.	5.8	238
86	Species-Dependent Posttranscriptional Regulation of NOS1 by FMRP in the Developing Cerebral Cortex. Cell, 2012, 149, 899-911.	13.5	115
87	STAT3â€Mediated astrogliosis protects myelin development in neonatal brain injury. Annals of Neurology, 2012, 72, 750-765.	2.8	81
88	Ablation of NG2 Proteoglycan Leads to Deficits in Brown Fat Function and to Adult Onset Obesity. PLoS ONE, 2012, 7, e30637.	1.1	35
89	Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene, 2012, 31, 1884-1895.	2.6	164
90	Regional Astrocyte Allocation Regulates CNS Synaptogenesis and Repair. Science, 2012, 337, 358-362.	6.0	448

#	Article	IF	CITATIONS
91	Astrocytes and disease: a neurodevelopmental perspective. Genes and Development, 2012, 26, 891-907.	2.7	578
92	Evidence that nuclear factor IA inhibits repair after white matter injury. Annals of Neurology, 2012, 72, 224-233.	2.8	31
93	Cooperative interactions of BRAF ^{V600E} kinase and <i>CDKN2A</i> locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8710-8715.	3.3	77
94	Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathologica, 2012, 123, 601-614.	3.9	71
95	Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination. Experimental Neurology, 2012, 235, 380-387.	2.0	25
96	Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. Journal of Clinical Investigation, 2012, 122, 911-922.	3.9	87
97	Novel regulation of PDGFRα activation in Glioblastoma. FASEB Journal, 2012, 26, 479.7.	0.2	0
98	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord Journal of Cell Science, 2012, 125, e1-e1.	1.2	2
99	Role of academic medical centers in cell-based therapeutic clinical trials. Translational Research, 2011, 157, 320-321.	2.2	0
100	Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 2011, 478, 382-386.	13.7	741
101	Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neuroscience, 2011, 14, 1009-1016.	7.1	307
102	Myelin Regeneration: A Recapitulation of Development?. Annual Review of Neuroscience, 2011, 34, 21-43.	5.0	282
103	Phosphorylation State of Olig2 Regulates Proliferation of Neural Progenitors. Neuron, 2011, 69, 906-917.	3.8	105
104	Cerebellar abnormalities following hypoxia alone compared to hypoxic–ischemic forebrain injury in the developing rat brain. Neurobiology of Disease, 2011, 41, 138-146.	2.1	36
105	The Central Nervous System-Restricted Transcription Factor Olig2 Opposes p53 Responses to Genotoxic Damage in Neural Progenitors and Malignant Glioma. Cancer Cell, 2011, 19, 359-371.	7.7	141
106	A Small-Molecule Smoothened Agonist Prevents Glucocorticoid-Induced Neonatal Cerebellar Injury. Science Translational Medicine, 2011, 3, 105ra104.	5.8	67
107	OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. Journal of Neuro-Oncology, 2011, 104, 423-438.	1.4	63
108	Myelin Restoration: Progress and Prospects for Human Cell Replacement Therapies. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 179-193.	1.0	17

#	Article	IF	CITATIONS
109	Myelin Regeneration in Multiple Sclerosis: Targeting Endogenous Stem Cells. Neurotherapeutics, 2011, 8, 650-658.	2.1	47
110	Targeted Therapy for <i>BRAFV600E</i> Malignant Astrocytoma. Clinical Cancer Research, 2011, 17, 7595-7604.	3.2	143
111	NIH Consensus Development Conference Statement: Inhaled Nitric-Oxide Therapy for Premature Infants. Pediatrics, 2011, 127, 363-369.	1.0	183
112	Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4453-4458.	3.3	262
113	Neurocritical Care for Neonates. Neurocritical Care, 2010, 12, 421-429.	1.2	80
114	Oligodendrocyte <i>PTEN</i> is required for myelin and axonal integrity, not remyelination. Annals of Neurology, 2010, 68, 703-716.	2.8	148
115	Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 2010, 466, 253-257.	13.7	1,568
116	A FOXO–Pak1 transcriptional pathway controls neuronal polarity. Genes and Development, 2010, 24, 799-813.	2.7	83
117	Oncogenic <i>BRAF</i> Mutation with <i>CDKN2A</i> Inactivation Is Characteristic of a Subset of Pediatric Malignant Astrocytomas. Cancer Research, 2010, 70, 512-519.	0.4	236
118	Dexamethasone Destabilizes Nmyc to Inhibit the Growth of Hedgehog-Associated Medulloblastoma. Cancer Research, 2010, 70, 5220-5225.	0.4	19
119	Towards improved animal models of neonatal white matter injury associated with cerebral palsy. DMM Disease Models and Mechanisms, 2010, 3, 678-688.	1.2	106
120	CNS-Resident Clial Progenitor/Stem Cells Produce Schwann Cells as well as Oligodendrocytes during Repair of CNS Demyelination. Cell Stem Cell, 2010, 6, 578-590.	5.2	549
121	Developmental genetics of vertebrate glial–cell specification. Nature, 2010, 468, 214-222.	13.7	561
122	Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Experimental Neurology, 2010, 225, 18-23.	2.0	161
123	NIH consensus development conference: Inhaled nitric oxide therapy for premature infants. NIH Consensus and State-of-the-science Statements, 2010, 27, 1-34.	7.0	39
124	A Genome-Wide Screen for Spatially Restricted Expression Patterns Identifies Transcription Factors That Regulate Glial Development. Journal of Neuroscience, 2009, 29, 11399-11408.	1.7	117
125	Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proceedings of the United States of America, 2009, 106, 14132-14137.	3.3	274
126	Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19162-19167.	3.3	179

