
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2430755/publications.pdf Version: 2024-02-01

EAV-11/FILL

#	Article	IF	CITATIONS
1	An elliptical blade is not a true ellipse, but a superellipse–Evidence from two Michelia species. Journal of Forestry Research, 2022, 33, 1341-1348.	1.7	6
2	Variation in plant carbon, nitrogen and phosphorus contents across the drylands of China. Functional Ecology, 2022, 36, 174-186.	1.7	18
3	A wholeâ€plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 2022, 110, 248-261.	1.9	27
4	Stepâ€byâ€step protocol for the isolation and transient transformation of hornwort protoplasts. Applications in Plant Sciences, 2022, 10, e11456.	0.8	12
5	Accelerating gametophytic growth in the model hornwort <i>Anthoceros agrestis</i> . Applications in Plant Sciences, 2022, 10, e11460.	0.8	8
6	Influence of Leaf Age on the Scaling Relationships of Lamina Mass vs. Area. Frontiers in Plant Science, 2022, 13, 860206.	1.7	12
7	Scaling relationships of leaf vein and areole traits versus leaf size for nine Magnoliaceae species differing in venation density. American Journal of Botany, 2022, 109, 899-909.	0.8	16
8	Characterizing Culturable Bacterial Endophytes of Five Lycopodiaceae Species. American Fern Journal, 2022, 112, .	0.2	0
9	The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nature Plants, 2022, 8, 500-512.	4.7	42
10	Dynamic plastid and mitochondrial genomes in Chaetopeltidales (Chlorophyceae) and characterization of a new chlorophyte taxon. American Journal of Botany, 2022, 109, 939-951.	0.8	3
11	The hornworts: morphology, evolution and development. New Phytologist, 2021, 229, 735-754.	3.5	72
12	Plant volatiles mediate evolutionary interactions between plants and tephritid flies and are evolutionarily more labile than nonâ€volatile defenses. Journal of Animal Ecology, 2021, 90, 846-858.	1.3	1
13	Charting the genomic landscape of seed-free plants. Nature Plants, 2021, 7, 554-565.	4.7	47
14	Effects of biotic and abiotic factors on forest biomass fractions. National Science Review, 2021, 8, nwab025.	4.6	28
15	Dietary differences between grasshoppers are associated with life history tradeoffs in an alpine meadow. Ecological Research, 2021, 36, 842-853.	0.7	6
16	A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Current Biology, 2021, 31, 2857-2867.e4.	1.8	30
17	An <i>Agrobacterium</i> â€mediated stable transformation technique for the hornwort model <i>Anthoceros agrestis</i> . New Phytologist, 2021, 232, 1488-1505.	3.5	18
18	A General Model for Describing the Ovate Leaf Shape. Symmetry, 2021, 13, 1524.	1.1	7

#	Article	IF	CITATIONS
19	The diversity and community structure of symbiotic cyanobacteria in hornworts inferred from longâ€read amplicon sequencing. American Journal of Botany, 2021, 108, 1731-1744.	0.8	26
20	Climate change affects detritus decomposition rates by modifying arthropod performance and species interactions. Current Opinion in Insect Science, 2021, 47, 62-66.	2.2	7
21	Linkage between species traits and plant phenology in an alpine meadow. Oecologia, 2021, 195, 409-419.	0.9	27
22	<i>Monodopsis</i> and <i>Vischeria</i> Genomes Shed New Light on the Biology of Eustigmatophyte Algae. Genome Biology and Evolution, 2021, 13, .	1.1	8
23	Underwater CAM photosynthesis elucidated by Isoetes genome. Nature Communications, 2021, 12, 6348.	5.8	56
24	Decolonizing botanical genomics. Nature Plants, 2021, 7, 1542-1543.	4.7	9
25	On the evolutionary significance of horizontal gene transfers in plants. New Phytologist, 2020, 225, 113-117.	3.5	59
26	A global phylogeny of <i>Stegnogramma</i> ferns (Thelypteridaceae): generic and sectional revision, historical biogeography and evolution of leaf architecture. Cladistics, 2020, 36, 164-183.	1.5	10
27	Organellomic data sets confirm a cryptic consensus on (unrooted) landâ€plant relationships and provide new insights into bryophyte molecular evolution. American Journal of Botany, 2020, 107, 91-115.	0.8	38
28	The many roads to and from multicellularity. Journal of Experimental Botany, 2020, 71, 3247-3253.	2.4	32
29	Comparison of the Scaling Relationships of Leaf Biomass versus Surface Area between Spring and Summer for Two Deciduous Tree Species. Forests, 2020, 11, 1010.	0.9	19
30	Water content quantitatively affects metabolic rates over the course of plant ontogeny. New Phytologist, 2020, 228, 1524-1534.	3.5	25
31	A stepâ€byâ€step protocol for meiotic chromosome counts in flowering plants: A powerful and economical technique revisited. Applications in Plant Sciences, 2020, 8, e11342.	0.8	15
32	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	0.8	26
33	Allocation Strategies for Seed Nitrogen and Phosphorus in an Alpine Meadow Along an Altitudinal Gradient on the Tibetan Plateau. Frontiers in Plant Science, 2020, 11, 614644.	1.7	9
34	A Superellipse with Deformation and Its Application in Describing the Cross-Sectional Shapes of a Square Bamboo. Symmetry, 2020, 12, 2073.	1.1	17
35	The Leaf Economics Spectrum Constrains Phenotypic Plasticity Across a Light Gradient. Frontiers in Plant Science, 2020, 11, 735.	1.7	14
36	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	4.7	225

