List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431934/publications.pdf Version: 2024-02-01

		25034	37204
320	11,974	57	96
papers	citations	h-index	g-index
325	325	325	9236
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recommendations for Improving Serum Creatinine Measurement: A Report from the Laboratory Working Group of the National Kidney Disease Education Program. Clinical Chemistry, 2006, 52, 5-18.	3.2	1,057
2	Defining analytical performance specifications: Consensus Statement from the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine. Clinical Chemistry and Laboratory Medicine, 2015, 53, 833-5.	2.3	398
3	Future Biomarkers for Detection of Ischemia and Risk Stratification in Acute Coronary Syndrome. Clinical Chemistry, 2005, 51, 810-824.	3.2	385
4	Evaluation of Imprecision for Cardiac Troponin Assays at Low-Range Concentrations. Clinical Chemistry, 2004, 50, 327-332.	3.2	342
5	Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T. Annals of Emergency Medicine, 2016, 68, 76-87.e4.	0.6	294
6	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase. Clinical Chemistry and Laboratory Medicine, 2002, 40, 718-24.	2.3	210
7	Reference Intervals for Serum Creatinine Concentrations: Assessment of Available Data for Global Application. Clinical Chemistry, 2008, 54, 559-566.	3.2	197
8	National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical Issues for Biochemical Markers of Acute Coronary Syndromes. Clinical Chemistry, 2007, 53, 547-551.	3.2	188
9	Quality Specifications for B-Type Natriuretic Peptide Assays. Clinical Chemistry, 2005, 51, 486-493.	3.2	181
10	Biochemical Markers for Prediction of Chemotherapy-Induced Cardiotoxicity. American Journal of Clinical Pathology, 2008, 130, 688-695.	0.7	170
11	Serum human epididymis protein 4 vs carbohydrate antigen 125 for ovarian cancer diagnosis: a systematic review. Journal of Clinical Pathology, 2013, 66, 273-281.	2.0	150
12	Reference intervals: the way forward. Annals of Clinical Biochemistry, 2009, 46, 8-17.	1.6	147
13	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37ŰC. Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase. Clinical Chemistry and Laboratory Medicine, 2002, 40, 725-33.	2.3	145
14	Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clinical Chemistry and Laboratory Medicine, 2016, 54, 7-15.	2.3	138
15	Criteria for assigning laboratory measurands to models for analytical performance specifications defined in the 1st EFLM Strategic Conference. Clinical Chemistry and Laboratory Medicine, 2017, 55, 189-194.	2.3	130
16	Quality Specifications for Cardiac Troponin Assays. Clinical Chemistry and Laboratory Medicine, 2001, 39, 175-9.	2.3	124
17	Role and importance of biochemical markers in clinical cardiology. European Heart Journal, 2004, 25, 1187-1196.	2.2	118
18	Preanalytical quality improvement. In pursuit of harmony, on behalf of European Federation for Clinical Chemistry and Laboratory Medicine (EFLM) Working group for Preanalytical Phase (WG-PRE). Clinical Chemistry and Laboratory Medicine, 2015, 53, 357-70.	2.3	110

#	Article	IF	CITATIONS
19	Standardization of Cardiac Troponin I Assays: Round Robin of Ten Candidate Reference Materials. Clinical Chemistry, 2001, 47, 431-437.	3.2	106
20	Use of Biochemical Markers in Acute Coronary Syndromes. IFCC Scientific Division, Committee on Standardization of Markers of Cardiac Damage. Clinical Chemistry and Laboratory Medicine, 1999, 37, 687-93.	2.3	104
21	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase. Clinical Chemistry and Laboratory Medicine, 2002, 40, 635-42.	2.3	104
22	Soluble Transferrin Receptor (sTfR) and sTfR/log Ferritin Index for the Diagnosis of Iron-Deficiency Anemia A Meta-Analysis. American Journal of Clinical Pathology, 2012, 138, 642-649.	0.7	103
23	IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 ŰC. Part 9: Reference procedure for the measurement of catalytic concentration of alkaline phosphatase. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1439-46.	2.3	101
24	Diagnostic and prognostic implications using age- and gender-specific cut-offs for high-sensitivity cardiac troponin T — Sub-analysis from the TRAPID-AMI study. International Journal of Cardiology, 2016, 209, 26-33.	1.7	101
25	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37C. Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Î ³ -Glutamyltransferase. Clinical Chemistry and Laboratory Medicine, 2002, 40, 734-8.	2.3	100
26	IFCC Working Group Recommendations for Assessing Commutability Part 1: General Experimental Design. Clinical Chemistry, 2018, 64, 447-454.	3.2	96
27	Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and Î ³ -glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1593-1601.	2.3	90
28	Harmonization of automated hemolysis index assessment and use: Is it possible?. Clinica Chimica Acta, 2014, 432, 38-43.	1.1	90
29	Single-Point Cardiac Troponin T at Coronary Care Unit Discharge after Myocardial Infarction Correlates with Infarct Size and Ejection Fraction. Clinical Chemistry, 2002, 48, 1432-1436.	3.2	89
30	Aspartate aminotransferase isoenzymes. Clinical Biochemistry, 1990, 23, 311-319.	1.9	85
31	IFCC Working Group Recommendations for Assessing Commutability Part 2: Using the Difference in Bias between a Reference Material and Clinical Samples. Clinical Chemistry, 2018, 64, 455-464.	3.2	85
32	Toward Standardization of Cardiac Troponin I Measurements Part II: Assessing Commutability of Candidate Reference Materials and Harmonization of Cardiac Troponin I Assays. Clinical Chemistry, 2006, 52, 1685-1692.	3.2	84
33	Cardiac troponin elevations in chronic renal failure: prevalence and clinical significance. Clinical Biochemistry, 1999, 32, 125-130.	1.9	82
34	Enzymatic assays for creatinine: time for action. Clinical Chemistry and Laboratory Medicine, 2008, 46, 567-72.	2.3	81
35	Generation of data on within-subject biological variation in laboratory medicine: An update. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 313-325.	6.1	81
36	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37ŰC. Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase. Clinical Chemistry and Laboratory Medicine, 2002, 40, 643-8.	2.3	80