#	Article	IF	CITATIONS
127	Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes and Development, 2009, 23, 1571-1585.	2.7	537
128	A Centrosomal Cdc20-APC Pathway Controls Dendrite Morphogenesis in Postmitotic Neurons. Cell, 2009, 136, 322-336.	13.5	177
129	Myelin Gene Regulatory Factor Is a Critical Transcriptional Regulator Required for CNS Myelination. Cell, 2009, 138, 172-185.	13.5	427
130	Hedgehog signaling has a protective effect in glucocorticoid-induced mouse neonatal brain injury through an 111²HSD2-dependent mechanism. Journal of Clinical Investigation, 2009, 119, 267-77.	3.9	103
131	RESEARCH ARTICLE: Myelin Abnormalities without Oligodendrocyte Loss in Periventricular Leukomalacia. Brain Pathology, 2008, 18, 153-163.	2.1	221
132	Expression and function of Nkx6.3 in vertebrate hindbrain. Brain Research, 2008, 1222, 42-50.	1.1	12
133	Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-Restricted Progenitors or Stem Cells. Cancer Cell, 2008, 14, 135-145.	7.7	606
134	Acquisition of Granule Neuron Precursor Identity Is a Critical Determinant of Progenitor Cell Competence to Form Shh-Induced Medulloblastoma. Cancer Cell, 2008, 14, 123-134.	7.7	572
135	Glioma Stem Cells: A Midterm Exam. Neuron, 2008, 58, 832-846.	3.8	291
136	Glioma invasion: Identification of determinants of invasion using timeâ€ l apse imaging. FASEB Journal, 2008, 22, .	0.2	0
137	A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool. Development (Cambridge), 2007, 134, 3427-3436.	1.2	121
138	The Proneural Gene Mash1 Specifies an Early Population of Telencephalic Oligodendrocytes. Journal of Neuroscience, 2007, 27, 4233-4242.	1.7	179
139	Forkhead Transcription Factor FoxM1 Regulates Mitotic Entry and Prevents Spindle Defects in Cerebellar Granule Neuron Precursors. Molecular and Cellular Biology, 2007, 27, 8259-8270.	1.1	84
140	Olig2-Regulated Lineage-Restricted Pathway Controls Replication Competence in Neural Stem Cells and Malignant Glioma. Neuron, 2007, 53, 503-517.	3.8	438
141	Dlx1 and Dlx2 Control Neuronal versus Oligodendroglial Cell Fate Acquisition in the Developing Forebrain. Neuron, 2007, 55, 417-433.	3.8	330
142	Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normalin vivo oligodendrocyte development and myelination. Glia, 2007, 55, 400-411.	2.5	153
143	β-catenin function is required for cerebellar morphogenesis. Brain Research, 2007, 1140, 161-169.	1.1	46
144	Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain. Journal of Neuroscience, 2006, 26, 7907-7918.	1.7	872