#	Article	IF	CITATIONS
37	Leaf Bilateral Symmetry and the Scaling of the Perimeter vs. the Surface Area in 15 Vine Species. Forests, 2020, 11, 246.	0.9	19
38	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	4.7	150
39	Morphological (and not anatomical or reproductive) features define early vascular plant phylogenetic relationships. American Journal of Botany, 2020, 107, 477-488.	0.8	9
40	Plant type dominates fineâ€root C:N:P stoichiometry across China: A metaâ€analysis. Journal of Biogeography, 2020, 47, 1019-1029.	1.4	29
41	Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis. Plant Systematics and Evolution, 2020, 306, 1.	0.3	1
42	Leaf shape influences the scaling of leaf dry mass vs. area: a test case using bamboos. Annals of Forest Science, 2020, 77, 1.	0.8	29
43	The scaling of fine root nitrogen versus phosphorus in terrestrial plants: A global synthesis. Functional Ecology, 2019, 33, 2081-2094.	1.7	35
44	Phylogenetic Methods to Study Light Signaling. Methods in Molecular Biology, 2019, 2026, 265-276.	0.4	0
45	Complete Genomes of Symbiotic Cyanobacteria Clarify the Evolution of Vanadium-Nitrogenase. Genome Biology and Evolution, 2019, 11, 1959-1964.	1.1	45
46	Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS ONE, 2019, 14, e0223521.	1.1	55
47	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	1.8	47
48	A first glimpse at genes important to the Azolla–Nostoc symbiosis. Symbiosis, 2019, 78, 149-162.	1.2	26
49	A general review of the biomechanics of root anchorage. Journal of Experimental Botany, 2019, 70, 3439-3451.	2.4	56
50	NCP activates chloroplast transcription by controlling phytochrome-dependent dual nuclear and plastidial switches. Nature Communications, 2019, 10, 2630.	5.8	38
51	Lamina shape does not correlate with lamina surface area: An analysis based on the simplified Gielis equation. Global Ecology and Conservation, 2019, 19, e00666.	1.0	35
52	Suboptimal oviposition of tephritid flies supports parasitoid wasps. Ecological Entomology, 2019, 44, 717-720.	1,1	3
53	Influence of the physical dimension of leaf size measures on the goodness of fit for Taylor's power law using 101 bamboo taxa. Global Ecology and Conservation, 2019, 19, e00657.	1.0	6
54	Life history strategies drive sizeâ€dependent biomass allocation patterns of dryland ephemerals and shrubs. Ecosphere, 2019, 10, e02709.	1.0	22

#	Article	IF	CITATIONS
55	Stem Diameter (and Not Length) Limits Twig Leaf Biomass. Frontiers in Plant Science, 2019, 10, 185.	1.7	19
56	Stem and leaf growth rates define the leaf size vs. number trade-off. AoB PLANTS, 2019, 11, plz063.	1.2	8
57	One thousand plant transcriptomes and theÂphylogenomics of green plants. Nature, 2019, 574, 679-685.	13.7	1,162
58	Polarity, planes of cell division, and the evolution of plant multicellularity. Protoplasma, 2019, 256, 585-599.	1.0	14
59	Ferns: The Final Frond-tier in Plant Model Systems. American Fern Journal, 2019, 109, 192.	0.2	7
60	A Roadmap for Fern Genome Sequencing. American Fern Journal, 2019, 109, 212.	0.2	18
61	10KP: A phylodiverse genome sequencing plan. GigaScience, 2018, 7, 1-9.	3.3	169
62	A guide to sequence your favorite plant genomes. Applications in Plant Sciences, 2018, 6, e1030.	0.8	66
63	The evolutionary origins of cell type diversification and the role of intrinsically disordered proteins. Journal of Experimental Botany, 2018, 69, 1437-1446.	2.4	52
64	A novel chloroplast gene reported for flagellate plants. American Journal of Botany, 2018, 105, 117-121.	0.8	9
65	Phloem networks in leaves. Current Opinion in Plant Biology, 2018, 43, 29-35.	3.5	32
66	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 2018, 5, 728-739.	4.6	121
67	Domestic honeybees affect the performance of pre-dispersal seed predators in an alpine meadow. Oecologia, 2018, 187, 113-122.	0.9	6
68	Is there foul play in the leaf pocket? The metagenome of floating fern <i>Azolla</i> reveals endophytes that do not fix N ₂ but may denitrify. New Phytologist, 2018, 217, 453-466.	3.5	42
69	The <i>Physcomitrella patens</i> chromosomeâ€scale assembly reveals moss genome structure and evolution. Plant Journal, 2018, 93, 515-533.	2.8	406
70	Domesticated honeybees facilitate interspecific hybridization between two <i>Taraxacum</i> congeners. Journal of Ecology, 2018, 106, 1204-1216.	1.9	5
71	Dynamical Patterning Modules, Biogeneric Materials, and the Evolution of Multicellular Plants. Frontiers in Plant Science, 2018, 9, 871.	1.7	46
72	Global Data Analysis Shows That Soil Nutrient Levels Dominate Foliar Nutrient Resorption Efficiency in Herbaceous Species. Frontiers in Plant Science, 2018, 9, 1431.	1.7	14

#	Article	IF	CITATIONS
73	Evolution of Protein Ductility in Duplicated Genes of Plants. Frontiers in Plant Science, 2018, 9, 1216.	1.7	9
74	Orderâ€level fern plastome phylogenomics: new insights from Hymenophyllales. American Journal of Botany, 2018, 105, 1545-1555.	0.8	30
75	Linking species performance to community structure as affected by UV-B radiation: an attenuation experiment. Journal of Plant Ecology, 2018, 11, 286-296.	1.2	10
76	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
77	Organelle Genome Inheritance in Deparia Ferns (Athyriaceae, Aspleniineae, Polypodiales). Frontiers in Plant Science, 2018, 9, 486.	1.7	21
78	A worldwide phylogeny of <i>Adiantum</i> (Pteridaceae) reveals remarkable convergent evolution in leaf blade architecture. Taxon, 2018, 67, 488-502.	0.4	20
79	Admixture, evolution, and variation in reproductive isolation in the Boechera puberula clade. BMC Evolutionary Biology, 2018, 18, 61.	3.2	8
80	Genome-wide organellar analyses from the hornwort Leiosporoceros dussii show low frequency of RNA editing. PLoS ONE, 2018, 13, e0200491.	1.1	24
81	The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. New Phytologist, 2017, 214, 1145-1157.	3.5	27
82	The scaling of the hydraulic architecture in poplar leaves. New Phytologist, 2017, 214, 145-157.	3.5	34
83	Hornworts: An Overlooked Window into Carbon-Concentrating Mechanisms. Trends in Plant Science, 2017, 22, 275-277.	4.3	25
84	Identifying Morphological and Mechanical Traits Associated with Stem Lodging in Bioenergy Sorghum (Sorghum bicolor). Bioenergy Research, 2017, 10, 635-647.	2.2	35
85	The hydraulic architecture of Ginkgo leaves. American Journal of Botany, 2017, 104, 1285-1298.	0.8	20
86	Size-dependent variation in plant form. Current Biology, 2017, 27, R900-R905.	1.8	6
87	"Diminishing returns―in the scaling of leaf area vs. dry mass in Wuyi Mountain bamboos, Southeast China. American Journal of Botany, 2017, 104, 993-998.	0.8	32
88	Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	33
89	Boron and the evolutionary development of roots. Plant Signaling and Behavior, 2017, 12, e1320631.	1.2	11
90	Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos. Journal of the Royal Society Interface, 2017, 14, 20170156.	1.5	20