#	Article	IF	CITATIONS
37	National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical Issues for Biomarkers of Heart Failure. Circulation, 2007, 116, e95-8.	1.6	79
38	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	2.2	78
39	Traceability as a unique tool to improve standardization in laboratory medicine. Clinical Biochemistry, 2009, 42, 236-240.	1.9	76
40	The Analytical Goals for Hemoglobin A1c Measurement in IFCC Units and National Glycohemoglobin Standardization Program Units Are Different. Clinical Chemistry, 2011, 57, 1204-1206.	3.2	75
41	Defining a roadmap for harmonizing quality indicators in Laboratory Medicine: a consensus statement on behalf of the IFCC Working Group "Laboratory Error and Patient Safety―and EFLM Task and Finish Group "Performance specifications for the extra-analytical phases― Clinical Chemistry and Laboratory Medicine. 2017. 55. 1478-1488.	2.3	75
42	Cardiac troponin: a critical review of the case for point-of-care testing in the ED. American Journal of Emergency Medicine, 2012, 30, 1639-1649.	1.6	74
43	Verification of in vitro medical diagnostics (IVD) metrological traceability: Responsibilities and strategies. Clinica Chimica Acta, 2014, 432, 55-61.	1.1	72
44	Implementation of standardization in clinical practice: not always an easy task. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1237-1241.	2.3	71
45	Standardisation of cardiac troponin I measurement: past and present. Pathology, 2010, 42, 402-408.	0.6	68
46	Assay-related issues in the measurement of cardiac troponins. Clinica Chimica Acta, 2009, 402, 88-93.	1.1	66
47	Application of traceability concepts to analytical quality control may reconcile total error with uncertainty of measurement. Clinical Chemistry and Laboratory Medicine, 2010, 48, 7-10.	2.3	65
48	Acute Coronary Syndrome. Chest, 2002, 122, 1428-1435.	0.8	64
49	The Use of Very Low Concentrations of Highâ€sensitivity Troponin T to Rule Out Acute Myocardial Infarction Using a Single Blood Test. Academic Emergency Medicine, 2016, 23, 1004-1013.	1.8	64
50	Prognostic Utility of a Modified HEART Score in Chest Pain Patients in the Emergency Department. Circulation: Cardiovascular Quality and Outcomes, 2017, 10, .	2.2	64
51	The utility of measurement uncertainty in medical laboratories. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1407-1413.	2.3	64
52	Traceability, reference systems and result comparability. Clinical Biochemist Reviews, 2007, 28, 97-104.	3.3	64
53	A Comprehensive Appraisal of Laboratory Biochemistry Tests as Major Predictors of COVID-19 Severity. Archives of Pathology and Laboratory Medicine, 2020, 144, 1457-1464.	2.5	61
54	Performance criteria for combined uncertainty budget in the implementation of metrological traceability. Clinical Chemistry and Laboratory Medicine, 2015, 53, 905-12.	2.3	60

#	Article	IF	CITATIONS
55	The Sensitivity of Cardiac Markers: an Evidence-based Approach. Clinical Chemistry and Laboratory Medicine, 1999, 37, 1097-106.	2.3	59
56	Diagnostic value of transferrin. Clinica Chimica Acta, 2012, 413, 1184-1189.	1.1	58
57	Serum albumin: Accuracy and clinical use. Clinica Chimica Acta, 2013, 419, 15-18.	1.1	58
58	The Asian project for collaborative derivation of reference intervals: (1) strategy and major results of standardized analytes. Clinical Chemistry and Laboratory Medicine, 2013, 51, 1429-42.	2.3	56
59	Promoting clinical and laboratory interaction by harmonization. Clinica Chimica Acta, 2014, 432, 15-21.	1.1	56
60	Strategies to define performance specifications in laboratory medicine: 3 years on from the Milan Strategic Conference. Clinical Chemistry and Laboratory Medicine, 2017, 55, 1849-1856.	2.3	56
61	Total laboratory automation: Do stat tests still matter?. Clinical Biochemistry, 2017, 50, 605-611.	1.9	55
62	Harmonization of laboratory testing — Current achievements and future strategies. Clinica Chimica Acta, 2014, 432, 4-7.	1.1	53
63	Prevalence of Pancreatic Insufficiency in Inflammatory Bowel Diseases. Assessment by Fecal Elastase-1. Digestive Diseases and Sciences, 2008, 53, 262-270.	2.3	51
64	Frequency of butyrylcholinesterase gene mutations in individuals with abnormal inhibition numbers. Pharmacogenetics and Genomics, 2003, 13, 265-270.	5.7	50
65	Establishing a Reference System in Clinical Enzymology. Clinical Chemistry and Laboratory Medicine, 2001, 39, 795-800.	2.3	48
66	The importance of metrological traceability on the validity of creatinine measurement as an index of renal function: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Clinical Chemistry and Laboratory Medicine, 2006, 44, 1287-92.	2.3	47
67	Standardization of troponin I measurements: an update. Clinical Chemistry and Laboratory Medicine, 2008, 46, 1501-6.	2.3	47
68	Biological variability of glycated hemoglobin. Clinica Chimica Acta, 2010, 411, 1606-1610.	1.1	47
69	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37ŰC. Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of Î ³ -Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase according to IFCC Reference Procedures at 37ŰC. Clinical Chemistry and Laboratory Medicine,	2.3	46
70	Trueness verification of actual creatinine assays in the European market demonstrates a disappointing variability that needs substantial improvement. An international study in the framework of the EC4 creatinine standardization working group. Clinical Chemistry and Laboratory Medicine, 2008, 46, 1319-25.	2.3	46
71	Revaluation of biological variation of glycated hemoglobin (HbA1c) using an accurately designed protocol and an assay traceable to the IFCC reference system. Clinica Chimica Acta, 2011, 412, 1412-1416.	1.1	46
72	Human epididymis protein 4: Factors of variation. Clinica Chimica Acta, 2015, 438, 171-177.	1.1	46

#	Article	IF	CITATIONS
73	Analytical performance specifications for external quality assessment – definitions and descriptions. Clinical Chemistry and Laboratory Medicine, 2017, 55, 949-955.	2.3	46
74	Laboratory medicine in the new healthcare environment. Clinical Chemistry and Laboratory Medicine, 2016, 54, 523-33.	2.3	45
75	The internal quality control in the traceability era. Clinical Chemistry and Laboratory Medicine, 2021, 59, 291-300.	2.3	45
76	Serum isoforms of creatine kinase isoenzymes. Clinical Biochemistry, 1988, 21, 211-218.	1.9	44
77	Enzymatic assays for creatinine: Time for action. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 84-88.	1.2	44
78	Biological Variation of Myoglobin in Serum. Clinical Chemistry, 1997, 43, 2435-2435.	3.2	43
79	IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37°C. Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes. Clinical Chemistry and Laboratory Medicine, 2002, 40, 631-4.	2.3	43
80	Focusing on the clinical impact of standardization of creatinine measurements: a report by the EFCC Working Group on Creatinine Standardization. Clinical Chemistry and Laboratory Medicine, 2011, 49, 977-82.	2.3	43
81	IFCC Working Group Recommendations for Assessing Commutability Part 3: Using the Calibration Effectiveness of a Reference Material. Clinical Chemistry, 2018, 64, 465-474.	3.2	43
82	Procalcitonin: Between evidence and critical issues. Clinica Chimica Acta, 2019, 496, 7-12.	1.1	43
83	The future of laboratory medicine: understanding the new pressures. Clinical Biochemist Reviews, 2004, 25, 207-15.	3.3	43
84	Revaluating serum ferritin as a marker of body iron stores in the traceability era. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1911-1916.	2.3	41
85	Biological variation of neuroendocrine tumor markers chromogranin A and neuron-specific enolase. Clinical Biochemistry, 2013, 46, 148-151.	1.9	41
86	Commutability of reference and control materials: an essential factor for assuring the quality of measurements in Laboratory Medicine. Clinical Chemistry and Laboratory Medicine, 2019, 57, 967-973.	2.3	41
87	How to assess the quality of your analytical method?. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1707-18.	2.3	40
88	The role of laboratory in ensuring appropriate test requests. Clinical Biochemistry, 2017, 50, 555-561.	1.9	39
89	Soluble transferrin receptor in complicated anemia. Clinica Chimica Acta, 2014, 431, 143-147.	1.1	38
90	Performance specifications for measurement uncertainty of common biochemical measurands according to Milan models. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1362-1368.	2.3	38

