
Manuel P Soriaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2431534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking the prelude of the electroreduction of carbon monoxide via its interaction with Cu(100): Studies by operando scanning tunneling microscopy and infrared spectroscopy. Catalysis Today, 2020, 358, 210-214.	4.4	9
2	Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials. Electrochemistry Communications, 2018, 91, 1-4.	4.7	26
3	Potential-Dependent Adsorption of CO and Its Low-Overpotential Reduction to CH ₃ CH ₂ OH on Cu(511) Surface Reconstructed from Cu(pc): Operando Studies by Seriatim STM-EQCN-DEMS. Journal of the Electrochemical Society, 2018, 165, J3350-J3354.	2.9	15
4	Surface Reconstruction of Polycrystalline Cu Electrodes in Aqueous KHCO3 Electrolyte at Potentials in the Early Stages of CO2 Reduction. Electrocatalysis, 2018, 9, 526-530.	3.0	60
5	Electrocatalytic Reduction of CO2on Cu and Au/W Electrode Surfaces: Empirical (DEMS) Confirmation of Computational (DFT) Predictions. ECS Transactions, 2017, 75, 1-17.	0.5	1
6	Tuning the CO-Reduction Product Distribution by Structural Modification of the Cu Electrode Surface. ECS Transactions, 2017, 75, 87-97.	0.5	0
7	Reprint of: Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, 2017, 793, 113-118.	3.8	7
8	Engineering Cu surfaces for the electrocatalytic conversion of CO ₂ : Controlling selectivity toward oxygenates and hydrocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5918-5923.	7.1	311
9	<i>Operando</i> Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 12927-12930.	13.7	127
10	Electrochemical Formation of Germanene: pH 4.5. Journal of the Electrochemical Society, 2017, 164, D469-D477.	2.9	17
11	Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS. Journal of Electroanalytical Chemistry, 2016, 780, 290-295.	3.8	92
12	Regulating the Product Distribution of CO Reduction by the Atomic-Level Structural Modification of the Cu Electrode Surface. Electrocatalysis, 2016, 7, 391-399.	3.0	56
13	Nickel–Gallium-Catalyzed Electrochemical Reduction of CO ₂ to Highly Reduced Products at Low Overpotentials. ACS Catalysis, 2016, 6, 2100-2104.	11.2	238
14	Influence of Redox-Inactive Cations on the Structure and Electrochemical Reactivity of Synthetic Birnessite, a Heterogeneous Analog for the Oxygen-Evolving Complex. Journal of Physical Chemistry C, 2016, 120, 15618-15631.	3.1	3
15	A scanning probe investigation of the role of surface motifs in the behavior of p-WSe ₂ photocathodes. Energy and Environmental Science, 2016, 9, 164-175.	30.8	33
16	(Invited) Investigations into the Formation of Germanene Using Electrochemical Atomic Layer Deposition (E-ALD). ECS Transactions, 2015, 66, 129-140.	0.5	7
17	A DEMS Study of the Reduction of CO2, CO, and HCHO Pre-Adsorbed on Cu Electrodes: Empirical Inferences on the CO2RR Mechanism. Electrocatalysis, 2015, 6, 127-131.	3.0	27
18	Synthesis and Characterization of Atomically Flat Methyl-Terminated Ge(111) Surfaces. Journal of the American Chemical Society, 2015, 137, 9006-9014.	13.7	18

#	Article	IF	CITATIONS
19	Synthesis, Characterization, and Reactivity of Ethynyl- and Propynyl-Terminated Si(111) Surfaces. Journal of Physical Chemistry C, 2015, 119, 19847-19862.	3.1	26
20	The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS ₂ . Journal of the American Chemical Society, 2015, 137, 6692-6698.	13.7	173
21	Overlayer Au-on-W Near-Surface Alloy for the Selective Electrochemical Reduction of CO2 to Methanol: Empirical (DEMS) Corroboration of a Computational (DFT) Prediction. Electrocatalysis, 2015, 6, 493-497.	3.0	13
22	Electrochemical surface science twenty years later: Expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surface Science, 2015, 631, 285-294.	1.9	22
23	The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO ₂ RR Potential: A Study by <i>Operando</i> EC-STM. Langmuir, 2014, 30, 15053-15056.	3.5	245
24	Cathodic regeneration of a clean and ordered Cu(1 0 0)-(1×1) surface from an air-oxidized and disordered electrode: An operando STM study. Journal of Electroanalytical Chemistry, 2014, 734, 7-9.	3.8	25