#	Article	IF	CITATIONS
91	The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. Journal of Experimental Botany, 2017, 68, 5261-5269.	2.4	83
92	From Goethe's plant archetype via Haeckel's biogenetic law to plant evo-devo 2016. Theory in Biosciences, 2017, 136, 49-57.	0.6	6
93	The evolutionary ecology (evo-eco) of plant asexual reproduction. Evolutionary Ecology, 2017, 31, 317-332.	0.5	20
94	Nextâ€generation polyploid phylogenetics: rapid resolution of hybrid polyploid complexes using PacBio singleâ€molecule sequencing. New Phytologist, 2017, 213, 413-429.	3.5	77
95	Comment on "Critical wind speed at which trees break― Physical Review E, 2016, 94, 067001.	0.8	15
96	A communityâ€derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 2016, 54, 563-603.	1.6	1,040
97	Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12328-12333.	3.3	70
98	A predictive nondestructive model for the covariation of tree height, diameter and stem volume scaling relationships. Scientific Reports, 2016, 6, 31008.	1.6	10
99	Super-resolution ribosome profiling reveals unannotated translation events in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7126-E7135.	3.3	222
100	Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content. Genome Biology and Evolution, 2016, 8, 2452-2458.	1.1	66
101	Genetic analysis of Physcomitrella patens identifies ABSCISIC ACID NON-RESPONSIVE (ANR), a regulator of ABA responses unique to basal land plants and required for desiccation tolerance. Plant Cell, 2016, 28, tpc.00091.2016.	3.1	98
102	Spatiotemporal distribution of essential elements through <i>Populus</i> leaf ontogeny. Journal of Experimental Botany, 2016, 67, 2777-2786.	2.4	8
103	The evolution of the plant genome-to-morphology auxin circuit. Theory in Biosciences, 2016, 135, 175-186.	0.6	5
104	<i>Asplenium pifongiae</i> (Aspleniaceae: Polypodiales), a New Species from Taiwan. Systematic Botany, 2016, 41, 24-31.	0.2	4
105	Evolutionary aspects of plant photoreceptors. Journal of Plant Research, 2016, 129, 115-122.	1.2	40
106	Maidenhair Ferns, <i>Adiantum</i> , are Indeed Monophyletic and Sister to Shoestring Ferns, Vittarioids (Pteridaceae). Systematic Botany, 2016, 41, 17-23.	0.2	21
107	Searching for Diamonds in the Apomictic Rough: A Case Study Involving <i>Boechera lignifera</i> (Brassicaceae). Systematic Botany, 2016, 40, 1031-1044.	0.2	17
108	Measuring the tempo of plant death and birth. New Phytologist, 2015, 207, 254-256.	3.5	2

#	Article	IF	CITATIONS
109	Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Frontiers in Cell and Developmental Biology, 2015, 3, 8.	1.8	96
110	The origin and evolution of phototropins. Frontiers in Plant Science, 2015, 6, 637.	1.7	68
111	A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: a test case using Picea seedlings. Tree Physiology, 2015, 35, 599-607.	1.4	15
112	Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest. Annals of Botany, 2015, 115, 303-313.	1.4	18
113	Aerodynamics and pollen ultrastructure in <i>Ephedra</i> . American Journal of Botany, 2015, 102, 457-470.	0.8	36
114	A Phyletic Perspective on Cell Growth. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019158.	2.3	14
115	Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nature Communications, 2015, 6, 7852.	5.8	139
116	Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Tree Physiology, 2015, 35, 621-631.	1.4	8
117	The evolutionary history of ferns inferred from 25 low opy nuclear genes. American Journal of Botany, 2015, 102, 1089-1107.	0.8	157
118	Historical revisionism and the inheritance theories of Darwin and Weismann. Die Naturwissenschaften, 2015, 102, 27.	0.6	2
119	A Biophysical Perspective on the Pollination Biology of Ephedra nevadensis and E. trifurca. Botanical Review, The, 2015, 81, 28-41.	1.7	10
120	Kleiber's Law: How the <i>Fire of Life</i> ignited debate, fueled theory, and neglected plants as model organisms. Plant Signaling and Behavior, 2015, 10, e1036216.	1.2	15
121	Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae. Annals of Botany, 2015, 116, 899-906.	1.4	61
122	An Exploration into Fern Genome Space. Genome Biology and Evolution, 2015, 7, 2533-2544.	1.1	85
123	Domesticated honey bees evolutionarily reduce flower nectar volume in a Tibetan lotus. Ecology, 2014, 95, 3161-3172.	1.5	34
124	Crowdfunding the Azolla fern genome project: a grassroots approach. GigaScience, 2014, 3, 16.	3.3	22
125	The Optimization of Seed Yield across the Flowering Season of <i>Gentiana leucomelaena</i> (Gentianaceae), an Herbaceous Tibetan Annual. Arctic, Antarctic, and Alpine Research, 2014, 46, 548-557.	0.4	4