#	Article	IF	CITATIONS
91	Performance of Today's Cardiac Troponin Assays and Tomorrow's. Clinical Chemistry, 2002, 48, 809-810.	3.2	37
92	The new definition of myocardial infarction and the impact of troponin determination on clinical practice. International Journal of Cardiology, 2006, 106, 298-306.	1.7	37
93	Defining acceptable limits for the metrological traceability of specific measurands. Clinical Chemistry and Laboratory Medicine, 2013, 51, 973-9.	2.3	37
94	Evaluation of the impact of standardization process on the quality of serum creatinine determination in Italian laboratories. Clinica Chimica Acta, 2014, 427, 100-106.	1.1	37
95	Progress and impact of enzyme measurement standardization. Clinical Chemistry and Laboratory Medicine, 2017, 55, 334-340.	2.3	37
96	Biologic variability of C-reactive protein: Is the available information reliable?. Clinica Chimica Acta, 2012, 413, 1179-1183.	1.1	36
97	Trueness verification and traceability assessment of results from commercial systems for measurement of six enzyme activities in serum. Clinica Chimica Acta, 2006, 368, 160-167.	1.1	35
98	Standardization in clinical enzymology: a challenge for the theory of metrological traceability. Clinical Chemistry and Laboratory Medicine, 2010, 48, 301-307.	2.3	35
99	Standardization of Cardiac Troponin I Measurements: The Way Forward?. Clinical Chemistry, 2005, 51, 1594-1597.	3.2	34
100	Obtaining reference intervals traceable to reference measurement systems: is it possible, who is responsible, what is the strategy?. Clinical Chemistry and Laboratory Medicine, 2012, 50, 813-7.	2.3	34
101	Implementation of haemoglobin A1c results traceable to the IFCC reference system: the way forward. Clinical Chemistry and Laboratory Medicine, 2007, 45, 942-4.	2.3	33
102	Evaluation of standardization capability of current cardiac troponin I assays by a correlation study: results of an IFCC pilot project. Clinical Chemistry and Laboratory Medicine, 2015, 53, 677-90.	2.3	33
103	Serial Sampling of High-Sensitivity Cardiac Troponin T May Not Be Required for Prediction of Acute Myocardial Infarction Diagnosis in Chest Pain Patients with Highly Abnormal Concentrations at Presentation. Clinical Chemistry, 2017, 63, 542-551.	3.2	33
104	Verification of Harmonization of Serum Total and Free Prostate-Specific Antigen (PSA) Measurements and Implications for Medical Decisions. Clinical Chemistry, 2021, 67, 543-553.	3.2	33
105	Isoforms of creatine kinase MM and MB in acute myocardial infarction: a clinical evaluation. Clinica Chimica Acta, 1986, 155, 1-9.	1.1	32
106	Present issues in the determination of troponins and other markers of cardiac damage. Clinical Biochemistry, 2000, 33, 161-166.	1.9	32
107	Serum α-fetoprotein in pediatric oncology: not a children's tale. Clinical Chemistry and Laboratory Medicine, 2019, 57, 783-797.	2.3	32
108	The Measurement of Cardiac Markers. American Journal of Clinical Pathology, 2002, 118, 354-361.	0.7	31

#	Article	IF	CITATIONS
109	Standardization and analytical goals for glycated hemoglobin measurement. Clinical Chemistry and Laboratory Medicine, 2013, 51, 1719-26.	2.3	30
110	The role of external quality assessment in the verification of in vitro medical diagnostics in the traceability era. Clinical Biochemistry, 2018, 57, 23-28.	1.9	30
111	Single-point cardiac troponin T at coronary care unit discharge after myocardial infarction correlates with infarct size and ejection fraction. Clinical Chemistry, 2002, 48, 1432-6.	3.2	30
112	Serum Prostate-Specific Antigen Testing for Early Detection of Prostate Cancer: Managing the Gap between Clinical and Laboratory Practice. Clinical Chemistry, 2021, 67, 602-609.	3.2	29
113	Evaluation of a sandwich enzyme-linked immunosorbent assay for the measurement of serum heart fatty acid-binding protein. Annals of Clinical Biochemistry, 2002, 39, 404-405.	1.6	27
114	Role and Responsibilities of Laboratory Medicine Specialists in the Verification of Metrological Traceability of in Vitro Medical Diagnostics / Uloga I Odgovornosti Specijalista Laboratorijske Medicine U Verifikaciji MetroloÅ _i ke Sledljivosti In Vitro Medicinske Dijagnostike. Journal of Medical Biochemistry, 2015, 34, 282-287.	1.7	27
115	Implementation of metrological traceability in laboratory medicine: where we are and what is missing. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1200-1204.	2.3	27
116	Searching for a role of procalcitonin determination in COVID-19: a study on a selected cohort of hospitalized patients. Clinical Chemistry and Laboratory Medicine, 2021, 59, 433-440.	2.3	27
117	Diagnostic application of CK-MB mass determination. Clinica Chimica Acta, 1998, 272, 23-31.	1.1	26
118	Pre-analytical and analytical aspects affecting clinical reliability of plasma glucose results. Clinical Biochemistry, 2017, 50, 587-594.	1.9	26
119	Verification of the harmonization of human epididymis protein 4 assays. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1635-1643.	2.3	25
120	American Liver Guidelines and Cutoffs for "Normal―ALT: A Potential for Overdiagnosis. Clinical Chemistry, 2017, 63, 1196-1198.	3.2	25
121	Combined testing of copeptin and high-sensitivity cardiac troponin T at presentation in comparison to other algorithms for rapid rule-out of acute myocardial infarction. International Journal of Cardiology, 2019, 276, 261-267.	1.7	25
122	Definition of Outcome-Based Prostate-Specific Antigen (PSA) Thresholds for Advanced Prostate Cancer Risk Prediction. Cancers, 2021, 13, 3381.	3.7	25
123	Novel Criteria for the Observe-Zone of the ESC 0/1h-hs-cTnT Algorithm. Circulation, 2021, 144, 773-787.	1.6	25
124	Recommendations for the Routine Use of Pancreatic Amylase Measurement instead of Total Amylase for the Diagnosis and Monitoring of Pancreatic Pathology. Clinical Chemistry and Laboratory Medicine, 2002, 40, 97-100.	2.3	24
125	Selection of Antibodies and Epitopes for Cardiac Troponin Immunoassays: Should We Revise Our Evidence-Based Beliefs?. Clinical Chemistry, 2005, 51, 803-804.	3.2	24
126	National Academy of Clinical Biochemistry and IFCC Committee for Standardization of Markers of Cardiac Damage Laboratory Medicine Practice Guidelines: Analytical Issues for Biomarkers of Heart Failure. Clinical Biochemistry, 2008, 41, 222-226.	1.9	24