25	Immobilization-Enabled Proton Reduction Catalysis by a Di-iron Hydrogenase Mimic. Electrocatalysis, 2014, 5, 5-7.	3.0	5
26	Addendum to Immobilization-Enabled Proton-Reduction Catalysis by a Di-iron Hydrogenase Mimic. Electrocatalysis, 2014, 5, 113-113.	3.0	1
27	Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils. Journal of Electroanalytical Chemistry, 2014, 716, 45-48.	3.8	51
28	Molecular catalysis that transpires only when the complex is heterogenized: Studies of a hydrogenase complex surface-tethered on polycrystalline and (1 1 1)-faceted gold by EC, PM-FT-IRRAS, HREELS, XPS and STM. Journal of Electroanalytical Chemistry, 2014, 716, 63-70.	3.8	10
29	C–H activation and metalation at electrode surfaces: 2,3-dimethyl-1,4-dihydroxybenzene on Pd(pc) and Pd(111) studied by TLE, HREELS and DFT. Dalton Transactions, 2014, 43, 14798-14805.	3.3	0
30	CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation. Journal of Physical Chemistry C, 2014, 118, 29294-29300.	3.1	216
31	<i>Operando</i> Synthesis of Macroporous Molybdenum Diselenide Films for Electrocatalysis of the Hydrogen-Evolution Reaction. ACS Catalysis, 2014, 4, 2866-2873.	11.2	122
32	Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. Journal of Materials Chemistry A, 2014, 2, 13835-13839.	10.3	133
33	Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions. Electrocatalysis, 2014, 5, 226-228.	3.0	2
34	Structure and composition of Cu(hkl) surfaces exposed to O2 and emersed from alkaline solutions: Prelude to UHV-EC studies of CO2 reduction at well-defined copper catalysts. Journal of Electroanalytical Chemistry, 2014, 716, 101-105.	3.8	14
35	Chemisorption-Isotherm Measurements at Electrode Surfaces by Quantitative High-Resolution Electron Energy Loss Spectroscopy. Electrocatalysis, 2013, 4, 101-103.	3.0	1
36	High-resolution electron energy loss spectroscopy of anions chemisorbed on electrode surfaces: The effect of counter cations. Electrochemistry Communications, 2013, 27, 176-179.	4.7	1

#	Article	IF	CITATIONS
37	Simulation of scanning tunneling microscope image of benzene chemisorbed on a Pd(111) electrode surface by density functional theory. Reports in Electrochemistry, 2013, , 1.	0.3	0
38	Layer-by-Layer Deposition of Pd on Pt(111) Electrode: an Electron Spectroscopy–Electrochemistry Study. Electrocatalysis, 2012, 3, 183-191.	3.0	8
39	The Structure of Benzoquinone Chemisorbed on Pd(111): Simulation of EC-STM Images and HREELS Spectra by Density Functional Theory. Electrocatalysis, 2012, 3, 353-359.	3.0	4
40	Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR), with EDTA Complexation. Electrocatalysis, 2012, 3, 96-107.	3.0	32
41	The structure, composition and reactivity of clean and ambient-exposed polycrystalline and monocrystalline Mg surfaces. Journal of Electroanalytical Chemistry, 2011, 662, 36-42.	3.8	2
42	UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. I: Pd on Pt(111). Electrocatalysis, 2010, 1, 28-33.	3.0	3
43	UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. III: Bi on Pd(111). Electrocatalysis, 2010, 1, 42-50.	3.0	1
44	UHV-EC Characterization of Ultrathin Films Electrodeposited on Well-Defined Noble Metals. II: Co on Pd(111). Electrocatalysis, 2010, 1, 34-41.	3.0	0
45	Density Functional Study of Benzoquinone Sulfonate Adsorbed on a Pd(111) Electrode Surface. Electrocatalysis, 2010, 1, 159-162.	3.0	3
46	Structural, Compositional and Electrochemical Characterization of Pt–Co Oxygenâ€Reduction Catalysts. ChemPhysChem, 2010, 11, 1468-1475.	2.1	31
47	Internalization of Carbon Black and Maghemite Iron Oxide Nanoparticle Mixtures Leads to Oxidant Production. Chemical Research in Toxicology, 2010, 23, 1874-1882.	3.3	36
48	Characterization of Alloy Electrocatalysts by Combined Low-Energy Ion Scattering Spectroscopy and Electrochemistry. Modern Aspects of Electrochemistry, 2010, , 1-23.	0.2	2
49	Electrocatalytic Reactions of Chemisorbed Aromatic Compounds: Studies by ES, DEMS, STM and EC. Modern Aspects of Electrochemistry, 2010, , 275-313.	0.2	1
50	Interfacial Structure and Chemistry of Potentiodynamically Electrodeposited Ultrathin Pd Films on Pt(111). ECS Transactions, 2009, 19, 25-42.	0.5	1