126 Between Two Fern Genomes. GigaScience, 2014, 3, 15.

3.3 69

#	Article	IF	CITATIONS
127	The evolutionaryâ€developmental origins of multicellularity. American Journal of Botany, 2014, 101, 6-25.	0.8	110
128	Did meiosis evolve before sex and the evolution of eukaryotic life cycles?. BioEssays, 2014, 36, 1091-1101.	1.2	19
129	The Hybrid Origin of <i>Adiantum meishanianum</i> (Pteridaceae): A Rare and Endemic Species in Taiwan. Systematic Botany, 2014, 39, 1034-1041.	0.2	16
130	Amphimixis and the individual in evolving populations: does Weismann's Doctrine apply to all, most or a few organisms?. Die Naturwissenschaften, 2014, 101, 357-372.	0.6	13
131	Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proceedings of the United States of America, 2014, 111, 6672-6677.	3.3	146
132	Biophysical effects on plant competition and coexistence. Functional Ecology, 2013, 27, 854-864.	1.7	29
133	The evoâ€devo of multinucleate cells, tissues, and organisms, and an alternative route to multicellularity. Evolution & Development, 2013, 15, 466-474.	1.1	32
134	Biophysical and size-dependent perspectives on plant evolution. Journal of Experimental Botany, 2013, 64, 4817-4827.	2.4	21
135	The origins of multicellular organisms. Evolution & Development, 2013, 15, 41-52.	1.1	151
136	Transcriptome-Mining for Single-Copy Nuclear Markers in Ferns. PLoS ONE, 2013, 8, e76957.	1.1	69
137	Testing the packing rule across the twig–petiole interface of temperate woody species. Trees - Structure and Function, 2012, 26, 1737-1745.	0.9	7
138	Leaf traits and relationships differ with season as well as among species groupings in a managed Southeastern China forest landscape. Plant Ecology, 2012, 213, 1489-1502.	0.7	13
139	<i>Gaga</i> , a New Fern Genus Segregated from <i>Cheilanthes</i> (Pteridaceae). Systematic Botany, 2012, 37, 845-860.	0.2	62
140	Global warming reduces plant reproductive output for temperate multiâ€inflorescence species on the Tibetan plateau. New Phytologist, 2012, 195, 427-436.	3.5	69
141	Mechanical properties of wood disproportionately increase with increasing density. American Journal of Botany, 2012, 99, 169-170.	0.8	14
142	Plant Development, Auxin, and the Subsystem Incompleteness Theorem. Frontiers in Plant Science, 2012, 3, 37.	1.7	19
143	Do plants explore habitats before exploiting them? An explicit test using two stoloniferous herbs. Science Bulletin, 2012, 57, 2425-2432.	1.7	4
144	The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology, 2011, 38, 535.	1.1	421

#	Article	IF	CITATIONS
145	rbcL and matK Earn Two Thumbs Up as the Core DNA Barcode for Ferns. PLoS ONE, 2011, 6, e26597.	1.1	80
146	Climbing Plants: Attachment and the Ascent for Light. Current Biology, 2011, 21, R199-R201.	1.8	10
147	Difference in Floral Traits, Pollination, and Reproductive Success between White and Blue Flowers of <i>Gentiana leucomelaena</i> (Gentianaceae) in an Alpine Meadow. Arctic, Antarctic, and Alpine Research, 2011, 43, 410-416.	0.4	11
148	Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant and Soil, 2011, 340, 337-345.	1.8	13
149	First insights into fern matK phylogeny. Molecular Phylogenetics and Evolution, 2011, 59, 556-566.	1.2	127
150	COMPUTER SIMULATIONS OF PLANT BIODIVERSITY IN STABLE AND UNSTABLE ENVIRONMENTS: A TEST OF THE NEUTRAL BIODIVERSITY THEORY. Journal of Biological Systems, 2011, 19, 1-17.	0.5	12
151	Differences in the scaling of area and mass of <i>Ginkgo biloba</i> (Ginkgoaceae) leaves and their relevance to the study of specific leaf area. American Journal of Botany, 2011, 98, 1381-1386.	0.8	23
152	The evolution of the land plant life cycle. New Phytologist, 2010, 185, 27-41.	3.5	153
153	Ontogenetic shift in the scaling of dark respiration with wholeâ€plant mass in seven shrub species. Functional Ecology, 2010, 24, 502-512.	1.7	37
154	Ontogenetic changes in the numbers of short―vs. longâ€shoots account for decreasing specific leaf area in <i>Acer rubrum</i> (Aceraceae) as trees increase in size. American Journal of Botany, 2010, 97, 27-37.	0.8	17
155	Worldwide correlations of mechanical properties and green wood density. American Journal of Botany, 2010, 97, 1587-1594.	0.8	134
156	Tissueâ€direct PCR, a rapid and extractionâ€free method for barcoding of ferns. Molecular Ecology Resources, 2010, 10, 92-95.	2.2	37
157	Predicting the allometry of leaf surface area and dry mass. American Journal of Botany, 2009, 96, 531-536.	0.8	41
158	Identifying a mysterious aquatic fern gametophyte. Plant Systematics and Evolution, 2009, 281, 77-86.	0.3	44
159	Functional adaptation and phenotypic plasticity at the cellular and whole plant level. Journal of Biosciences, 2009, 34, 613-620.	0.5	27
160	The effect of twig architecture and seed number on seed size variation in subtropical woody species. New Phytologist, 2009, 183, 1212-1221.	3.5	22
161	The evolutionary development of plant body plans. Functional Plant Biology, 2009, 36, 682.	1.1	61
162	Evidence for "diminishing returns―from the scaling of stem diameter and specific leaf area. American Journal of Botany, 2008, 95, 549-557.	0.8	38