#	Article	IF	CITATIONS
145	Cerebellar â€~transcriptome' reveals cell-type and stage-specific expression during postnatal development and tumorigenesis. Molecular and Cellular Neurosciences, 2006, 33, 247-259.	1.0	42
146	Evidence for motoneuron lineage-specific regulation of Olig2 in the vertebrate neural tube. Developmental Biology, 2006, 292, 152-164.	0.9	19
147	Expression of Oligodendroglial and Astrocytic Lineage Markers in Diffuse Gliomas. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1149-1156.	0.9	64
148	Olig gene function in CNS development and disease. Glia, 2006, 54, 1-10.	2.5	197
149	Transcription factor co-expression patterns indicate heterogeneity of oligodendroglial subpopulations in adult spinal cord. Glia, 2006, 54, 35-46.	2.5	108
150	Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma. Cancer Research, 2006, 66, 8139-8146.	0.4	186
151	A Novel Somatic Mouse Model to Survey Tumorigenic Potential Applied to the Hedgehog Pathway. Cancer Research, 2006, 66, 10171-10178.	0.4	257
152	Regulation of Early Events in Cell Cycle Progression by Hedgehog Signaling in CNS Development and Tumorigenesis. , 2006, , 187-209.		0
153	N-myc Is an Essential Downstream Effector of Shh Signaling during both Normal and Neoplastic Cerebellar Growth. Cancer Research, 2006, 66, 8655-8661.	0.4	157
154	Development of NG2 neural progenitor cells requires Olig gene function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7853-7858.	3.3	178
155	Histology-Based Expression Profiling Yields Novel Prognostic Markers in Human Glioblastoma. Journal of Neuropathology and Experimental Neurology, 2005, 64, 948-955.	0.9	85
156	Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathology and Applied Neurobiology, 2005, 31, 62-69.	1.8	62
157	Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature, 2005, 438, 360-363.	13.7	149
158	Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. Developmental Dynamics, 2005, 234, 633-650.	0.8	373
159	Expression pattern of the transcription factor Olig2 in response to brain injuries: Implications for neuronal repair. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18183-18188.	3.3	350
160	The Cdk1 Complex Plays a Prime Role in Regulating N-Myc Phosphorylation and Turnover in Neural Precursors. Developmental Cell, 2005, 9, 327-338.	3.1	129
161	Synchronization of Goat Fibroblast Cells at Quiescent Stage and Determination of Their Transition from G0 to G1 by Detection of Cyclin D1 mRNA. Cloning and Stem Cells, 2004, 6, 58-66.	2.6	15
162	Mouse Brain Organization Revealed Through Direct Genome-Scale TF Expression Analysis. Science, 2004, 306, 2255-2257.	6.0	390

#	Article	IF	CITATIONS
163	Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6502-6507.	3.3	237
164	Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes and Development, 2004, 18, 629-640.	2.7	154
165	Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development (Cambridge), 2004, 131, 217-228.	1.2	193
166	Molecular diversity of astrocytes with implications for neurological disorders. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8384-8389.	3.3	193
167	Glial specification in the vertebrate neural tube. Nature Reviews Neuroscience, 2004, 5, 409-419.	4.9	376
168	bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science, 2004, 306, 2111-2115.	6.0	379
169	The Oligodendroglial Lineage Marker OLIG2 Is Universally Expressed in Diffuse Gliomas. Journal of Neuropathology and Experimental Neurology, 2004, 63, 499-509.	0.9	384
170	Nmycupregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development (Cambridge), 2003, 130, 15-28.	1.2	427
171	Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Developmental Biology, 2003, 263, 50-66.	0.9	89
172	Sox9 is required for determination of the chondrogenic cell lineage in the cranial neural crest. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9360-9365.	3.3	383
173	Loss of Emx2 function leads to ectopic expression of Wnt1 in the developing telencephalon and cortical dysplasia. Development (Cambridge), 2003, 130, 2275-2287.	1.2	53
174	Cross-Repressive Interaction of the Olig2 and Nkx2.2 Transcription Factors in Developing Neural Tube Associated with Formation of a Specific Physical Complex. Journal of Neuroscience, 2003, 23, 9547-9556.	1.7	68
175	Development of mice expressing a single D-type cyclin. Genes and Development, 2002, 16, 3277-3289.	2.7	233
176	Identification of genes expressed with temporal-spatial restriction to developing cerebellar neuron precursors by a functional genomic approach. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5704-5709.	3.3	69
177	Common Developmental Requirement for Olig Function Indicates a Motor Neuron/Oligodendrocyte Connection. Cell, 2002, 109, 75-86.	13.5	957
178	Dach1, a vertebrate homologue of Drosophila dachshund, is expressed in the developing eye and ear of both chick and mouse and is regulated independently of Pax and Eya genes. Mechanisms of Development, 2002, 111, 75-87.	1.7	55
179	An â€~oligarchy' rules neural development. Trends in Neurosciences, 2002, 25, 417-422.	4.2	160
180	Epidermal growth factor receptor and Ink4a/Arf. Cancer Cell, 2002, 1, 269-277.	7.7	618