51	Surface coordination chemistry of 2,5-dihydroxythiophenol at well-defined Pd(111) electrodes: Studies by LEED, AES, HREELS and electrochemistry. Journal of Molecular Structure, 2008, 890, 298-302.	3.6	4
52	Electrocatalytic hydrogenation and oxidation of aromatic compounds studied by DEMS: Benzene and p-dihydroxybenzene at ultrathin Pd films electrodeposited on Au(hkl) surfaces. Journal of Colloid and Interface Science, 2007, 314, 152-159.	9.4	16
53	Molecular Adsorption at Well-Defined Electrode Surfaces:  Hydroquinone on Pd(111) Studied by EC-STM. Langmuir, 2006, 22, 10762-10765.	3.5	11
54	Electrochemical activation and electrocatalytic enhancement of a hydride-forming metal alloy modified with palladium, platinum and nickel. Electrochimica Acta, 2006, 51, 3658-3667.	5.2	30

#	Article	IF	CITATIONS
55	A DEMS study of the electrocatalytic hydrogenation and oxidation of p-dihydroxybenzene at polycrystalline and monocrystalline platinum electrodes. Journal of Applied Electrochemistry, 2006, 36, 1253-1260.	2.9	13
56	The self-discharge mechanism of AB5AB5-type hydride electrodes in Ni/MH batteries. International Journal of Hydrogen Energy, 2006, 31, 603-611.	7.1	27
57	The Use of Thin-Layer Electroanalysis in the Study of the Chemisorption and Anodic Oxidation of Aromatic Molecules at Smooth Polycrystalline Palladium. Electroanalysis, 2005, 17, 2121-2127.	2.9	5
58	Grignard reagent formation. Coordination Chemistry Reviews, 2004, 248, 623-652.	18.8	124
59	Surface-oxide growth at platinum electrodes in aqueous H2SO4. Electrochimica Acta, 2004, 49, 1451-1459.	5.2	88
60	The Hydrophilic Phosphatriazaadamantane Ligand in the Development of H2Production Electrocatalysts:Â Iron Hydrogenase Model Complexes. Journal of the American Chemical Society, 2004, 126, 12004-12014.	13.7	417
61	Corrosion behaviour of AB5-type hydride electrodes in alkaline electrolyte solution. Journal of Applied Electrochemistry, 2003, 33, 325-331.	2.9	14
62	Molecular adsorption at well-defined electrode surfaces: benzene on Pd(1 1 1) studied by EC-STM and HREELS. Journal of Electroanalytical Chemistry, 2003, 554-555, 167-174.	3.8	10
63	Electrochemical characterization of a hydride-forming metal alloy surface-modified with palladium. Journal of Power Sources, 2003, 124, 309-313.	7.8	20
64	Electrocatalysis of hydrogen production by active site analogues of the iron hydrogenase enzyme: structure/function relationships. Dalton Transactions, 2003, , 4158-4163.	3.3	331
65	Improvement in the cycle life of LaB5 metal hydride electrodes by addition of ZnO to alkaline electrolyte. Electrochimica Acta, 2002, 47, 1069-1078.	5.2	10
66	The Interfacial Chemistry of Grignard Reagent Formation: Reactions of Clean Mg(0001) Surfaces. , 2002, , 185-196.		0
67	Structure of ordered electrified interfaces: EC-STM of hydroquinone sulfonate at well-defined Pd(111) electrodes. Physical Chemistry Chemical Physics, 2001, 3, 3303-3306.	2.8	12
68	Electron-Transfer-Induced Molecular Reorientations: The Benzoquinone/Hydroquinone Reaction at Pd(111)-(□3×□3)R30°-I Studied by EC-STM. Journal of Colloid and Interface Science, 2001, 236, 197-199.	9.4	12
69	Molecular chemisorption at well-defined Pd(111) electrode surfaces: hydroquinone sulfonate studied by UHV-EC-STM. Journal of Electroanalytical Chemistry, 2001, 500, 374-378.	3.8	15
70	Adsorbate-induced disorder-to-order surface reconstruction: iodine on Pd(111) revisited by EC-STM. Journal of Electroanalytical Chemistry, 2001, 509, 170-174.	3.8	15
71	Atom-Resolved EC-STM Studies of Anion Adsorption at Well-Defined Surfaces: Pd(111) in Sulfuric Acid Solution. Journal of Colloid and Interface Science, 2000, 227, 505-509.	9.4	49
72	Determination of reaction resistances for metal-hydride electrodes during anodic polarization. Journal of Power Sources, 2000, 85, 212-223.	7.8	17

#	Article	IF	CITATIONS
73	UHV–EC and EC–STM studies of molecular chemisorption at well-defined surfaces: hydroquinone and benzoquinone on Pd(hkl). Electrochemistry Communications, 1999, 1, 135-138.	4.7	24