#	Article	IF	CITATIONS
127	Defining permissible limits for the combined uncertainty budget in the implementation of metrological traceability. Clinical Biochemistry, 2018, 57, 7-11.	1.9	24
128	The importance of individual biology in the clinical use of serum biomarkers for ovarian cancer. Clinical Chemistry and Laboratory Medicine, 2014, 52, 1625-31.	2.3	23
129	Total error vs. measurement uncertainty: the match continues. Clinical Chemistry and Laboratory Medicine, 2016, 54, 195-6.	2.3	23
130	Plasma midregional proadrenomedullin (MR-proADM) concentrations and their biological determinants in a reference population. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1161-1168.	2.3	23
131	Measurement uncertainty: Friend or foe?. Clinical Biochemistry, 2018, 57, 3-6.	1.9	23
132	Human Chorionic Gonadotropin Assays for Testicular Tumors: Closing the Gap between Clinical and Laboratory Practice. Clinical Chemistry, 2018, 64, 270-278.	3.2	23
133	Making new biomarkers a reality: the case of serum human epididymis protein 4. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1284-1294.	2.3	23
134	Rapid, Highly Sensitive Immunoassay for Determination of Cardiac Troponin I in Patientswith Myocardial Cell Damage. Clinical Chemistry, 1997, 43, 1464-1465.	3.2	22
135	A critical appraisal of experimental factors influencing the definition of the 99th percentile limit for cardiac troponins. Clinical Chemistry and Laboratory Medicine, 2009, 47, 1179-82.	2.3	22
136	Colour coding for blood collection tube closures – a call for harmonisation. Clinical Chemistry and Laboratory Medicine, 2015, 53, 371-6.	2.3	22
137	Measurement of Serum Neuron-Specific Enolase in Neuroblastoma: Is There a Clinical Role?. Clinical Chemistry, 2020, 66, 667-675.	3.2	22
138	Rapid Determination of Brain Natriuretic Peptide in Patients with Acute Myocardial Infarction. Clinical Chemistry and Laboratory Medicine, 2003, 41, 164-8.	2.3	21
139	Once upon a time: a tale of ISO 15189 accreditation. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1127-9.	2.3	21
140	IFCC Working Group Recommendations for Correction of Bias Caused by Noncommutability of a Certified Reference Material Used in the Calibration Hierarchy of an End-User Measurement Procedure. Clinical Chemistry, 2020, 66, 769-778.	3.2	21
141	Current concepts in standardization of cardiac marker immunoassays. Clinical Chemistry and Laboratory Medicine, 2004, 42, 3-8.	2.3	20
142	Standardization of immunoassays for measurement of myoglobin in serum. Phase I: Evaluation of candidate secondary reference materials. Clinica Chimica Acta, 2004, 341, 65-72.	1.1	20
143	Measurement of troponin I 48h after admission as a tool to rule out impaired left ventricular function in patients with a first myocardial infarction. Clinical Chemistry and Laboratory Medicine, 2005, 43, 848-54.	2.3	20
144	Is the accuracy of serum albumin measurements suitable for clinical application of the test?. Clinica Chimica Acta, 2011, 412, 791-792.	1.1	20

#	Article	IF	CITATIONS
145	Standardization of ceruloplasmin measurements is still an issue despite the availability of a common reference material. Analytical and Bioanalytical Chemistry, 2010, 397, 521-525.	3.7	19
146	Evaluation of the trueness of serum alkaline phosphatase measurement in a group of Italian laboratories. Clinical Chemistry and Laboratory Medicine, 2017, 55, e47-e50.	2.3	19
147	An approach for determining allowable between reagent lot variation. Clinical Chemistry and Laboratory Medicine, 2022, 60, 681-688.	2.3	19
148	Multicenter Evaluation of Five Assays for Myoglobin Determination. Clinical Chemistry, 2000, 46, 1631-1637.	3.2	18
149	Evaluation of a Fully Automated Assay to Measure C-Telopeptide of Type I Collagen in Serum. Clinical Chemistry and Laboratory Medicine, 2000, 38, 1111-1113.	2.3	18
150	10% CV concentration for the fourth generation Roche cardiac troponin T assay derived from Internal Quality Control data. Clinical Chemistry and Laboratory Medicine, 2006, 44, 1495-6.	2.3	18
151	Gaps in the Traceability Chain of Human Growth Hormone Measurements. Clinical Chemistry, 2013, 59, 1074-1082.	3.2	18
152	Tackling serum folate test in European countries within the health technology assessment paradigm: request appropriateness, assays and health outcomes. Clinical Chemistry and Laboratory Medicine, 2017, 55, 1262-1275.	2.3	18
153	Enzyme and muscle diseases. Current Opinion in Rheumatology, 1995, 7, 469-474.	4.3	17
154	Recent approaches in standardization of cardiac markers. Clinica Chimica Acta, 2001, 311, 19-25.	1.1	17
155	Comparative study of a new quantitative rapid test with an established ELISA method for faecal calprotectin. Clinica Chimica Acta, 2012, 413, 350-351.	1.1	17
156	Biological variation of free light chains in serum. Clinica Chimica Acta, 2013, 415, 10-11.	1.1	17
157	Tumor Marker Ordering: Do Not Lose Control: A Prospective Clinical Trial. American Journal of Clinical Pathology, 2015, 144, 649-658.	0.7	17
158	Prognostic role of Krebs von den Lungen-6 (KL-6) measurement in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1400-1408.	2.3	17
159	Derivation of performance specifications for uncertainty of serum C-reactive protein measurement according to the Milan model 3 (state of the art). Clinical Chemistry and Laboratory Medicine, 2020, 58, e263-e265.	2.3	17
160	Hypoalbuminemia and elevated D-dimer in COVID-19 patients: a call for result harmonization. Clinical Chemistry and Laboratory Medicine, 2020, 58, e255-e256.	2.3	17
161	Serum enzymes in acute myocardial infarction after intracoronary thrombolysis. Clinical Biochemistry, 1986, 19, 294-297.	1.9	16
162	IFCC Committee on Standardization of Markers of Cardiac Damage: Premises and Project Presentation. Clinical Chemistry and Laboratory Medicine, 1998, 36, 887-93.	2.3	16