#	Article	IF	CITATIONS
163	Embryo morphology and seedling evolution. , 2008, , 103-129.		8
164	Genetic effects on the biomass partitioning and growth of <i>Pisum</i> and <i>Lycopersicon</i> . American Journal of Botany, 2008, 95, 424-433.	0.8	1
165	<i>Carica papaya</i> (Caricaceae): a case study into the effects of domestication on plant vegetative growth and reproduction. American Journal of Botany, 2007, 94, 999-1002.	0.8	21
166	Sizing up life and death. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15589-15590.	3.3	4
167	Maximum plant height and the biophysical factors that limit it. Tree Physiology, 2007, 27, 433-440.	1.4	96
168	"Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.	3.3	177
169	Allometric theory and the mechanical stability of large trees: proof and conjecture. American Journal of Botany, 2006, 93, 824-828.	0.8	36
170	Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates. Annals of Botany, 2006, 97, 155-163.	1.4	154
171	Biomass partitioning and leaf N,P ? stoichiometry: comparisons between tree and herbaceous current-year shoots. Plant, Cell and Environment, 2006, 29, 2030-2042.	2.8	56
172	A phyletic perspective on the allometry of plant biomassâ€partitioning patterns and functionally equivalent organâ€categories. New Phytologist, 2006, 171, 27-40.	3.5	94
173	Plant biomechanics: an overview and prospectus. American Journal of Botany, 2006, 93, 1369-1378.	0.8	52
174	A Comparison between the Record Height-to-Stem Diameter Allometries of Pachycaulis and Leptocaulis Species. Annals of Botany, 2006, 97, 79-83.	1.4	50
175	Thinking Outside the HOX. Biological Theory, 2006, 1, 128-129.	0.8	2
176	Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters, 2005, 8, 636-642.	3.0	215
177	Modelling Below- and Above-ground Biomass for Non-woody and Woody Plants. Annals of Botany, 2005, 95, 315-321.	1.4	123
178	N, P, and C stoichiometry of <i>Eranthis hyemalis</i> (Ranunculaceae) and the allometry of plant growth. American Journal of Botany, 2005, 92, 1256-1263.	0.8	84
179	From The Cover: Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15661-15663.	3.3	211
180	Temperature and water content effects on the viscoelastic behavior of Tilia americana (Tiliaceae) sapwood. Trees - Structure and Function, 2004, 18, 339-345.	0.9	12

#	Article	IF	CITATIONS
181	Plant allometry: is there a grand unifying theory?. Biological Reviews, 2004, 79, 871-889.	4.7	280
182	COMPUTER MODELS OF EARLY LAND PLANT EVOLUTION. Annual Review of Earth and Planetary Sciences, 2004, 32, 47-66.	4.6	70
183	Does disturbance prevent total basal area and biomass in indigenous forests from being at equilibrium with the local environment?. Journal of Tropical Ecology, 2004, 20, 595-597.	0.5	16
184	Tree size frequency distributions, plant density, age and community disturbance. Ecology Letters, 2003, 6, 405-411.	3.0	112
185	Size-dependent species richness: trends within plant communities and across latitude. Ecology Letters, 2003, 6, 631-636.	3.0	37
186	Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 2003, 6, 990-995.	3.0	215
187	Reexamination of a canonical model for plant organ biomass partitioning. American Journal of Botany, 2003, 90, 250-254.	0.8	13
188	The <i>Bio</i> ‣ogic and machinery of plant morphogenesis. American Journal of Botany, 2003, 90, 515-525.	0.8	20
189	On the mechanical properties of the rare endemic cactus <i>Stenocereus eruca</i> and the related species <i>S. gummosus</i> . American Journal of Botany, 2003, 90, 663-674.	0.8	15
190	The biomechanics of <i>Pachycereus pringlei</i> root systems. American Journal of Botany, 2002, 89, 12-21.	0.8	32
191	Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 2002, 89, 812-819.	0.8	131
192	On the Vegetative Biomass Partitioning of Seed Plant Leaves, Stems, and Roots. American Naturalist, 2002, 159, 482-497.	1.0	185
193	On the Allometry of Biomass Partitioning and Light Harvesting for Plants with Leafless Stems. Journal of Theoretical Biology, 2002, 217, 47-52.	0.8	10
194	Evolutionary trends in safety factors against wind-induced stem failure. American Journal of Botany, 2001, 88, 1266-1278.	0.8	37
195	Invariant scaling relations across tree-dominated communities. Nature, 2001, 410, 655-660.	13.7	566
196	Taxing Debate for Taxonomists. Science, 2001, 292, 2249b-2250.	6.0	7
197	Wood biomechanics and anatomy of PACHYCEREUS PRINGLEI. American Journal of Botany, 2000, 87, 469-481.	0.8	27
198	Modeling fossil plant form-function relationships: A critique. Paleobiology, 2000, 26, 289-304.	1.3	1

