Richard Liew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2432124/publications.pdf

Version: 2024-02-01

47006 88630 6,320 188 47 70 citations h-index g-index papers 191 191 191 1959 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robustness of inter-module connections and steel modular buildings under column loss scenarios. Journal of Building Engineering, 2022, 47, 103888.	3.4	8
2	Buckling resistance of steel fibre-reinforced concrete encased steel composite columns. Journal of Constructional Steel Research, 2022, 190, 107140.	3.9	13
3	Experimental and Analytical Study on Progressive Collapse of 3D Composite Floor System under Corner Column Loss. Journal of Structural Engineering, 2022, 148, .	3.4	8
4	Experimental study on the dynamic behaviour of expanded-shale lightweight concrete at high strain rate. Materials and Structures/Materiaux Et Constructions, 2022, 55, 1.	3.1	6
5	Experimental and Data-Driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature. Construction and Building Materials, 2022, 341, 127845.	7. 2	11
6	Fiberâ€reinforced mortar for secondary roofing slabs. Structural Concrete, 2021, 22, 1873-1887.	3.1	1
7	Investigation on axial load-shorting behaviour of high strength concrete encased steel composite section. Engineering Structures, 2021, 227, 111401.	5.3	33
8	Fire resistance of high-strength steel tubes infilled with ultra-high-strength concrete under compression. Journal of Constructional Steel Research, 2021, 176, 106410.	3.9	16
9	Thermo-mechanical behaviour of ultra-high strength concrete encased steel columns in standard fires. Engineering Structures, 2021, 231, 111757.	5.3	13
10	Experimental investigation on fire resistance of high-strength concrete encased steel composite columns. Fire Safety Journal, 2021, 121, 103273.	3.1	18
11	Unified equations to predict residual flexural tensile strength of lightweight steel <scp>fiberâ€reinforced</scp> concrete. Structural Concrete, 2021, 22, 2202-2222.	3.1	13
12	Fire performance of composite columns made of high strength steel and concrete. Journal of Constructional Steel Research, 2021, 181, 106640.	3.9	10
13	Experimental study of grouted sleeve connections under bending for steel modular buildings. Engineering Structures, 2021, 243, 112614.	5.3	23
14	Response Behaviour of Highâ€Rise Modular Building under Wind and Seismic Loads. Ce/Papers, 2021, 4, 1747-1756.	0.3	1
15	Prediction of fire resistance of concrete encased steel composite columns using artificial neural network. Engineering Structures, 2021, 245, 112877.	5.3	25
16	Compression-Bending Strength Model for Corrugated Steel Tube Confined Reinforced Concrete Section. Journal of Structural Engineering, 2021, 147, .	3.4	12
17	Shear bond behavior of composite slabs with ultra-lightweight cementitious composite. Journal of Building Engineering, 2021, 44, 103284.	3.4	3
18	Effects of coarse aggregates on physical and mechanical properties of C170/185 ultra-high strength concrete and compressive behaviour of CFST columns. Construction and Building Materials, 2020, 240, 117967.	7.2	31

#	Article	IF	CITATIONS
19	Modelling of connections and lateral behavior of high-rise modular steel buildings. Journal of Constructional Steel Research, 2020, 166, 105901.	3.9	70
20	Assessment of high-strength concrete encased steel composite columns subject to axial compression. Journal of Constructional Steel Research, 2020, 164, 105765.	3.9	41
21	Experimental study on the spalling behaviour of ultra-high strength concrete in fire. Construction and Building Materials, 2020, 258, 120334.	7.2	32
22	Design and testing of concrete encased steel composite beam-columns with C90 concrete and S690 steel section. Engineering Structures, 2020, 220, 110995.	5.3	19
23	Mechanical properties of 1670ÂMPa parallel wire strands at elevated temperatures. Construction and Building Materials, 2020, 263, 120582.	7.2	16