#	Article	IF	CITATIONS
163	Serum and Plasma Samples for ACS:Systems Cardiac Markers. Clinical Chemistry, 2000, 46, 1020-1022.	3.2	16
164	Multicenter evaluation of analytical performance of the Liaison® troponin I assay. Clinical Biochemistry, 2004, 37, 750-757.	1.9	16
165	Inside ST-elevation myocardial infarction by monitoring concentrations of cardiovascular risk biomarkers in blood. Clinica Chimica Acta, 2012, 413, 888-893.	1.1	16
166	ls serum human epididymis protein 4 ready for prime time?. Annals of Clinical Biochemistry, 2014, 51, 128-136.	1.6	16
167	The calibrator value assignment protocol of the Abbott enzymatic creatinine assay is inadequate for ensuring suitable quality of serum measurements. Clinica Chimica Acta, 2015, 450, 125-126.	1.1	16
168	Laboratory testing in the emergency department: an Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC) and Academy of Emergency Medicine and Care (AcEMC) consensus report. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1655-1659.	2.3	16
169	Laboratory medicine as the science that underpins medicine: the "high-sensitivity―troponin paradigm. Clinical Chemistry and Laboratory Medicine, 2015, 53, 653-64.	2.3	15
170	Random uncertainty of photometric determination of hemolysis index on the Abbott Architect c16000 platform. Clinical Biochemistry, 2018, 57, 62-64.	1.9	15
171	Lactate dehydrogenase: an old enzyme reborn as a COVID-19 marker (and not only). Clinical Chemistry and Laboratory Medicine, 2020, 58, 1979-1981.	2.3	15
172	Significance of various parameters derived from biological variability for lipid and lipoprotein analyses. Clinical Biochemistry, 1993, 26, 415-420.	1.9	14
173	Standardization and analytical goals for glycated hemoglobin measurement. Clinical Chemistry and Laboratory Medicine, 2013, 51, 2064-2064.	2.3	14
174	"Harmonization of laboratory testing — A global activity― Clinica Chimica Acta, 2014, 432, 1-3.	1.1	14
175	Establishing reference intervals for galectin-3 concentrations in serum requires careful consideration of its biological determinants. Clinical Biochemistry, 2017, 50, 599-604.	1.9	14
176	Optimizing Available Tools for Achieving Result Standardization: Value Added by Joint Committee on Traceability in Laboratory Medicine (JCTLM). Clinical Chemistry, 2021, 67, 1590-1605.	3.2	14
177	Traceability validation of six enzyme measurements on the Abbott Alinity c analytical system. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1250-1256.	2.3	14
178	Innotrac Aio! Second-Generation Cardiac Troponin I Assay: Imprecision Profile and Other Key Characteristics for Clinical Use. Clinical Chemistry, 2004, 50, 1271-1272.	3.2	13
179	How Clinical Laboratories May Improve Their Performance: The "High-Sensitivity―Troponin Paradigm. Clinical Chemistry, 2018, 64, 621-623.	3.2	13
180	Serum human epididymis protein 4 vs. carbohydrate antigen 125 in ovarian cancer follow-up. Clinical Biochemistry, 2018, 60, 84-90.	1.9	13

#	Article	IF	CITATIONS
181	Analytical validation of a highly sensitive point-of-care system for cardiac troponin I determination. Clinical Chemistry and Laboratory Medicine, 2019, 58, 138-145.	2.3	13
182	A study of biological and lifestyle factors, including within-subject variation, affecting concentrations of growth differentiation factor 15 in serum. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1035-1043.	2.3	13
183	Comparative study of cardiac troponin I and T measurements in a routine extra-cardiological clinical setting. Journal of Clinical Laboratory Analysis, 2001, 15, 210-214.	2.1	12
184	Hemoglobin, bilirubin, and lipid interference on Roche Cobas 6000 assays. Clinica Chimica Acta, 2012, 413, 339-341.	1.1	12
185	Fast track protocols using highly sensitive troponin assays for ruling out and ruling in non-ST elevation acute coronary syndrome. Clinical Chemistry and Laboratory Medicine, 2017, 55, 1683-1689.	2.3	12
186	Sources and clinical significance of aspartate aminotransferase increases in COVID-19. Clinica Chimica Acta, 2021, 522, 88-95.	1.1	12
187	Trueness evaluation and verification of inter-assay agreement of serum folate measuring systems. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1697-1705.	2.3	12
188	Traceability in clinical enzymology. Clinical Biochemist Reviews, 2007, 28, 155-61.	3.3	12
189	Serum folate concentrations in patients with cortical and subcortical dementias. Neuroscience Letters, 2007, 420, 213-216.	2.1	11
190	Development of a candidate secondary reference procedure (immunoassay based measurement) Tj ETQq0 0 0 i preliminary validation. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1603-10.	gBT /Over 2.3	lock 10 Tf 50 3 11
191	Impact of Implementation of the High-Sensitivity Cardiac Troponin T Assay in a University Hospital Setting. Clinical Chemistry, 2011, 57, 1211-1212.	3.2	11
192	Measurement of icteric index as approach to detect abnormal total bilirubin values. Journal of Clinical Pathology, 2013, 66, 1095-1097.	2.0	11
193	Heparinate but not serum tubes are susceptible to hemolysis by pneumatic tube transportation. Clinical Chemistry and Laboratory Medicine, 2016, 54, 785-9.	2.3	11
194	Documenting metrological traceability as intended by ISO 15189:2012: A consensus statement about the practice of the implementation and auditing of this norm element. Clinical Chemistry and Laboratory Medicine, 2019, 57, 459-464.	2.3	11
195	Laboratory-related issues in the measurement of cardiac troponins with highly sensitive assays. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1773-1783.	2.3	11
196	Serum isoforms of creatine kinase MM and MB in myocardial infarction. An appraisal of quantitative, clinical and pathophysiological information. Scandinavian Journal of Clinical and Laboratory Investigation, 1987, 47, 325-329.	1.2	11
197	Harmonization Status of Serum Ferritin Measurements and Implications for Use as Marker of Iron-Related Disorders. Clinical Chemistry, 2022, 68, 1202-1210.	3.2	11
198	Diagnostic value of four assays for lipase determination in serum: A comparative reevaluation. Clinical Biochemistry, 1991, 24, 497-503.	1.9	10