74	Selective and quantitative removal of Pd films from Pt substrates by adsorbed-iodine-catalyzed anodic stripping. Electrochimica Acta, 1998, 44, 1031-1036.	5.2	9
75	The Interfacial Chemistry of the Grignard Reaction: The Composition of the Film Formed on Air-Exposed Magnesium. Journal of Colloid and Interface Science, 1998, 206, 247-251.	9.4	14
76	Electrode-surface coordination chemistry: ligand (-SH/I) substitutions at polycrystalline platinum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134, 31-37.	4.7	2
77	Atomic-Resolution Electrochemical Scanning Tunneling Microscopy:  Evidence of lâ^'Pd Place Exchange in the I(Ads)-Catalyzed Dissolution of Pd(111). Journal of Physical Chemistry B, 1998, 102, 6188-6192.	2.6	7
78	Effect of Zn Additives to the Electrolyte on the Corrosion and Cycle Life of Some  AB 5 H  x Ma Hydride Electrodes. Journal of the Electrochemical Society, 1997, 144, L258-L261.	2.9	14
79	Electron Spectroscopy and Electrochemical Scanning Tunneling Microscopy of the Solid—Liquid Interface: lodine-Catalyzed Dissolution of Pd(110). ACS Symposium Series, 1997, , 274-282.	0.5	0
80	Anodic dissolution and reordering of Pd(110) induced by chemisorbed iodine. Surface Science, 1997, 385, 336-345.	1.9	12
81	Electrode-surface coordination chemistry: ligand substitution and competitive coordination of halides at well-defined Pd(100) and Pd(111) single crystals. Inorganica Chimica Acta, 1997, 255, 249-254.	2.4	65
82	Adsorbed-Iodine-Catalyzed Dissolution of Pd Single-Crystal Electrodes:Â Studies by Electrochemical Scanning Tunneling Microscopy. The Journal of Physical Chemistry, 1996, 100, 20027-20034.	2.9	96
83	Ultrahigh-Vacuum Surface Analytical Methods in Electrochemical Studies of Single-Crystal Surfaces. Modern Aspects of Electrochemistry, 1996, , 1-60.	0.2	9
84	Electrochemical digital etching in inert electrolyte: Reordering of ion-bombarded Pd(100) by chemisorbed-iodine-catalyzed dissolution. Electrochimica Acta, 1995, 40, 1203-1205.	5.2	7
85	Electrochemical digital etching in non-corrosive electrolyte: I(ads)-catalyzed dissolution and reordering of ion-bombarded Pd(111). Journal of Electroanalytical Chemistry, 1995, 381, 239-241.	3.8	7
86	In Situ Quartz Crystal Microgravimetric Studies of Molecular Adsorbates Containing Thiol and Hydroquinone Moieties Bound to Au(111) Surfaces in Aqueous Electrolytes. Langmuir, 1995, 11, 4626-4628.	3.5	22
87	Electrochemistry of the I-on-Pd single-crystal interface: studies by UHV-EC and in situ STM. Surface Science, 1995, 335, 273-280.	1.9	35
88	Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD, XAS, and Electrochemical Studies. The Journal of Physical Chemistry, 1995, 99, 4577-4589.	2.9	415
89	Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction: An In Situ XANES and EXAFS Investigation. Journal of the Electrochemical Society, 1995, 142, 1409-1422.	2.9	1,095
90	In situ reordering by iodine adsorption-desorption of extensively disordered (ion-bombarded) Pd(100) electrode surfaces. Electrochimica Acta, 1994, 39, 2445-2448.	5.2	1

#	Article	IF	CITATIONS
91	Electrochemical regeneration of clean and ordered Pd(100) surfaces by iodine adsorption-desorption: evidence from low-energy electron diffraction. Journal of Electroanalytical Chemistry, 1994, 364, 247-249.	3.8	18
92	Adsorbate-catalyzed layer-by-layer metal dissolution in inert electrolyte: Pd(100)-c(2 × 2)-I. Surface Science, 1994, 314, L909-L912.	1.9	8
93	Site Selection in Electrode Reactions: Benzoquinone/Hydroquinone Redox at Submonolayer Sulfur-Coated Iridium Surfaces. Langmuir, 1994, 10, 3929-3932.	3.5	7
94	Adsorbate-catalyzed corrosion in inert electrolyte: evidence by LEED of layer-by-layer dissolution of Pd(111)(â^š3 × â^š3)R30º-I Journal of Electroanalytical Chemistry, 1993, 350, 317-320.	3.8	3
95	On the anodic oxidation of the Pd(111)c(4 × 2)-CO adlattice in alkaline solution. Journal of Electroanalytical Chemistry, 1993, 353, 281-287.	3.8	6
96	The electrode/electrolyte interface - a status report. The Journal of Physical Chemistry, 1993, 97, 7147-7173.	2.9	274