24	Axial-moment interaction of high strength concrete encased steel composite columns: Experimental investigation. Journal of Constructional Steel Research, 2020, 175, 106370.	3.9	14
25	Axial-moment interaction of high strength concrete encased steel composite columns: Design recommendation. Journal of Constructional Steel Research, 2020, 170, 106136.	3.9	21
26	Axial load resistance of grouted sleeve connection for modular construction. Thin-Walled Structures, 2020, 154, 106883.	5.3	32
27	Experimental study to differentiate mechanical behaviours of TMCP and QT high strength steel at elevated temperatures. Construction and Building Materials, 2020, 242, 118105.	7.2	42
28	Buckling behavior of circular steel tubes infilled with C170/185 ultra-high-strength concrete under fire. Engineering Structures, 2020, 212, 110523.	5.3	25
29	Nonlinear Finite Element Modeling of Novel Partially Connected Buckling-Restrained Steel Plate Shear Walls. International Journal of Steel Structures, 2019, 19, 28-43.	1.3	4
30	Experimental study on high strength concrete encased steel composite short columns. Construction and Building Materials, 2019, 228, 116640.	7.2	62
31	Behavior of high strength concrete encased steel composite stub columns with C130 concrete and S690 steel. Engineering Structures, 2019, 200, 109743.	5.3	56
32	A unified approach to evaluate axial force-moment interaction curves of concrete encased steel composite columns. Engineering Structures, 2019, 201, 109841.	5.3	28
33	Steel concrete composite systems for modular construction of high-rise buildings. Structures, 2019, 21, 135-149.	3.6	137
34	Buckling behaviour of high strength concrete encased steel composite columns. Journal of Constructional Steel Research, 2019, 154, 27-42.	3.9	56
35	Flexural fatigue behavior of ultra-lightweight cement composite and high strength lightweight aggregate concrete. Construction and Building Materials, 2018, 173, 90-100.	7.2	67
36	Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures. Construction and Building Materials, 2018, 164, 760-774.	7.2	76

#	Article	IF	CITATIONS
37	Mechanical properties of high tensile steel cables at elevated temperatures. Construction and Building Materials, 2018, 182, 52-65.	7.2	48
38	Characteristics of foam sol clay for controlling coal dust. Powder Technology, 2018, 335, 401-408.	4.2	23
39	Discussion on the applicability of the M-N interaction curve for the fire resistance design of CFT members. Thin-Walled Structures, 2018, 125, 172-186.	5. 3	4
40	High-rise Modular Buildings for Rapid Urbanisation. , 2018, , .		0
41	Modified Critical Temperatures for Steel Design Based on Simple Calculation Models in Eurocode 3. Fire Technology, 2017, 53, 227-248.	3.0	3
42	Experimental and numerical investigation of novel partially connected steel plate shear walls. Journal of Constructional Steel Research, 2017, 132, 1-15.	3.9	36
43	Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete. Journal of Constructional Steel Research, 2017, 132, 191-202.	3.9	85
44	Ultimate resistance behavior of rectangular concrete-filled tubular beam-columns made of high-strength steel. Journal of Constructional Steel Research, 2017, 133, 418-433.	3.9	40
45	Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Engineering Structures, 2017, 136, 494-510.	5. 3	283
46	Evaluation of compressive behavior of ultra-lightweight cement composite after elevated temperature exposure. Construction and Building Materials, 2017, 148, 579-589.	7.2	78
47	Steel-concrete-steel sandwich composite structures-recent innovations. Journal of Constructional Steel Research, 2017, 130, 202-221.	3.9	73
48	Crushing of a novel energy absorption connector with curved plate and aluminum foam as energy absorber. Thin-Walled Structures, 2017, 111, 145-154.	5. 3	28