#	Article	IF	CITATIONS
199	Determination of Decision Limits for ACS:Systems Cardiac Troponin I. Clinical Chemistry and Laboratory Medicine, 2000, 38, 1155-7.	2.3	10
200	Biological Variation in Serum Activities of Three Hepatic Enzymes. Clinical Chemistry, 2001, 47, 355-356.	3.2	10
201	Reference Interval for Lactate Dehydrogenase Catalytic Activity in Serum Measured According to the New IFCC Recommendations. Clinical Chemistry and Laboratory Medicine, 2003, 41, 970-1.	2.3	10
202	The never-ending search of an acceptable compromise for pancreatic lipase standardisation. Clinical Chemistry and Laboratory Medicine, 2012, 50, 419-21.	2.3	10
203	Estimate of intraindividual variability of C-reactive protein: A challenging issue. Clinica Chimica Acta, 2013, 419, 85-86.	1.1	10
204	Body mass index does not influence human epididymis protein 4 concentrations in serum. Clinica Chimica Acta, 2015, 446, 163-164.	1.1	10
205	A new robust statistical model for interpretation of differences in serial test results from an individual. Clinical Chemistry and Laboratory Medicine, 2015, 53, 815-22.	2.3	10
206	Evaluation of long-term imprecision of automated complete blood cell count on the Sysmex XN-9000 system. Clinical Chemistry and Laboratory Medicine, 2017, 55, e219-e222.	2.3	10
207	Biochemical markers of cardiac diseases. Journal of Medical Biochemistry, 2004, 23, 201-211.	0.1	10
208	Evaluation of a new method for cholinesterase determination. Clinical Biochemistry, 1986, 19, 161-165.	1.9	9
209	AACC Creatine Kinase MB (CK-MB) Standardization Material Used as Manufacturer's Working Calibrator Is Unable to Harmonize CK-MB Results between Two Commercial Immunoassays. Clinical Chemistry, 2004, 50, 1711-1712.	3.2	9
210	Imprecision of tumour biomarker measurements on Roche Modular E170 platform fulfills desirable goals derived from biological variation. Annals of Clinical Biochemistry, 2010, 47, 171-173.	1.6	9
211	High sensitivity cardiac troponin T in patients not having an acute coronary syndrome: results from the TRAPID-AMI study. Biomarkers, 2017, 22, 709-714.	1.9	9
212	Definition of analytical quality specifications for serum total folate measurements using a simulation outcome-based model. Clinical Chemistry and Laboratory Medicine, 2020, 58, e66-e68.	2.3	9
213	Improving measurement uncertainty of plasma electrolytes: a complex but not impossible task. Clinical Chemistry and Laboratory Medicine, 2021, 59, e129-e132.	2.3	9
214	Evaluation of the direct potentiometric method for serum chloride determination—comparison with the most commonly employed methodologies. Clinical Biochemistry, 1986, 19, 20-25.	1.9	8
215	Diagnostic value of measuring pancreatic isoamylase with a double–monoclonal antibody immunoassay in serum of hospitalized hyperamylasemic patients. Journal of Clinical Laboratory Analysis, 1990, 4, 449-452.	2.1	8
216	Nonenzymic glycation of apolipoprotein B in patients with insulin- and noninsulin-dependent diabetes mellitus. Clinical Biochemistry, 1995, 28, 587-592.	1.9	8

#	Article	IF	CITATIONS
217	Assay Using Succinyldithiocholine as Substrate: The Method of Choice for the Measurement of Cholinesterase Catalytic Activity in Serum to Diagnose Succinyldicholine Sensitivity. Clinical Chemistry and Laboratory Medicine, 2003, 41, 317-22.	2.3	8
218	Multicenter Evaluation of the TOSOH AIA-Pack Second-Generation Cardiac Troponin I Assay. Clinical Chemistry, 2004, 50, 1707-1709.	3.2	8
219	Commutability of the ERM-DA470k Reference Material for two assays measuring serum albumin using immunochemical principles. Clinical Chemistry and Laboratory Medicine, 2011, 49, 1383-1384.	2.3	8
220	Fatal Electrolyte Abnormalities Following Enema Administration. Clinical Chemistry, 2012, 58, 1515-1518.	3.2	8
221	Biologic variation of copper, ceruloplasmin and copper/ceruloplasmin ratio (Cu:Cp) in serum. Clinica Chimica Acta, 2013, 415, 295-296.	1.1	8
222	Tracing a roadmap for vitamin B12 testing using the health technology assessment approach. Clinical Chemistry and Laboratory Medicine, 2014, 52, 767-77.	2.3	8
223	Folate and vitamin B12 assays after recalibration to the WHO International Standard 03/178: making the interpretation as simple as possible, but not simpler. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1112-1114.	2.3	8
224	Validation and verification of examination procedures in medical laboratories: opinion of the EFLM Working Group Accreditation and ISO/CEN standards (WG-A/ISO) on dealing with ISO 15189:2012 demands for method verification and validation. Clinical Chemistry and Laboratory Medicine, 2020, 58, 361-367.	2.3	8
225	Serum potassium concentrations in COVID-19. Clinica Chimica Acta, 2021, 512, 26-27.	1.1	8
226	The simple reproducibility of a measurement result does not equal its overall measurement uncertainty. Clinical Chemistry and Laboratory Medicine, 2022, 60, e221-e222.	2.3	8
227	An immunochemical procedure for determination of creatine kinase 31 (serum-specific) isoform in human serum evaluated. Clinical Biochemistry, 1990, 23, 225-228.	1.9	7
228	Cardiac: Is this biomarker ready for the prime time?. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 66-72.	1.2	7
229	Better blood collection tubes for plasma glucose: ready for prime time?. Clinical Chemistry and Laboratory Medicine, 2014, 52, e87-9.	2.3	7
230	Cystatin C provides a better estimate of the effect of glomerular filtration rate on serum human epididymis protein 4 concentrations. Clinical Chemistry and Laboratory Medicine, 2016, 54, 1629-1634.	2.3	7
231	More on the accuracy of the Architect enzymatic assay for hemoglobin A1c and its traceability to the IFCC reference system. Clinical Chemistry and Laboratory Medicine, 2016, 54, e71-3.	2.3	7
232	Symptoms Predictive of Acute Myocardial Infarction in the Troponin Era: Analysis From the TRAPID-AMI Study. Critical Pathways in Cardiology, 2019, 18, 10-15.	0.5	7
233	Daily monitoring of a control material with a concentration near the limit of detection improves the measurement accuracy of highly sensitive troponin assays. Clinical Chemistry and Laboratory Medicine, 2020, 58, e29-e31.	2.3	7

