List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2429709/publications.pdf Version: 2024-02-01

ΜΠΡΑΓΙ Μ ΥΛΓΙΑΡΙΙ

#	Article	IF	CITATIONS
1	A topography of immunotherapies against gastrointestinal malignancies. Panminerva Medica, 2022, 64, .	0.8	3
2	The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sciences, 2022, 288, 120156.	4.3	23
3	<i>In Situ</i> Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS Applied Bio Materials, 2022, 5, 1104-1119.	4.6	6
4	Withania somnifera: Progress towards a Pharmaceutical Agent for Immunomodulation and Cancer Therapeutics. Pharmaceutics, 2022, 14, 611.	4.5	16
5	A global picture: therapeutic perspectives for COVID-19. Immunotherapy, 2022, 14, 351-371.	2.0	56
6	Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities. New Journal of Chemistry, 2022, 46, 13240-13248.	2.8	6
7	Therapeutics to tackle Omicron outbreak. Immunotherapy, 2022, 14, 833-838.	2.0	22
8	Tannic Acid Exhibits Antiangiogenesis Activity in Nonsmall-Cell Lung Cancer Cells. ACS Omega, 2022, 7, 23939-23949.	3.5	6
9	Reply to the letter â€~ <i>Effectiveness of COVID-19 vaccines against Omicron variant'</i> . Immunotherapy, 2022, 14, 905-908.	2.0	3
10	COVID-19: fighting the invisible enemy with microRNAs. Expert Review of Anti-Infective Therapy, 2021, 19, 137-145.	4.4	63
11	CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 2021, 6, 1430-1445.	7.8	100
12	A bird eye view on cystic fibrosis: An underestimated multifaceted chronic disorder. Life Sciences, 2021, 268, 118959.	4.3	10
13	PLGA Nanoparticle-Based Formulations to Cross the Blood–Brain Barrier for Drug Delivery: From R&D to cGMP. Pharmaceutics, 2021, 13, 500.	4.5	55
14	Clinical Implications of Exosomes: Targeted Drug Delivery for Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 5278.	4.1	16
15	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	4.3	8
16	Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioactive Materials, 2021, 6, 2479-2490.	15.6	72
17	Bioactive nanotherapeutic trends to combat triple negative breast cancer. Bioactive Materials, 2021, 6, 3269-3287.	15.6	31
18	Biocidal and biocompatible hybrid nanomaterials from biomolecule chitosan, alginate and ZnO. Carbohydrate Polymers, 2021, 274, 118646.	10.2	28

#	Article	IF	CITATIONS
19	Bay Leaf Extract-Based Near-Infrared Fluorescent Probe for Tissue and Cellular Imaging. Journal of Imaging, 2021, 7, 256.	3.0	0
20	DNA damage is overcome by TRIP13 overexpression during cisplatin nephrotoxicity. JCI Insight, 2021, 6, .	5.0	5
21	Steviol Represses Glucose Metabolism and Translation Initiation in Pancreatic Cancer Cells. Biomedicines, 2021, 9, 1814.	3.2	1
22	Novel Mechanistic Insight into the Anticancer Activity of Cucurbitacin D against Pancreatic Cancer (Cuc D Attenuates Pancreatic Cancer). Cells, 2020, 9, 103.	4.1	20
23	Protein kinase D1 regulates metabolic switch in pancreatic cancer via modulation of mTORC1. British Journal of Cancer, 2020, 122, 121-131.	6.4	12
24	VERU-111 suppresses tumor growth and metastatic phenotypes of cervical cancer cells through the activation of p53 signaling pathway. Cancer Letters, 2020, 470, 64-74.	7.2	10
25	<i>Withania somnifera</i> as a potential future drug molecule for COVID-19. Future Drug Discovery, 2020, 2, FDD50.	2.1	21
26	Comprehensive Review on Current Interventions, Diagnostics, and Nanotechnology Perspectives against SARS-CoV-2. Bioconjugate Chemistry, 2020, 31, 2021-2045.	3.6	58
27	Topological and system-level protein interaction network (PIN) analyses to deduce molecular mechanism of curcumin. Scientific Reports, 2020, 10, 12045.	3.3	16
28	"Tomorrow Never Dies― Recent Advances in Diagnosis, Treatment, and Prevention Modalities against Coronavirus (COVID-19) amid Controversies. Diseases (Basel, Switzerland), 2020, 8, 30.	2.5	19
29	Gambogic acid potentiates gemcitabine induced anticancer activity in non-small cell lung cancer. European Journal of Pharmacology, 2020, 888, 173486.	3.5	30
30	miR-205: A Potential Biomedicine for Cancer Therapy. Cells, 2020, 9, 1957.	4.1	31
31	Smoking and COVID-19: Adding Fuel to the Flame. International Journal of Molecular Sciences, 2020, 21, 6581.	4.1	76
32	Role of Nutraceuticals in COVID-19 Mediated Liver Dysfunction. Molecules, 2020, 25, 5905.	3.8	11
33	An Elvitegravir Nanoformulation Crosses the Blood–Brain Barrier and Suppresses HIV-1 Replication in Microglia. Viruses, 2020, 12, 564.	3.3	23
34	Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188381.	7.4	60
35	Novel elvitegravir nanoformulation for drug delivery across the blood-brain barrier to achieve HIV-1 suppression in the CNS macrophages. Scientific Reports, 2020, 10, 3835.	3.3	53
36	Pluronic Polymer-Based Ormeloxifene Nanoformulations Induce Superior Anticancer Effects in Pancreatic Cancer Cells. ACS Omega, 2020, 5, 1147-1156.	3.5	4