97	Absorbate-catalyzed dissolution in inert electrolyte: layer-by-layer corrosion of palladium(100)-c(2) Tj ETQq1	l 0.784314 rgl 3.5	3T /Overlock
98	Adsorbate-catalyzed layer-by-layer metal dissolution in halide-free solutions: palladium(111)(.sqroot.3.timessqroot.3)R30.degreeiodine. The Journal of Physical Chemistry, 1993, 97, 10518-10520.	2.9	24
99	In situ chemisorption-induced reordering of oxidatively disordered palladium (100) electrode surfaces. Journal of the American Chemical Society, 1992, 114, 10950-10952.	13.7	10
100	Ultra-high vacuum techniques in the study of single-crystal electrode surfaces. Progress in Surface Science, 1992, 39, 325-443.	8.3	122
101	In situ regeneration of clean and ordered Pd(111) electrode surfaces by oxidative chemisorption and reductive desorption of iodine. Surface Science, 1991, 249, L322-L326.	1.9	14
102	In situ regeneration of clean and ordered Pd(111) electrode surfaces by oxidative chemisorption and reductive desorption of iodine. Surface Science Letters, 1991, 249, L322-L326.	0.1	0
103	Electrochemical regeneration of clean and well-ordered Pd(111) surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 297, 523-528.	0.1	27
104	Adsorbate-catalyzed corrosion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 303, 255-259.	0.1	18
105	Structure, composition, thermal stability and electrochemical reactivity of HSâ^'(aq)-derived species chemisorbed at Pd(III) electrode surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 300, 487-498.	0.1	13
106	Site selection in electrode reactions: quinone/hydroquinone redox at submonolayer iodine-coated electrode surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 319, 387-394.	0.1	4
107	Anodic underpotential deposition and cathodic stripping of iodine at polycrystalline and single-crystal gold: studies by LEED, AES, XPS, and electrochemistry. The Journal of Physical Chemistry, 1991, 95, 5245-5249.	2.9	80
108	The Influence of Chemisorbed Organic Monolayers on Electrode Surface Oxidation. Corrosion, 1991, 47, 322-328.	1.1	24

#	Article	IF	CITATIONS
109	Reversible redox chemistry, hydrodesulfurization, and anodic oxidation of thiophenols chemisorbed at smooth polycrystalline iridium electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 295, 123-138.	0.1	10
110	Electrochemistry of mixed-metal interfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 294, 225-238.	0.1	0
111	In situ chemisorption-induced reordering of oxidatively disordered palladium (111) electrode surfaces. Journal of the American Chemical Society, 1990, 112, 7392-7393.	13.7	24
112	Probing the electrocatalytic properties of bimetallic interfaces by chemisorption of redox-active species. Langmuir, 1990, 6, 74-81.	3.5	4
113	Oxidation-state changes of molecules irreversibly adsorbed on electrode surfaces as monitored by in situ Fourier transform infrared reflection absorption spectroscopy. Langmuir, 1990, 6, 1234-1237.	3.5	20
114	Surface coordination chemistry of monometallic and bimetallic electrocatalysts. Chemical Reviews, 1990, 90, 771-793.	47.7	77
115	Surface Coordination/Organometallic Chemistry of Monometal and Bimetallic Electrocatalysts. , 1990, , 316-317.		0
116	Probing the surface electrochemical properties of bimetallic alloys by chemisorption of redox-active species. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 265, 117-126.	0.1	2
117	The influence of coadsorbed iodine on the surface chelation of 2,5-dihydroxythiophenol at indium electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260, 193-199.	0.1	5
118	Probing the surface electrochemical properties of electrodeposited metal layers by chemisorption of redox-active species: iodine on silver-plated platinum. Electrochimica Acta, 1989, 34, 1387-1392.	5.2	3
119	The interaction of I2(g), HI(g) and KI(aq) with Pd (111) electrode surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 264, 291-296.	0.1	16
120	Observations on the surface composition of palladium cathodes after D2O electrolysis in LiOD solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 267, 351-357.	0.1	10
121	Selective electrode-surface coordination chemistry: adsorbate substitutions at smooth gold. Langmuir, 1989, 5, 1092-1095.	3.5	3