#	Article	IF	CITATIONS
235	Standardisationthe theory and the practice. Clinical Biochemist Reviews, 2007, 28, 127-30.	3.3	7
236	Clinical and analytical performance of automated immunochemiluminometric assays for determination of cardiac markers in serum. , 1998, 13, 307-309.		6
237	Evaluation of a Rapid Bedside Immunochromatographic Assay for Detection of Cardiac Troponin I in Whole Blood. Clinical Chemistry and Laboratory Medicine, 2001, 39, 458-9.	2.3	6
238	The Interfering Component in Cardiac Troponin I Immunoassays: Need for Further Experimental Evidence. Clinical Chemistry, 2004, 50, 676-677.	3.2	6
239	External Quality Assessment for biochemical markers of myocardial damage: an Italian experience. Clinical Chemistry and Laboratory Medicine, 2004, 42, 1434-41.	2.3	6
240	The importance of analytical quality specifications for biomarker assays currently used in acute cardiac Care, 2006, 8, 133-138.	0.2	6
241	New insights in the pathophysiology of acute myocardial infarction detectable by a contemporary troponin assay. Clinical Biochemistry, 2013, 46, 999-1006.	1.9	6
242	Frequency of Pancreatic Hyperamylasemia in Human Immunodeficiency Virus–Positive Patients in the Highly Active Antiretroviral Therapy Era. American Journal of Clinical Pathology, 2016, 145, 128-133.	0.7	6
243	Implementation of an internal quality control programme for the photometric determination of icteric index. Journal of Clinical Pathology, 2018, 71, 851-852.	2.0	6
244	Clinical Governance Remains a Priority in Total Laboratory Automation Era. journal of applied laboratory medicine, The, 2019, 4, 130-132.	1.3	6
245	Impact of optimizing pre-analytical phase on the diagnosis of gestational diabetes and related outcomes. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1981-1987.	2.3	6
246	Letter to the Editor: Serum Albumin in COVIDâ€19: A Good Example in Which Analytical and Clinical Performance of a Laboratory Test Are Strictly Intertwined. Hepatology, 2021, 74, 2905-2907.	7.3	6
247	Improving the laboratory result release process in the light of ISO 15189:2012 standard. Clinica Chimica Acta, 2021, 522, 167-173.	1.1	6
248	Certification of the Mass Concentration of Creatine Kinase Isoenzyme 2 (CK-MB) in the Reference Material BCR 608. Clinical Chemistry and Laboratory Medicine, 2001, 39, 858-65.	2.3	5
249	Cardiac Natriuretic Hormones as Markers of Cardiovascular Disease: Methodological Aspects. , 2006, , 65-89.		5
250	Optimal collection tubes for plasma glucose determination: confusion reigns supreme. Clinical Chemistry and Laboratory Medicine, 2016, 54, e281-e283.	2.3	5
251	Traceability of alkaline phosphatase measurement may also vary considerably using the same analytical system: the case of Abbott Architect. Clinical Chemistry and Laboratory Medicine, 2018, 56, e135-e137.	2.3	5
252	Impact of total automation consolidating first-line laboratory tests on diagnostic blood loss. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1721-1729.	2.3	5

#	Article	IF	CITATIONS
253	Defining the plasma folate concentration for optimal neural tube defects prevention cannot ignore the impact of the employed methodology. American Journal of Clinical Nutrition, 2019, 110, 780-781.	4.7	5
254	Trueness Evaluation and Verification of Interassay Agreement of 11 Serum IgA Measuring Systems: Implications for Medical Decisions. Clinical Chemistry, 2019, 65, 473-483.	3.2	5
255	A Summary of Worldwide National Activities in Chronic Kidney Disease (CKD) Testing. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2017, 28, 302-314.	0.7	5
256	Reply to Westgard etÂal.: â€~Keep your eyes wide … as the present now will later be past'*. Clinical Chemistry and Laboratory Medicine, 2022, 60, e202-e203.	2.3	5
257	Time course of changes in serum activity of the P3 isoform of pancreatic amylase isoenzyme in patients with acute pancreatitis. Clinical Biochemistry, 1989, 22, 479-482.	1.9	4
258	Methods for serum cholinesterase assay and classification of genetic variants. Clinica Chimica Acta, 1989, 183, 87-90.	1.1	4
259	On the Comparison of Serum and Plasma Samples in Troponin Assays. Clinical Chemistry, 2003, 49, 835-a-836.	3.2	4
260	What's in a name? Standardisation of HbA1c: a response. Clinical Chemistry and Laboratory Medicine, 2008, 46, 1326-7.	2.3	4
261	The prognostic value of plasma fibrinogen concentrations of patients with ST-elevation myocardial infarction and treated by primary percutaneous coronary intervention: A cautionary message. Scandinavian Journal of Clinical and Laboratory Investigation, 2012, 72, 355-362.	1.2	4
262	Commutability of two JCTLM-listed secondary reference materials for two commercial lithium assays. Clinica Chimica Acta, 2012, 414, 152-153.	1.1	4
263	Reference intervals for the Kryptor second-generation chromogranin A assay. Clinical Chemistry and Laboratory Medicine, 2016, 54, e335-e337.	2.3	4
264	Clinical impact of glycolysis inhibition on plasma glucose results requires caution. Annals of Clinical Biochemistry, 2017, 54, 302-303.	1.6	4
265	Laboratory testing in the emergency department: An Italian Society of Clinical Biochemistry and Clinical Molecular Biology (SIBioC) and Academy of Emergency Medicine and Care (AcEMC) consensus report. Emergency Care Journal, 2017, 13, .	0.3	4
266	Offering Aspartate Aminotransferase as a Reflex Test: An Easy but Effective Way to Improve Appropriateness of Laboratory Requests. American Journal of Clinical Pathology, 2018, 149, 456-457.	0.7	4
267	Novel generations of laboratory instruments should not worsen analytical quality: The case of GEM Premier 5000. Clinical Biochemistry, 2018, 58, 128-130.	1.9	4
268	Suppressing all test results in grossly hemolyzed samples: is this approach appropriate in every case?. Clinical Chemistry and Laboratory Medicine, 2019, 57, e118-e120.	2.3	4
269	Pancreatic lipase: why laboratory community does not take enough care of this clinically important test?. Clinical Chemistry and Laboratory Medicine, 2021, 59, 1914-1920.	2.3	4
270	Aspartate aminotransferase in COVIDâ€19: A probably overrated marker. Liver International, 2021, 41, 2809-2810.	3.9	4