49	Seismic behavior of novel partially connected buckling-restrained steel plate shear walls. Soil Dynamics and Earthquake Engineering, 2017, 103, 64-75.	3.8	36
50	Shear resistance of buckling-restrained steel plate shear walls. International Journal of Steel Structures, 2017, 17, 1233-1248.	1.3	5
51	08.05: Design of high strength concrete filled tubular columns. Ce/Papers, 2017, 1, 1869-1878.	0.3	0
52	10.38: Effects of heatâ€treatment methods on mechanical performance of highâ€tensile strength steel subject to elevated temperatures. Ce/Papers, 2017, 1, 2840-2846.	0.3	0
53	Behaviour of steel tubular members infilled with ultra high strength concrete. Journal of Constructional Steel Research, 2017, 138, 168-183.	3.9	117
54	Experimental and analytical studies of a novel aluminum foam filled energy absorption connector under quasi-static compression loading. Engineering Structures, 2017, 131, 136-147.	5.3	19

#	Article	IF	CITATIONS
55	Panel action of novel partially connected buckling-restrained steel plate shear walls. Journal of Constructional Steel Research, 2017, 128, 483-497.	3.9	27
56	Buckling Resistance of Axially Restrained Chord Members of Grid Structure at Elevated Temperatures. Applications of Structural Fire Engineering, 2016, , .	0.3	0
57	Steel-concrete-steel sandwich composite structures subjected to extreme loads. International Journal of Steel Structures, 2016, 16, 1009-1028.	1.3	32
58	Damage plasticity based numerical analysis on steel–concrete–steel sandwich shells used in the Arctic offshore structure. Engineering Structures, 2016, 117, 542-559.	5. 3	48
59	Evaluation on thermal behavior of concrete-filled steel tubular columns based on modified finite difference method. Advances in Structural Engineering, 2016, 19, 746-761.	2.4	13
60	Mechanical behaviour of ultra-high strength concrete at elevated temperatures and fire resistance of ultra-high strength concrete filled steel tubes. Materials and Design, 2016, 104, 414-427.	7.0	95
61	Design and behavior of steel–concrete–steel sandwich plates subject to concentrated loads. Composite Structures, 2016, 150, 139-152.	5.8	44
62	Ultimate strength behaviour of steel–concrete–steel sandwich plate under concentrated loads. Ocean Engineering, 2016, 118, 41-57.	4.3	33
63	Mechanical properties of ultra-lightweight cement composite at low temperatures of 0 toÂâ^'60°C. Cement and Concrete Composites, 2016, 73, 289-298.	10.7	47
64	Plastic hinge analysis of composite frames under column loss scenario. International Journal of Steel Structures, 2016, 16, 975-985.	1.3	1
65	Numerical and analytical investigation on a multilayer water façade system subjected to blast loading. Composite Structures, 2016, 158, 175-186.	5. 8	4
66	Constitutive model for confined ultra-high strength concrete in steel tube. Construction and Building Materials, 2016, 126, 812-822.	7.2	33
67	Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors. Journal of Constructional Steel Research, 2016, 124, 142-162.	3.9	58
68	Hysteresis model of a novel partially connected buckling-restrained steel plate shear wall. Journal of Constructional Steel Research, 2016, 125, 74-87.	3.9	35
69	Design of Concrete Filled Tubular Beam-columns with High Strength Steel and Concrete. Structures, 2016, 8, 213-226.	3.6	159
70	A novel multi-functional water façade system for energy saving and blast resisting. Materials and Design, 2016, 106, 98-111.	7.0	10
71	Punching shear behavior of steel–concrete–steel sandwich composite plate under patch loads. Journal of Constructional Steel Research, 2016, 121, 50-64.	3.9	34
72	Experimental and analytical studies of curved steel–concrete–steel sandwich panels under patch loads. Materials and Design, 2016, 93, 104-117.	7.0	15