122	Spectroscopic and electrochemical studies of iodine coordinated to noble-metal electrode surfaces. Langmuir, 1989, 5, 707-713.	3.5	46
123	Reductive elimination of surface-coordinated iodine at platinum electrodes: the influence of codeposited silver. The Journal of Physical Chemistry, 1989, 93, 2610-2614.	2.9	6
124	Chemisorption and electrocatalytic reactivity of 3,6-dihydroxypyridazine at Au and Pt electrodes: a comparison. Electrochimica Acta, 1988, 33, 1507-1511.	5.2	4
125	Surface chelation of 2,5-dihydroxythiophenol at polycrystalline iridium electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 252, 453-459.	0.1	8
126	Surface coordination chemistry of noble-metal electrocatalysts: Oxidative addition and reductive elimination of iodide at iridium, platinum and gold in aqueous solutions. Inorganica Chimica Acta, 1988, 148, 123-131.	2.4	20

#	Article	IF	CITATIONS
127	Electrocatalytic hydrogenation and oxidation of model coal-derived compounds chemisorbed at smooth polycrystalline Pt: a survey. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 247, 241-251.	0.1	4
128	The influence of orientation on the electrocatalytic hydrogenation of hydroquinone chemisorbed at smooth polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 239, 375-386.	0.1	13
129	On the pH dependence of the reductive desorption of iodine at polycrystalline and single-crystal platinum electrodes in aqueous solvents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 240, 309-315.	0.1	4
130	Reversible redox, hydrodesulfurization and anodic oxidation of chemisorbed thiophenols. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241, 199-210.	0.1	17
131	Substrate-mediated adsorbate-adsorbate interactions: effect of submonolayer coverage and coadsorbed iodine on the reversible redox of 2,5-dihydroxythiophenol chemisorbed at gold and platinum. Langmuir, 1988, 4, 1147-1151.	3.5	37
132	Reductive Desorption of Iodine Chemisorbed on Smooth Polycrystalline Gold Electrodes. Journal of the Electrochemical Society, 1988, 135, 616-618.	2.9	20
133	Electrochemistry: The Senior but Underused Area of Surface Science. ACS Symposium Series, 1988, , 1-7.	0.5	2
134	Redox-activated adsorption/desorption process: iodine/iodide at polycrystalline iridium in aqueous solvents. The Journal of Physical Chemistry, 1988, 92, 2702-2706.	2.9	8
135	Surface Organometallic and Coordination Chemistry of Iridium, Platinum, and Gold Electrocatalysts. ACS Symposium Series, 1988, , 528-540.	0.5	Ο
136	The Influence of Organic Solvents on Aromatic Adsorption at Platinum: Acetic Acid, Acetone, Acetonitrile, Dimethylacetamide, Dimethylsulfoxide, Sulfolane, and Tetrahydrofuran. Journal of the Electrochemical Society, 1987, 134, 874-880.	2.9	6
137	Kinetics of oriented adsorption: hydroquinone on platinum. The Journal of Physical Chemistry, 1987, 91, 78-82.	2.9	7
138	Reversible redox of 2,5-dihydroxythiophenol chemisorbed on gold and platinum electrodes: evidence for substrate-mediated adsorbate-adsorbate interactions. Langmuir, 1987, 3, 595-597.	3.5	37
139	Reductive desorption of iodine from platinum electrodes. A comparison in protic and aprotic solvents. The Journal of Physical Chemistry, 1987, 91, 5660-5663.	2.9	6
140	Surface coordination chemistry of noble-metal electrodes. Hydrogen/iodine ligand (adsorbate) substitution at smooth polycrystalline platinum. Inorganic Chemistry, 1987, 26, 2760-2763.	4.0	9
141	Electroactivity of strongly-absorbed redox centers: Reduction of iodine chemisorbed on platnium in aprotic solvent. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 221, 281-287.	0.1	6
142	Determination of the surface area of gold electrodes by iodine chemisorption. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 233, 283-289.	0.1	118
143	Hydrogenative/cathodic stripping of iodine chemisorbed on smooth polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 219, 327-333.	0.1	16
144	Kinetics of hydroquinone chemisorption at polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 217, 121-128.	0.1	10