#	Article	IF	CITATIONS
199	Computing factors of safety against windâ€induced tree stem damage. Journal of Experimental Botany, 2000, 51, 797-806.	2.4	1
200	Computing factors of safety against windâ€induced tree stem damage. Journal of Experimental Botany, 2000, 51, 797-806.	2.4	47
201	The mechanical role of bark. American Journal of Botany, 1999, 86, 465-469.	0.8	82
202	Changes in the factor of safety within the superstructure of a dicot tree. American Journal of Botany, 1999, 86, 688-696.	0.8	15
203	Biomechanics of the columnar cactus Pachycereus pringlei. American Journal of Botany, 1999, 86, 767-775.	0.8	22
204	Early Plant History: Something Borrowed, Something New?. Science, 1999, 285, 1673b-1673.	6.0	2
205	Preferential states of longitudinal tension in the outer tissues of Taraxacum Officinale (Asteraceae) peduncles. American Journal of Botany, 1998, 85, 1068-1081.	0.8	27
206	LIGHT HARVESTING "FITNESS LANDSCAPES―FOR VERTICAL SHOOTS WITH DIFFERENT PHYLLOTACTIC PATTERNS. Series in Mathematical Biology and Medicine, 1998, , 759-773.	0.1	12
207	Stem biomechanics of three columnar cacti from the Sonoran Desert. American Journal of Botany, 1998, 85, 1082-1090.	0.8	22
208	The role of the epidermis as a stiffening agent in Tulipa (Liliaceae) stems. American Journal of Botany, 1997, 84, 735-744.	0.8	69
209	Adaptive walks through fitness landscapes for early vascular land plants. American Journal of Botany, 1997, 84, 16-25.	0.8	46
210	Effects of hypothetical developmental barriers and abrupt environmental changes on adaptive walks in a computer-generated domain for early vascular land plants. Paleobiology, 1997, 23, 63-76.	1.3	28
211	Phenotypic Walks Through Plant Fitness Landscapes: Does Increasing Functional Complexity Expedite Morphological Diversification?. The Paleontological Society Special Publications, 1996, 8, 289-289.	0.0	0
212	Effects of <i>Rht</i> â€dosage on the breaking strength of wheat seedling leaves. American Journal of Botany, 1996, 83, 567-572.	0.8	5
213	Effects of Rht-dosage on the breaking strength of wheat seedling leaves. , 1996, 83, 567.		3
214	P <scp>redicting the height of fossil plant remains: an allometric approach to an old problem</scp> . American Journal of Botany, 1994, 81, 1235-1242.	0.8	83
215	I <scp>nterspecific allometries of critical buckling height and actual plant height</scp> . American Journal of Botany, 1994, 81, 1275-1279.	0.8	34
216	Sizeâ€dependent variations in plant growth rates and the "¾â€power rule― American Journal of Botany, 1994, 81, 134-144.	0.8	25

#	Article	IF	CITATIONS
217	The allometry of safety-factors for plant height. American Journal of Botany, 1994, 81, 345-351.	0.8	44
218	The allometry of saguaro height. American Journal of Botany, 1994, 81, 1161-1168.	0.8	32
219	Comparisons among biomass allocation and spatial distribution patterns of some vine, pteridophyte, and gymnosperm shoots. American Journal of Botany, 1994, 81, 1416-1421.	0.8	12
220	Comparisons among biomass allocation and spatial distribution patterns of some vine, pteridophyte, and gymnosperm shoots. , 1994, 81, 1416.		15
221	Predicting the height of fossil plant remains: an allometric approach to an old problem. , 1994, 81, 1235.		51
222	Interspecific allometries of critical buckling height and actual plant height. , 1994, 81, 1275.		16
223	The Allometry of Safety-Factors for Plant Height. American Journal of Botany, 1994, 81, 345.	0.8	33
224	The allometry of saguaro height. , 1994, 81, 1161.		23
225	Size-dependent variations in plant growth rates and the "¾-power ruleâ€, , 1994, 81, 134.		27
226	THE ALLOMETRY OF PLANT REPRODUCTIVE BIOMASS AND STEM DIAMETER. American Journal of Botany, 1993, 80, 461-467.	0.8	34
227	THE ALLOMETRY OF PLANT REPRODUCTIVE BIOMASS AND STEM DIAMETER. , 1993, 80, 461.		52
228	Voigt and Reuss Models for Predicting Changes in Young's Modulus of Dehydrating Plant Organs. Annals of Botany, 1992, 70, 347-355.	1.4	15
229	GRAVITYâ€INDUCED EFFECTS ON MATERIAL PROPERTIES AND SIZE OF LEAVES ON HORIZONTAL SHOOTS OF ACER SACCHARUM (ACERACEAE). American Journal of Botany, 1992, 79, 820-827.	0.8	11
230	Petiole mechanics, light interception by Lamina, and "Economy in Design― Oecologia, 1992, 90, 518-526.	0.9	45
231	GRAVITY-INDUCED EFFECTS ON MATERIAL PROPERTIES AND SIZE OF LEAVES ON HORIZONTAL SHOOTS OF ACER SACCHARUM (ACERACEAE). , 1992, 79, 820.		2
232	THE ELASTIC MODULI AND MECHANICS OF POPULUS TREMULOIDES (SALICACEAE) PETIOLES IN BENDING AND TORSION. American Journal of Botany, 1991, 78, 989-996.	0.8	51
233	EFFECTS OF TISSUE VOLUME AND LOCATION ON THE MECHANICAL CONSEQUENCES OF DEHYDRATION OF PETIOLES. American Journal of Botany, 1991, 78, 361-369.	0.8	18
234	BENDING STIFFNESS OF CYLINDRICAL PLANT ORGANS WITH A â€~COREâ€RIND' CONSTRUCTION: EVIDENCE JUNCUS EFFUSUS LEAVES. American Journal of Botany, 1991, 78, 561-568.	FROM	13