#	Article	lF	CITATIONS
73	Steel–concrete–steel sandwich system in Arctic offshore structure: Materials, experiments, and design. Materials and Design, 2016, 91, 111-121.	7.0	68
74	Structural behaviour of steel–concrete–steel sandwich composite wall subjected to compression and end moment. Thin-Walled Structures, 2016, 98, 592-606.	5.3	87
75	Modelling of Semi-Rigid Joints in Steel-Concrete Composite Frames. , 2016, , .		0
76	Punching shear resistance of steel–concrete–steel sandwich composite shell structure. Engineering Structures, 2016, 117, 470-485.	5.3	36
77	Robustness analysis of 3D Composite buildings with semi-rigid joints and floor slab. Structures, 2016, 6, 20-29.	3.6	19
78	Reinforced ultra-lightweight cement composite flat slabs: Experiments and analysis. Materials and Design, 2016, 95, 148-158.	7.0	20
79	Progressive Collapse Analysis of Steel-Concrete Composite Frames with Floor Slab Actions. , 2016, , .		1
80	Ultimate strength of steel–concrete–steel sandwich panels under lateral pressure loading. Engineering Structures, 2016, 115, 96-106.	5. 3	27
81	Stability of buckling-restrained steel plate shear walls with inclined-slots: Theoretical analysis and design recommendations. Journal of Constructional Steel Research, 2016, 117, 13-23.	3.9	57
82	Mechanical properties of heat-treated high tensile structural steel at elevated temperatures. Thin-Walled Structures, 2016, 98, 169-176.	5.3	75
83	Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads. Steel and Composite Structures, 2016, 21, 461-477.	1.3	10
84	Experimental Study of Ultra-High-Strength Concrete under Triaxial Compression. ACI Materials Journal, 2016, 113, .	0.2	8
85	Analysis of Steel-Concrete Composite Buildings for Blast Induced Progressive Collapse. International Journal of Protective Structures, 2015, 6, 457-485.	2.3	17
86	Enhancing the Robustness of Steel-Concrete Composite Buildings under Column Loss Scenarios. International Journal of Protective Structures, 2015, 6, 529-550.	2.3	11
87	Experimental and numerical studies of non-composite Steel–Concrete–Steel sandwich panels under impulsive loading. Materials & Design, 2015, 81, 104-112.	5.1	31
88	Lightweight steel–concrete–steel sandwich composite shell subject to punching shear. Ocean Engineering, 2015, 102, 146-161.	4.3	44
89	Blast performance of water tank with energy absorbing support. Thin-Walled Structures, 2015, 96, 1-10.	5.3	23
90	Structural performance of water tank under static and dynamic pressure loading. International Journal of Impact Engineering, 2015, 85, 110-123.	5.0	16

#	Article	IF	Citations
91	A load–indentation formulation for cement composite filled pipe-in-pipe structures. Engineering Structures, 2015, 92, 84-100.	5.3	26
92	Structural behaviour of double skin composite system using ultra-lightweight cement composite. Construction and Building Materials, 2015, 86, 51-63.	7.2	41
93	Progressive collapse mitigation approaches for steel-concrete composite buildings. International Journal of Steel Structures, 2015, 15, 175-191.	1.3	22
94	Numerical modelling of lightweight Steelâ€Concreteâ€Steel sandwich composite beams subjected to impact. Thin-Walled Structures, 2015, 94, 135-146.	5.3	54
95	Nonlinear finite element modelling and parametric study of curved steel–concrete–steel double skin composite panels infilled with ultra-lightweight cement composite. Construction and Building Materials, 2015, 95, 922-938.	7.2	60
96	Vulnerability of simple braced steel building under extreme load. IES Journal Part A: Civil and Structural Engineering, 2015, 8, 219-231.	0.4	5
97	Ultimate strength behavior of curved steel–concrete–steel sandwich composite beams. Journal of Constructional Steel Research, 2015, 115, 316-328.	3.9	26
98	Impact of cement composite filled steel tubes: An experimental, numerical and theoretical treatise. Thin-Walled Structures, 2015, 87, 76-88.	5.3	54