#	Article	IF	CITATIONS
181	Medulloblastoma: A problem of developmental biology. Cancer Cell, 2002, 2, 7-8.	7.7	56
182	Characterization of Pax-2 Regulatory Sequences That Direct Transgene Expression in the Wolffian Duct and Its Derivatives. Developmental Biology, 2001, 229, 128-140.	0.9	53
183	Sonic Hedgehog Is Required during an Early Phase of Oligodendrocyte Development in Mammalian Brain. Molecular and Cellular Neurosciences, 2001, 18, 434-441.	1.0	80
184	Malignant glioma: genetics and biology of a grave matter. Genes and Development, 2001, 15, 1311-1333.	2.7	1,064
185	Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. International Journal of Developmental Neuroscience, 2001, 19, 379-385.	0.7	104
186	Six3 promotes the formation of ectopic optic vesicle-like structures in mouse embryos. Developmental Dynamics, 2001, 221, 342-349.	0.8	89
187	Ectopic expression of Olig1 promotes oligodendrocyte formation and reduces neuronal survival in developing mouse cortex. Nature Neuroscience, 2001, 4, 973-974.	7.1	108
188	Olig bHLH proteins interact with homeodomain proteins to regulate cell fate acquisition in progenitors of the ventral neural tube. Current Biology, 2001, 11, 1413-1420.	1.8	135
189	Protein Kinase C-associated Kinase (PKK), a Novel Membrane-associated, Ankyrin Repeat-containing Protein Kinase. Journal of Biological Chemistry, 2001, 276, 21737-21744.	1.6	57
190	Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10851-10856.	3.3	159
191	Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development (Cambridge), 2001, 128, 2545-2554.	1.2	289
192	Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development (Cambridge), 2001, 128, 1253-64.	1.2	583
193	Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development (Cambridge), 2001, 128, 2545-54.	1.2	118
194	Sonic hedgehog Promotes G 1 Cyclin Expression and Sustained Cell Cycle Progression in Mammalian Neuronal Precursors. Molecular and Cellular Biology, 2000, 20, 9055-9067.	1.1	474
195	Sonic Hedgehog–Regulated Oligodendrocyte Lineage Genes Encoding bHLH Proteins in the Mammalian Central Nervous System. Neuron, 2000, 25, 317-329.	3.8	779
196	Fate of the mammalian cardiac neural crest. Development (Cambridge), 2000, 127, 1607-16.	1.2	481
197	Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development (Cambridge), 2000, 127, 1671-9.	1.2	580
198	<i>Sonic hedgehog</i> Regulates Proliferation and Inhibits Differentiation of CNS Precursor Cells. Journal of Neuroscience, 1999, 19, 8954-8965.	1.7	357

#	Article	IF	CITATIONS
199	Pax-2 regulatory sequences that direct transgene expression in the developing neural plate and external granule cell layer of the cerebellum. Developmental Brain Research, 1999, 117, 99-108.	2.1	29
200	Cystic malformation of the posterior cerebellar vermis in transgenic mice that ectopically expressEngrailed-1, a homeodomain transcription factor. , 1999, 60, 22-28.		16
201	Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Current Biology, 1998, 8, 1323-S2.	1.8	1,211
202	ldentification of an evolutionarily conserved 110 base-pair cis-acting regulatory sequence that governs Wnt-1 expression in the murine neural plate. Development (Cambridge), 1998, 125, 2735-46.	1.2	20
203	Expression of the Homeobox-containing Genes EN1 and EN2 in Human Fetal Midgestational Medulla and Cerebellum. Journal of Neuropathology and Experimental Neurology, 1997, 56, 236-242.	0.9	38
204	GDNF Induces Branching and Increased Cell Proliferation in the Ureter of the Mouse. Developmental Biology, 1997, 192, 193-198.	0.9	164
205	Cell interactions in patterning the mammalian midbrain. Cold Spring Harbor Symposia on Quantitative Biology, 1997, 62, 535-44.	2.0	4
206	NEONATAL HERPES SIMPLEX VIRUS INFECTION PRESENTING AS FULMINANT LIVER FAILURE. Pediatric Infectious Disease Journal, 1995, 14, 242-243.	1.1	21
207	Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mechanisms of Development, 1995, 52, 3-8.	1.7	148
208	A single homeodomain binding site restricts spatial expression of Wnt-1 in the developing brain. Mechanisms of Development, 1995, 53, 87-96.	1.7	48
209	Effect of coat protein mutations in bacteriophage fd studied by sedimentation analysis. Biophysical Journal, 1992, 63, 1293-1298.	0.2	7
210	Variable electrostatic interaction between DNA and coat protein in filamentous bacteriophage assembly. Journal of Molecular Biology, 1988, 204, 663-674.	2.0	37
211	Cloning and expression of the filamentous bacteriophage Pf1 major coat protein gene in Escherichia coli. Journal of Molecular Biology, 1987, 195, 873-884.	2.0	7
212	Interactions between DNA and coat protein in the structure and assembly of filamentous bacteriophage fd. Nature, 1987, 327, 252-254.	13.7	80
213	DNA-protein interactions and DNA packaging in filamentous bacteriophages. Biochemical Society Transactions, 1986, 14, 1168-1169.	1.6	1
214	The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochemical and Biophysical Research Communications, 1983, 117, 429-434.	1.0	184
215	Oxygen-Tension and the VHL-Hif1α Pathway Comprise a Developmental Switch Controlling the Onset of Neuronal Polarization and Germinal Zone Exit. SSRN Electronic Journal, 0, , .	0.4	0