#	Article	IF	CITATIONS
145	Analysis of products from reactions of chemisorbed monolayers at smooth platinum electrodes: electrochemical hydrodesulfurization of thiophenol derivatives. Analytical Chemistry, 1986, 58, 2964-2968.	6.5	13
146	Ordered disordered packing in mixed chemisorbed layers: vertically oriented polyphenolic compounds at smooth polycrystalline platinum electrodes. Langmuir, 1986, 2, 20-23.	3.5	6
147	Structure and composition of a platinum(111) surface as a function of pH and electrode potential in aqueous bromide solutions. Langmuir, 1986, 2, 828-835.	3.5	73
148	Characterization of platinum electrodes by infrared spectroscopy. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 198, 65-80.	0.1	34
149	Effect of non-aqueous solvents on the chemisorption and orientation of aromatic compounds at smooth polycrystalline platinum electrodes: naphthohydroquinone and tetrahydroxybiphenyl in water + acetonitrile solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1986. 201. 153-162.	0.1	6
150	Adsorbate exchange and insertion reactions at metal surfaces: hydroquinone and naphthohydroquinone at smooth polycrystalline platinum in aqueous solutions. The Journal of Physical Chemistry, 1985, 89, 285-289.	2.9	4
151	Influence of oriented-chemisorbed monolayers on the electrode kinetics of unadsorbed nonionic redox couples. The Journal of Physical Chemistry, 1985, 89, 3227-3232.	2.9	14
152	Effect of nonaqueous solvents on the chemisorption and orientation of aromatic compounds at smooth polycrystalline platinum electrodes: naphthohydroquinone in water-benzene solutions. The Journal of Physical Chemistry, 1985, 89, 3999-4002.	2.9	8
153	pH and potential dependence of the electrical double layer at well-defined electrode surfaces: Cs+ and Ca2+ ions at Pt(111) (2â^š3 X. 2â^š.3)R30°-CN, Pt(111) (â^š13 Xâ^š.13)R14°-CN, and Pt(111) (2 X 2)-SCN. 1985, 1, 587-592.	Las gmuir	, 40
154	Cation competition in the electrical double-layer at a well-defined electrode surface Li+, Na+, K+, Cs+, H+, Mg2+, Ca2+, Ba2+, La3+, tetramethylammonium, choline and acetylcholine cations at Pt(111) surfaces containing an ordered layer of cyanide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 188, 95-104.	0.1	39
155	Reaction mechanism of the benzoquinone/hydroquinone couple at platinum electrodes in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 185, 331-338.	0.1	46
156	The adsorption and orientation of aromatic compounds at smooth polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 184, 171-178.	0.1	7
157	Order-disorder effects in competitive irreversible adsorption of aromatic compounds at platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 193, 255-264.	0.1	5
158	Surface coordination chemistry of platinum studied by thin-layer electrodes. Adsorption, orientation, and mode of binding of aromatic and quinonoid compounds. Inorganic Chemistry, 1985, 24, 65-73.	4.0	65
159	Surface coordination chemistry of well-defined platinum electrodes: surface polyprotic acidity of platinum(111)(2 .sqroot. 3 .times. 2 .sqroot. 3)R30.degreehydrogen isocyanide. Inorganic Chemistry, 1985, 24, 1419-1421.	4.0	32
160	Surface coordination chemistry of platinum studied by thin-layer electrodes. Surface chemical reactivity of aromatic and quinonoid compounds adsorbed in specific orientational states. Inorganic Chemistry, 1985, 24, 73-79.	4.0	32
161	Correction. Competitive Chemisorption from Binary Surfactant Mixtures at Solid-Liquid Interfaces: Hydroquinone and Naphthohydroquinone at Smooth Polycrystalline Platinum in Aqueous Solutions. Langmuir, 1985, 1, 390-390.	3.5	0
162	Competitive chemisorption from binary surfactant mixtures at solid-liquid interfaces: hydroquinone and naphthohydroquinone at smooth polycrystalline platinum in aqueous solutions. Langmuir, 1985, 1, 123-127.	3.5	7

#	Article	IF	CITATIONS
163	Formation of vertically oriented aromatic molecules chemisorbed on platinum electrodes: the effect of surface pretreatment with flat-oriented intermediates. The Journal of Physical Chemistry, 1984, 88, 1089-1094.	2.9	14
164	Adsorption of aromatic compound at platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 167, 79-95.	0.1	23