#	Article	IF	CITATIONS
235	FLEXURAL STIFFNESS ALLOMETRIES OF ANGIOSPERM AND FERN PETIOLES AND RACHISES: EVIDENCE FOR BIOMECHANICAL CONVERGENCE. Evolution; International Journal of Organic Evolution, 1991, 45, 734-750.	1.1	32
236	EFFECTS OF TISSUE VOLUME AND LOCATION ON THE MECHANICAL CONSEQUENCES OF DEHYDRATION OF PETIOLES. , 1991, 78, 361.		2
237	THE ELASTIC MODULI AND MECHANICS OF POPULUS TREMULOIDES (SALICACEAE) PETIOLES IN BENDING AND TORSION. , 1991, 78, 989.		15
238	BENDING STIFFNESS OF CYLINDRICAL PLANT ORGANS WITH A â€~CORE-RIND' CONSTRUCTION: EVIDENCE FI JUNCUS EFFUSUS LEAVES. , 1991, 78, 561.	ROM	10
239	Turning over an old leaf. Nature, 1990, 344, 587-588.	13.7	7
240	BIOMECHANICS OF PSILOTUM NUDUM AND SOME EARLY PALEOZOIC VASCULAR SPOROPHYTES. American Journal of Botany, 1990, 77, 590-606.	0.8	33
241	DETERMINATE GROWTH OF ALLIUM SATIVUM PEDUNCLES: EVIDENCE OF DETERMINATE GROWTH AS A DESIGN FACTOR FOR BIOMECHANICAL SAFETY. American Journal of Botany, 1990, 77, 762-771.	0.8	8
242	A REEVALUATION OF THE ZOSTEROPHYLLOPHYTINA WITH COMMENTS ON THE ORIGIN OF LYCOPODS. American Journal of Botany, 1990, 77, 274-283.	0.8	39
243	DETERMINATE GROWTH OF ALLIUM SATIVUM PEDUNCLES: EVIDENCE OF DETERMINATE GROWTH AS A DESIGN FACTOR FOR BIOMECHANICAL SAFETY. , 1990, 77, 762.		6
244	A REEVALUATION OF THE ZOSTEROPHYLLOPHYTINA WITH COMMENTS ON THE ORIGIN OF LYCOPODS. , 1990, 77, 274.		26
245	BIOMECHANICS OF PSILOTUM NUDUM AND SOME EARLY PALEOZOIC VASCULAR SPOROPHYTES. , 1990, 77, 590.		11
246	PHYSIOLOGICAL AND MORPHOLOGICAL MODIFICATIONS OF PLANTAGO MAJOR (PLANTAGINACEAE) IN RESPONSE TO LIGHT CONDITIONS. American Journal of Botany, 1989, 76, 370-382.	0.8	13
247	NODAL SEPTA AND THE RIGIDITY OF AERIAL SHOOTS OF EQUISETUM HYEMALE. American Journal of Botany, 1989, 76, 521-531.	0.8	26
248	MECHANICAL BEHAVIOR OF PLANT TISSUES AS INFERRED FROM THE THEORY OF PRESSURIZED CELLULAR SOLIDS. American Journal of Botany, 1989, 76, 929-937.	0.8	56
249	EXTRACELLULAR FREEZING IN EQUISETUM HYEMALE. American Journal of Botany, 1989, 76, 627-631.	0.8	12
250	SAFETY FACTORS IN VERTICAL STEMS: EVIDENCE FROM <i>EQUISETUM HYEMALE</i> . Evolution; International Journal of Organic Evolution, 1989, 43, 1625-1636.	1.1	7
251	NODAL SEPTA AND THE RIGIDITY OF AERIAL SHOOTS OF EQUISETUM HYEMALE. , 1989, 76, 521.		12

#	Article	IF	CITATIONS
253	MECHANICAL BEHAVIOR OF PLANT TISSUES AS INFERRED FROM THE THEORY OF PRESSURIZED CELLULAR SOLIDS. , 1989, 76, 929.		34
254	PHYSIOLOGICAL AND MORPHOLOGICAL MODIFICATIONS OF PLANTAGO MAJOR (PLANTAGINACEAE) IN RESPONSE TO LIGHT CONDITIONS. , 1989, 76, 370.		9
255	Flexural Stiffness and Modulus of Elasticity of Flower Stalks from Allium Stalks from Allium sativum as Measured by Multiple Resonance Frequency Spectra. American Journal of Botany, 1988, 75, 1517.	0.8	19
256	THE ROLE OF PHYLLOTACTIC PATTERN AS A "DEVELOPMENTAL CONSTRAINT―ON THE INTERCEPTION OF LIG BY LEAF SURFACES. Evolution; International Journal of Organic Evolution, 1988, 42, 1-16.	CHT 1.1	84
257	EQUATIONS FOR THE MOTION OF AIRBORNE POLLEN GRAINS NEAR THE OVULATE ORGANS OF WINDâ€POLLINATED PLANTS. American Journal of Botany, 1988, 75, 433-444.	0.8	8
258	BRANCHING PATTERNS OF SALICORNIA EUROPAEA (CHENOPODIACEAE) AT DIFFERENT SUCCESSIONAL STAGES: A COMPARISON OF THEORETICAL AND REAL PLANTS. American Journal of Botany, 1988, 75, 501-512.	0.8	26
259	FLEXURAL STIFFNESS AND MODULUS OF ELASTICITY OF FLOWER STALKS FROM ALLIUM SATIVUM AS MEASURED BY MULTIPLE RESONANCE FREQUENCY SPECTRA. American Journal of Botany, 1988, 75, 1517-1525.	0.8	61
260	AEROBIOLOGY AND POLLEN CAPTURE OF ORCHARD-GROWN PISTACIA VERA (ANACARDIACEAE). American Journal of Botany, 1988, 75, 1813-1829.	0.8	9
261	DEPENDENCY OF THE TENSILE MODULUS ON TRANSVERSE DIMENSIONS, WATER POTENTIAL, AND CELL NUMBER OF PITH PARENCHYMA. American Journal of Botany, 1988, 75, 1286-1292.	0.8	47
262	EQUATIONS FOR THE MOTION OF AIRBORNE POLLEN GRAINS NEAR THE OVULATE ORGANS OF WIND-POLLINATED PLANTS. , 1988, 75, 433.		4
263	BRANCHING PATTERNS OF SALICORNIA EUROPAEA (CHENOPODIACEAE) AT DIFFERENT SUCCESSIONAL STAGES: A COMPARISON OF THEORETICAL AND REAL PLANTS. , 1988, 75, 501.		13
264	DEPENDENCY OF THE TENSILE MODULUS ON TRANSVERSE DIMENSIONS, WATER POTENTIAL, AND CELL NUMBER OF PITH PARENCHYMA. , 1988, 75, 1286.		20
265	AEROBIOLOGY AND POLLEN CAPTURE OF ORCHARD-GROWN PISTACIA VERA (ANACARDIACEAE). , 1988, 75, 1813.		6
266	FLEXURAL RIGIDITY OF CHIVE AND ITS RESPONSE TO WATER POTENTIAL. American Journal of Botany, 1987, 74, 1033-1044.	0.8	35
267	COMPUTER PROGRAM FOR THREEâ€DIMENSIONAL RECONSTRUCTIONS AND NUMERICAL ANALYSES OF PLANT ORGANS FROM SERIAL SECTIONS. American Journal of Botany, 1987, 74, 1595-1599.	0.8	16
268	FLEXURAL RIGIDITY OF CHIVE AND ITS RESPONSE TO WATER POTENTIAL. , 1987, 74, 1033.		16
269	COMPUTER PROGRAM FOR THREE-DIMENSIONAL RECONSTRUCTIONS AND NUMERICAL ANALYSES OF PLANT ORGANS FROM SERIAL SECTIONS. , 1987, 74, 1595.		9
270	AERODYNAMICS OF EPHEDRA TRIFURCA: I. POLLEN GRAIN VELOCITY FIELDS AROUND STEMS BEARING OVULES. American Journal of Botany, 1986, 73, 966-979.	0.8	24