99	Experimental and analytical study on ultimate strength behavior of steel–concrete–steel sandwich composite beam structures. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1523-1544.	3.1	95
100	Theoretical models for axially restrained steel-concrete-steel sandwich panels under blast loading. International Journal of Impact Engineering, 2015, 76, 221-231.	5.0	49
101	Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis. Steel and Composite Structures, 2015, 18, 1001-1021.	1.3	10
102	Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures. Materiales De Construccion, 2015, 65, e071.	0.7	58
103	Tensile resistance of J-hook connectors used in Steel-Concrete-Steel sandwich structure. Journal of Constructional Steel Research, 2014, 100, 146-162.	3.9	41
104	Push-out tests on J-hook connectors in steel–concrete–steel sandwich structure. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1693-1714.	3.1	54
105	Impact behaviour of pre-compressed hollow and concrete filled mild and stainless steel columns. Journal of Constructional Steel Research, 2014, 96, 54-68.	3.9	80
106	Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment. Materials & Design, 2014, 61, 150-159.	5.1	119
107	Behavior of steel–concrete–steel sandwich slabs subject to impact load. Journal of Constructional Steel Research, 2014, 100, 163-175.	3.9	89
108	Experimental behavior of cement filled pipe-in-pipe composite structures under transverse impact. International Journal of Impact Engineering, 2014, 72, 1-16.	5.0	81

#	Article	IF	Citations
109	Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 1: Experimental and analytical study. Steel and Composite Structures, 2014, 17, 907-927.	1.3	38
110	Transverse impact resistance of hollow and concrete filled stainless steel columns. Journal of Constructional Steel Research, 2013, 82, 177-189.	3.9	109
111	Blast and Ballistic Resistance of Ultra-High Strength Steel. International Journal of Protective Structures, 2013, 4, 379-413.	2.3	6
112	Finite Element Analysis of Curved Steel-Concrete-Steel Sandwich Beams., 2013,,.		2
113	Heat Transfer Analysis of Water Storage Façade System. , 2013, , .		3
114	Plastic Hinge Approach for Collapse Analysisof Composite Frames Subjected to Column Loss. , 2013, , .		0
115	Experimental Study on Fire Resistance of Composite Column with Ultra-High Strength Materials. , 2013, , .		0
116	Flower Dome and Cloud Forest Conservatories @ Gardens by the Bay. , 2013, , .		0
117	Ultra-High Strength Concrete Filled Composite Columns for Multi-Storey Building Construction. Advances in Structural Engineering, 2012, 15, 1487-1503.	2.4	116
118	Development of SCS Sandwich Composite Shell for Arctic Caissons. , 2012, , .		10
119	Behavior of Steel–Concrete–Steel sandwich structures with lightweight cement composite and novel shear connectors. Composite Structures, 2012, 94, 3500-3509.	5.8	85
120	Experimental studies on composite haunch beams. Journal of Constructional Steel Research, 2012, 75, 160-168.	3.9	5
121	Simulation Model for Ultra-High Strength Concrete Filled Composite Column under Static Loads. , 2012, , .		O
122	Experimental Investigation on Mechanical Properties of High Strength Steel at Elevated Temperatures. , $2012,$,.		1
123	A Novel Deployable Vehicle Crash Barrier. , 2012, , .		О
124	Composite Action Investigation of Mega CFST Columns Under Axial Load. , 2012, , .		0
125	Development of P-I Diagrams for Stainless Steel Water Tank Subject to Blast Loading. , 2012, , .		0
126	Novel Steel-Concrete-Steel Sandwich Composite Plates Subject to Impact and Blast Load. Advances in Structural Engineering, 2011, 14, 673-687.	2.4	81

#	Article	IF	CITATIONS
127	Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads. Frontiers of Architecture and Civil Engineering in China, 2011, 5, 278-293.	0.4	10