165	The adsorption, orientation and electrochemical oxidation of hydroquinone at smooth platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 167, 97-106.	0.1	19
166	Electrochemical processes at well-defined surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 168, 43-66.	0.1	55
167	Adsorption and orientation of aromatic compounds at smooth polycrystalline platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 171, 359-363.	0.1	21
168	Effect of surface roughness on the adsorption, orientation and anodic oxidation of hydroquinone at platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 177, 89-96.	0.1	41
169	Adsorption and orientation of hydroquinone and hydroquinone sulfonate at platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 163, 407-413.	0.1	23
170	The orientation and electrochemical oxidation of hydroquinone chemisorbed on platinum electrodes in various weakly surface-active supporting electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 162, 143-152.	0.1	7
171	Orientation of hydroquinone and benzoquinone adsorbed on platinum electrodes: studies by reflection-absorption infrared spectroscopy. The Journal of Physical Chemistry, 1984, 88, 4583-4586.	2.9	30
172	Influence of temperature on the electrocatalytic oxidation of oriented-absorbed aromatic compounds on platinum. The Journal of Physical Chemistry, 1984, 88, 1758-1761.	2.9	20
173	Ligand (adsorbate) substitutions at metal surfaces: aromatic compounds and halides at smooth polycrystalline platinum electrodes. The Journal of Physical Chemistry, 1984, 88, 2284-2287.	2.9	9
174	Electrodeposition on a well-defined surface: Silver on Pt(111)(â^š7×â^š7)R19.1ºâ^'I. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 150, 165-180.	0.1	94
175	Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 144, 207-215.	0.1	66
176	Electrode reactions of oriented chemisorbed molecules. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 159, 101-116.	0.1	34
177	The effect of orientation of adsorbed intermediates on the electrochemical oxidation of aromatic compounds. Journal of Molecular Catalysis, 1983, 21, 211-221.	1.2	32
178	Superlattices formed by electrodeposition of silver on iodine-pretreated Pt(111); studies by LEED, Auger spectroscopy and electrochemistry. Surface Science, 1983, 130, 326-347.	1.9	98
179	Electrochemistry of chemisorbed molecules. 4. The effect of chirality on the orientation and electrochemical oxidation of I- and dl-DOPA. The Journal of Physical Chemistry, 1983, 87, 232-235.	2.9	20
180	Orientation of aromatic compounds adsorbed on platinum electrodes. The effect of temperature. The Journal of Physical Chemistry, 1983, 87, 3048-3054.	2.9	29

#	Article	IF	CITATIONS
181	Determination of the orientation of aromatic molecules adsorbed on platinum electrodes. The effect of solute concentration. Journal of the American Chemical Society, 1982, 104, 3937-3945.	13.7	149
182	Determination of the orientation of adsorbed molecules at solid-liquid interfaces by thin-layer electrochemistry: aromatic compounds at platinum electrodes. Journal of the American Chemical Society, 1982, 104, 2735-2742.	13.7	261
183	Determination of the orientation of aromatic molecules adsorbed on platinum electrodes: the influence of iodide, a surface-active anion. Journal of the American Chemical Society, 1982, 104, 2742-2747.	13.7	95
184	Orientational transitions of aromatic molecules adsorbed on platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 142, 317-336.	0.1	103
185	A survey of factors influencing the stability of organic functional groups attached to platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 125, 73-88.	0.1	50
186	Temperature dependence of the i.r. optical properties of LiFâ [^] —. Journal of Physics and Chemistry of Solids, 1975, 36, 83-88.	4.0	0
187	Kramers–Kronig dispersion analysis of LiF reflectance data obtained at ambient and low temperatures*. Journal of the Optical Society of America, 1974, 64, 1450.	1.2	2
188	Electrode Surfaces, Palladium: Molecular Adsorption. , 0, , 2202-2218.		0