#	Article	IF	CITATIONS
271	Lipase elevation in serum of COVID-19 patients: frequency, extent of increase and clinical value. Clinical Chemistry and Laboratory Medicine, 2022, 60, 135-142.	2.3	4
272	A simple method for quantitative determination of lipoprotein-X (LP-X) in human serum. Clinica Chimica Acta, 1985, 151, 187-192.	1.1	3
273	Redefining reference limits needs more attention to the analytical aspects. Liver International, 2006, 26, 1155-1156.	3.9	3
274	Traceability of values for catalytic activity concentration of enzymes: a Certified Reference Material for aspartate transaminase. Clinical Chemistry and Laboratory Medicine, 2010, 48, 795-803.	2.3	3
275	Are blood ammonia concentrations dependent on γ-glutamyl-transferase levels in plasma?. Journal of Clinical Pathology, 2016, 69, 551-552.	2.0	3
276	Reflex Testing of Free Prostate-Specific Antigen as Effective Health Care Policy. Archives of Pathology and Laboratory Medicine, 2019, 143, 1045-1045.	2.5	3
277	Use of Neurosoft expert system improves turnaround time in a laboratory section specialized in protein diagnostics: a two-year experience. Clinical Chemistry and Laboratory Medicine, 2021, 59, e367-e369.	2.3	3
278	Is pre-biopsy serum prostate specific antigen retesting always justified? A study of the influence of individual and analytical factors on decision making for biopsy referral. Clinica Chimica Acta, 2021, 516, 77-82.	1.1	3
279	Prospective validation of an automatic reflex test for identifying spurious elevations of mean corpuscular haemoglobin concentration due to the presence of cold agglutinins. Scandinavian Journal of Clinical and Laboratory Investigation, 2021, 81, 1-3.	1.2	3
280	IFCC Scientific Division. Clinical Chemistry and Laboratory Medicine, 2010, 48, 1529-30.	2.3	2
281	Target organ damage in a population at intermediate cardiovascular risk, with adjunctive major risk factors: CArdiovascular PREvention Sacco Study (CAPRESS). Internal and Emergency Medicine, 2011, 6, 337-347.	2.0	2
282	Avoid capture of interfering molecules in cardiac troponin immunoassays: Working in shifts. Clinical Biochemistry, 2013, 46, 961-962.	1.9	2
283	Multi-marker network in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: When and what to measure. Clinica Chimica Acta, 2013, 417, 1-7.	1.1	2
284	Measurement imprecision of common urinary biochemical analytes on the Roche Cobas 6000 system. Clinical Chemistry and Laboratory Medicine, 2013, 51, e175-e177.	2.3	2
285	Improving clinical laboratory performance through quality indicators. Clinical Biochemistry, 2017, 50, 547-549.	1.9	2
286	Different calibrator options may strongly influence the trueness of serum transferrin measured by Abbott Architect systems. Clinica Chimica Acta, 2018, 477, 119-120.	1.1	2
287	Reply to: Hyperuricemia does not seem to be an independent risk factor for coronary heart disease. Clinical Chemistry and Laboratory Medicine, 2018, 56, e63-e64.	2.3	2
288	Linking lactate dehydrogenase to the severity of COVID-19 cannot ignore the employed methodology. American Journal of Emergency Medicine, 2021, 45, 652-653.	1.6	2

#	Article	IF	CITATIONS
289	Laboratory Community Should Be More Proactive in Highlighting the Negative Impact of Analytical Non-Selectivity of Some Creatinine Assays. Clinical Chemistry, 2022, 68, 723-723.	3.2	2
290	Biological variation of serum cholinesterase catalytic concentrations. Clinical Chemistry and Laboratory Medicine, 2022, 60, e177-e180.	2.3	2
291	Improving D-dimer testing appropriateness by controlling periodicity of retesting: prevention is better than cure. Clinical Chemistry and Laboratory Medicine, 2022, .	2.3	2
292	A single reagent method for determination of total and conjugated bilirubin with a centrifugal analyser. Clinica Chimica Acta, 1983, 128, 407-414.	1.1	1
293	Biological Variation in Serum Type I Collagen Carboxy-Terminal Telopeptide Concentrations. Clinical Chemistry, 2000, 46, 1439-1440.	3.2	1
294	Pretreatment of Serum with Penicillamine: Effects on Capillary Electrophoresis Patterns and on Immunonephelometric Measurement of Immunoglobulins. Clinical Chemistry, 2006, 52, 772-774.	3.2	1
295	Foreword. Scandinavian Journal of Clinical and Laboratory Investigation, 2010, 70, 3-3.	1.2	1
296	Implementation of new recommendations for the diagnosis of gestational diabetes: a 5-month audit. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1271-3.	2.3	1
297	Defining the need for a dynamic multimarker approach. Heart, 2013, 99, 433.1-433.	2.9	1
298	Troponin T measured with highly sensitive assay (hsTnT) on admission does not reflect infarct size in ST-elevation myocardial infarction patients receiving primary percutaneous coronary intervention. Clinical Chemistry and Laboratory Medicine, 2015, 53, e173-4.	2.3	1
299	Clinical Governance Should Be a Priority When Care Delivery Systems Are Disrupted. Archives of Pathology and Laboratory Medicine, 2019, 143, 1046-1046.	2.5	1
300	Letter to the Editor: Establishing Reliable Pediatric Percentiles of Serum Liver Enzyme Concentrations Cannot Ignore the Employed Methodology. Hepatology, 2019, 69, 1361-1362.	7.3	1
301	Reply to "Analytical performance assessment of a novel cartridge-based blood gas analyzer― Clinical Biochemistry, 2019, 63, 156-157.	1.9	1
302	Biological variation of two serum markers for preeclampsia prediction. Clinical Chemistry and Laboratory Medicine, 2020, 58, e27-e28.	2.3	1
303	Further improvement of the quality of tube transportation system is needed to prevent â€~seasonal' pseudohyperkalaemia. Clinica Chimica Acta, 2020, 510, 644-646.	1.1	1
304	Automatic reflex addition of serum magnesium determination to samples with severe hypocalcemia is an effective tool to detect and treat hypomagnesemia. Clinical Biochemistry, 2021, 92, 89.	1.9	1
305	The new multidisciplinary paradigm for fatty liver disease should also include the laboratory medicine contribution. Liver International, 2021, 41, 1981-1982.	3.9	1
306	Impact of managing affected results in haemolysed samples of an infant-maternity hospital using an unconventional approach. Clinical Biochemistry, 2021, 95, 49-53.	1.9	1

#	Article	IF	CITATIONS
307	Enzyme and Rate Analyses. , 2012, , 355-377.		1
308	Standardization of Cardiac Markers. , 2003, , 213-229.		1
309	Recommendations on Use of Biochemical Markers in Acute Coronary Syndrome: IFCC Proposals. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine, 2003, 14, 104-108.	0.7	1
310	<scp>γâ€Glutamyltransferase</scp> reference intervals in detail. Liver International, 2022, 42, 718-718.	3.9	1
311	A step towards optimal efficiency of HbA _{1c} measurement as a first-line laboratory test: the TOP-HOLE (Towards OPtimal glycoHemOgLobin tEsting) project. Clinical Chemistry and Laboratory Medicine, 2022, 60, 441-450.	2.3	1
312	â€~Penelope test': a practical instrument for checking appropriateness of laboratory tests. Clinical Chemistry and Laboratory Medicine, 2022, .	2.3	1
313	National survey on the use of measurement of cholinesterase activity in serum. Clinical Chemistry and Laboratory Medicine, 2005, 43, 256-7.	2.3	0
314	Final considerations. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 109-109.	1.2	0
315	Foreword. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 5-5.	1.2	0
316	Standardization and analytical goals for glycated hemoglobin measurement. Clinical Chemistry and Laboratory Medicine, 2014, 52, .	2.3	0
317	Foreword. Clinical Biochemistry, 2018, 57, 1-2.	1.9	0
318	Highly sensitive troponin T measurement after pneumatic tube transportation: The sample type can make the difference. Clinica Chimica Acta, 2020, 503, 231-232.	1.1	0
319	Anti-tumour necrosis factor α antibodies and circulating lymphocyte phenotypes in inflammatory bowel disease. International Immunopharmacology, 2021, 100, 108081.	3.8	0

320 Myosin Light and Heavy Chains. , 1998, , 245-256.

0