128	Steel–Concrete–Steel sandwich slabs with lightweight core — Static performance. Engineering Structures, 2011, 33, 981-992.	5. 3	84
129	Structural Performance of Steel-Concrete-Steel Sandwich Composite Structures. Advances in Structural Engineering, 2010, 13, 453-470.	2.4	33
130	Fatigue performance of lightweight steel–concrete–steel sandwich systems. Journal of Constructional Steel Research, 2010, 66, 256-276.	3.9	53
131	Ultra-High Strength Concrete Filled Columns for Highrise Buildings. , 2010, , .		3
132	Bond Enhancement for Sandwich Shell Ice Wall. , 2010, , .		8
133	An experimental investigation on shear bond strength between steel and fresh cast concrete using epoxy. IES Journal Part A: Civil and Structural Engineering, 2009, 2, 107-115.	0.4	5
134	Effect of preload on the axial capacity of concrete-filled composite columns. Journal of Constructional Steel Research, 2009, 65, 709-722.	3.9	76
135	Lightweight steel–concrete–steel sandwich system with J-hook connectors. Engineering Structures, 2009, 31, 1166-1178.	5. 3	148
136	Impact tests on steel–concrete–steel sandwich beams with lightweight concrete core. Engineering Structures, 2009, 31, 2045-2059.	5. 3	155
137	Survivability of steel frame structures subject to blast and fire. Journal of Constructional Steel Research, 2008, 64, 854-866.	3.9	77
138	Recent Development of Deployable Tension-Strut Structures. Advances in Structural Engineering, 2008, 11, 599-614.	2.4	5
139	Local buckling of steel plates in concrete-filled thin-walled steel tubular beam–columns. Journal of Constructional Steel Research, 2007, 63, 396-405.	3.9	76
140	Deployable Tension-Strut Structures: Structural Morphology Study and Alternative Form Creations. International Journal of Space Structures, 2006, 21, 149-164.	1.0	6
141	Nonlinear analysis of concrete-filled thin-walled steel box columns with local buckling effects. Journal of Constructional Steel Research, 2006, 62, 581-591.	3.9	86
142	Deployable tension-strut structures: from concept to implementation. Journal of Constructional Steel Research, 2006, 62, 195-209.	3.9	34
143	Guest Editoral. Advances in Structural Engineering, 2005, 8, 183-183.	2.4	0
144	Considering Catenary Action in Designing End-Restrained Steel Beams in Fire. Advances in Structural Engineering, 2005, 8, 309-324.	2.4	15

#	Article	IF	CITATIONS
145	Integrated Blast & Damp; Fire Analysis of Steel Structures., 2005, , 17.		O
146	Performance Based Fire Safety Design of Structures â€" A Multi-Dimensional Integration. Advances in Structural Engineering, 2004, 7, 311-333.	2.4	7
147	Explosion and Fire Analysis of Steel Frames Using Fiber Element Approach. Journal of Structural Engineering, 2004, 130, 991-1000.	3.4	75
148	Direct analysis for performance-based design of steel and composite structures. Structural Control and Health Monitoring, 2004, 6, 213-228.	0.7	10
149	Advanced analysis of 3D steel framework exposed to compartment fire. Fire and Materials, 2004, 28, 253-267.	2.0	16
150	Nonlinear Plastic Hinge Analysis of Three-Dimensional Steel Frames in Fire. Journal of Structural Engineering, 2004, 130, 981-990.	3.4	22
151	Moment curvature method for fire safety design of steel beams. Steel and Composite Structures, 2004, 4, 227-246.	1.3	4
152	Experimental study on reciprocal prism (RP) grid for space structures. Journal of Constructional Steel Research, 2003, 59, 1363-1384.	3.9	5
153	Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams. Steel and Composite Structures, 2003, 3, 289-306.	1.3	25
154	STABILITY OF STEEL FRAMES IN NATURAL FIRE. , 2002, , .		1
155	EXPLOSION AND FIRE ANALYSIS OF STEEL FRAMES. , 2002, , .		2
156	Advanced Analysis for Performance-based Design of Steel Structures Exposed to Fires. Journal of Structural Engineering, 2002, 128, 1584-1593.	3.4	26
157	Assessment of structures for fire safety—insights on current methods and trends. , 2002, , 1061-1069.		0