#	Article	IF	CITATIONS
271	AERODYNAMICS OF EPHEDRA TRIFURCA: I. POLLEN GRAIN VELOCITY FIELDS AROUND STEMS BEARING OVULES. , 1986, 73, 966.		11
272	WIND POLLINATION OF TAXUS CUSPIDATA. American Journal of Botany, 1985, 72, 1-13.	0.8	8
273	EVIDENCE FOR XYLEM CONSTRICTIONS IN THE PRIMARY VASCULATURE OF PSILOPHYTON DAWSONII, AN EMSIAN TRIMEROPHYTE. American Journal of Botany, 1985, 72, 674-685.	0.8	14
274	AERODYNAMICS OF WIND POLLINATION IN SIMMONDSIA CHINENSIS (LINK) SCHNEIDER. American Journal of Botany, 1985, 72, 530-539.	0.8	18
275	WIND POLLINATION OF TAXUS CUSPIDATA. , 1985, 72, 1.		4
276	AERODYNAMICS OF WIND POLLINATION IN SIMMONDSIA CHINENSIS (LINK) SCHNEIDER. , 1985, 72, 530.		9
277	EVIDENCE FOR XYLEM CONSTRICTIONS IN THE PRIMARY VASCULATURE OF PSILOPHYTON DAWSONII, AN EMSIAN TRIMEROPHYTE. , 1985, 72, 674.		8
278	Size-related changes in the primary xylem anatomy of some early tracheophytes. Paleobiology, 1984, 10, 487-506.	1.3	31
279	THE MOTION OF WINDBORNE POLLEN GRAINS AROUND CONIFER OVULATE CONES: IMPLICATIONS ON WIND POLLINATION. American Journal of Botany, 1984, 71, 356-374.	0.8	55
280	AEROBIOLOGY OF SYMPLOCARPUS FOETIDUS: INTERACTIONS BETWEEN THE SPATHE AND SPADIX. American Journal of Botany, 1984, 71, 843-850.	0.8	11
281	Reply to Waller. Paleobiology, 1984, 10, 117-120.	1.3	1
282	Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology, 1984, 10, 79-101.	1.3	94
283	AEROBIOLOGY OF SYMPLOCARPUS FOETIDUS: INTERACTIONS BETWEEN THE SPATHE AND SPADIX. , 1984, 71, 843.		3
284	THE MOTION OF WINDBORNE POLLEN GRAINS AROUND CONIFER OVULATE CONES: IMPLICATIONS ON WIND POLLINATION. , 1984, 71, 356.		23
285	Patterns in vascular land plant diversification. Nature, 1983, 303, 614-616.	13.7	291
286	THE INFLUENCE OF PALEOZOIC OVULE AND CUPULE MORPHOLOGIES ON WIND POLLINATION. Evolution; International Journal of Organic Evolution, 1983, 37, 968-986.	1.1	22
287	Evidence for a conducting strand in early Silurian (Llandoverian) plants: implications for the evolution of the land plants. Paleobiology, 1983, 9, 126-137.	1.3	39
288	CONIFER OVULATE CONE MORPHOLOGY: IMPLICATIONS ON POLLEN IMPACTION PATTERNS. American Journal of Botany, 1983, 70, 568-577.	0.8	23

#	Article	IF	CITATIONS
289	ORGANELLE PRESERVATION AND PROTOPLAST PARTITIONING IN FOSSIL ANGIOSPERM LEAF TISSUES. American Journal of Botany, 1983, 70, 543-548.	0.8	18
290	ORGANELLE PRESERVATION AND PROTOPLAST PARTITIONING IN FOSSIL ANGIOSPERM LEAF TISSUES. , 1983, 70, 543.		7
291	CONIFER OVULATE CONE MORPHOLOGY: IMPLICATIONS ON POLLEN IMPACTION PATTERNS. , 1983, 70, 568.		5
292	Computer simulations of early land plant branching morphologies: canalization of patterns during evolution?. Paleobiology, 1982, 8, 196-210.	1.3	30
293	GROWTH PATTERNS OF PLANTS THAT MAXIMIZE VERTICAL GROWTH AND MINIMIZE INTERNAL STRESSES. American Journal of Botany, 1982, 69, 1367-1374.	0.8	40
294	GROWTH PATTERNS OF PLANTS THAT MAXIMIZE VERTICAL GROWTH AND MINIMIZE INTERNAL STRESSES. , 1982, 69, 1367.		18
295	Paleophytochemistry: Implications Concerning Plant Evolution. Paleobiology, 1981, 7, 1-3.	1.3	3
296	RELATIONSHIPS AMONG SHOOT APICAL MERISTEM ONTOGENIC FEATURES IN TRICHOCEREUS PACHANOI AND MELOCACTUS MATANZANUS (CACTACEAE). American Journal of Botany, 1981, 68, 101-106.	0.8	9
297	Evolutionary walks through a land plant morphospace. , 0, .		11
298	Tree Size Influences Leaf Shape but Does Not Affect the Proportional Relationship Between Leaf Area and the Product of Length and Width. Frontiers in Plant Science, 0, 13, .	1.7	7
299	Re-evaluating the Systematics of Dendrolycopodium Using Restriction-Site Associated DNA-Sequencing. Frontiers in Plant Science, 0, 13, .	1.7	1
300	Systematics and Plastome Evolution in Schizaeaceae. Frontiers in Plant Science, 0, 13, .	1.7	0