158	Limit-State Analysis and Design of Cable-Tensioned Structures. International Journal of Space Structures, 2001, 16, 95-110.	1.0	14
158		3.4	66
	Structures, 2001, 16, 95-110. Inelastic Analysis of Steel Frames with Composite Beams. Journal of Structural Engineering, 2001, 127,		
159	Structures, 2001, 16, 95-110. Inelastic Analysis of Steel Frames with Composite Beams. Journal of Structural Engineering, 2001, 127, 194-202. Practical design guidlines for semi-continuous composite braced frames. Steel and Composite	3.4	66

#	Article	IF	Citations
163	Nonlinear analysis of steel–concrete composite beams curved in plan. Finite Elements in Analysis and Design, 1999, 32, 125-139.	3.2	55
164	Stability Functions for Second-Order Inelastic Analysis of Space Frames. , 1999, , 19-26.		3
165	Flexural torsional behaviour of steel I-beams curved in plan. Journal of Constructional Steel Research, 1998, 46, 79-80.	3.9	3
166	Closure to "Analysis and Design of Steel Frames Considering Panel Joint Deformations―by J. Y. Richard Liew and W. F. Chen. Journal of Structural Engineering, 1997, 123, 382-383.	3.4	0
167	Advanced analysis and design of spatial structures. Journal of Constructional Steel Research, 1997, 42, 21-48.	3.9	32
168	Experimental Investigation of the Behaviour of End-Plate Connections., 1996,, 347-352.		0
169	Collapse Behaviour of Semi-Rigid Sway Frames. , 1996, , 207-212.		0
170	Behaviour and design of horizontally curved steel beams. Journal of Constructional Steel Research, 1995, 32, 37-67.	3.9	27
171	Analysis and Design of Steel Frames Considering Panel Joint Deformations. Journal of Structural Engineering, 1995, 121, 1531-1540.	3.4	18
172	Second-Order Plastic Hinge Analysis. , 1995, , 425-502.		0
173	Notionalâ€Load Plasticâ€Hinge Method for Frame Design. Journal of Structural Engineering, 1994, 120, 1434-1454.	3.4	39
174	Limit states design of semi-rigid frames using advanced analysis: Part 1: Connection modeling and classification. Journal of Constructional Steel Research, 1993, 26, 1-27.	3.9	40
175	Limit states design of semi-rigid frames using advanced analysis: Part 2: Analysis and design. Journal of Constructional Steel Research, 1993, 26, 29-57.	3.9	31
176	Secondâ€Order Refined Plasticâ€Hinge Analysis for Frame Design. Part I. Journal of Structural Engineering, 1993, 119, 3196-3216.	3.4	141
177	Secondâ€Order Refined Plasticâ€Hinge Analysis for Frame Design. Part II. Journal of Structural Engineering, 1993, 119, 3217-3236.	3.4	45
178	Beam-column design in steel frameworksâ€" insights on current methods and trends. Journal of Constructional Steel Research, 1991, 18, 269-308.	3.9	34
179	Design of thin-plated steel box columns under biaxial loading. Journal of Constructional Steel Research, 1990, 16, 39-70.	3.9	7
180	OPTIMUM DESIGN OF THIN-PLATED STEEL BOX COLUMNS. Engineering Optimization, 1990, 16, 291-311.	2.6	3

#	Article	IF	CITATIONS
181	Thinâ€Walled Steel Box Columns under Biaxial Loading. Journal of Structural Engineering, 1989, 115, 2706-2726.	3.4	22
182	Local buckling of thin-walled steel box columns. Thin-Walled Structures, 1989, 8, 119-145.	5.3	12
183	Welded steel box-columns under biaxial loading. Journal of Constructional Steel Research, 1989, 12, 119-139.	3.9	12
184	Behavior of Thinâ€Walled Steel Box Columns Under Biaxial Loading. Journal of Structural Engineering, 1989, 115, 3076-3094.	3.4	21
185	Tapered Box Columns under Biaxial Loading. Journal of Structural Engineering, 1989, 115, 1697-1710.	3.4	8
186	Experimental behaviour of very high-strength concrete-encased steel composite column subjected to axial compression and end moment. , 0 , , .		5
187	Design and Construction of Unusual and Complex Structures. , 0, , .		O
188	Experimental study on spalling risk of concrete with $115\sim120$ MPa subject to ISO834 Fire., $0, , .$		0