#	Article	IF	CITATIONS
37	Biophysical changes caused by altered MUC13 expression in pancreatic cancer cells. Micron, 2020, 130, 102822.	2.2	6
38	Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Scientific Reports, 2020, 10, 980.	3.3	40
39	Novel Paclitaxel Nanoformulation Impairs De Novo Lipid Synthesis in Pancreatic Cancer Cells and Enhances Gemcitabine Efficacy. ACS Omega, 2020, 5, 8982-8991.	3.5	11
40	Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics, 2020, 12, 285.	4.5	31
41	Neutralization of SARS-CoV-2 Spike Protein via Natural Compounds: A Multilayered High Throughput Virtual Screening Approach. Current Pharmaceutical Design, 2020, 26, 5300-5309.	1.9	3
42	A Novel Technique for the Detection of LncRNAs on Tissue Sections. Springer Protocols, 2020, , 237-243.	0.3	0
43	Nanotechnology approaches for delivery of cytochrome P450 substrates in HIV treatment. Expert Opinion on Drug Delivery, 2019, 16, 869-882.	5.0	8
44	A triphenylethylene nonsteroidal SERM attenuates cervical cancer growth. Scientific Reports, 2019, 9, 10917.	3.3	8
45	Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics, 2019, 11, 574.	4.5	58
46	<p>Ormeloxifene nanotherapy for cervical cancer treatment</p> . International Journal of Nanomedicine, 2019, Volume 14, 7107-7121.	6.7	12
47	Cross-Linked Polyphenol-Based Drug Nano-Self-Assemblies Engineered to Blockade Prostate Cancer Senescence. ACS Applied Materials & Interfaces, 2019, 11, 38537-38554.	8.0	29
48	Therapeutic efficacy of a novel βIII/βIV-tubulin inhibitor (VERU-111) in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 29.	8.6	25
49	Next-generation paclitaxel-nanoparticle formulation for pancreatic cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102027.	3.3	18
50	Cucurbitacin D Reprograms Glucose Metabolic Network in Prostate Cancer. Cancers, 2019, 11, 364.	3.7	26
51	Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials, 2019, 208, 83-97.	11.4	100
52	Pharmacokinetics and pharmacodynamics of cytochrome P450 inhibitors for HIV treatment. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 417-427.	3.3	51
53	Mannose-decorated hybrid nanoparticles for enhanced macrophage targeting. Biochemistry and Biophysics Reports, 2019, 17, 197-207.	1.3	35
54	Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. Journal of Colloid and Interface Science, 2019, 535, 133-148.	9.4	109

#	Article	IF	CITATIONS
55	Optical detection of the structural properties of tumor tissue generated by xenografting of drug-sensitive and drug-resistant cancer cells using partial wave spectroscopy (PWS). Biomedical Optics Express, 2019, 10, 6422.	2.9	7
56	Protein kinase D1 regulates subcellular localisation and metastatic function of metastasis-associated protein 1. British Journal of Cancer, 2018, 118, 587-599.	6.4	14
57	MUC13 contributes to rewiring of glucose metabolism in pancreatic cancer. Oncogenesis, 2018, 7, 19.	4.9	29
58	Clinical significance of MUC13 in pancreatic ductal adenocarcinoma. Hpb, 2018, 20, 563-572.	0.3	19
59	Development of polyvinylpyrrolidone/paclitaxel self-assemblies for breast cancer. Acta Pharmaceutica Sinica B, 2018, 8, 602-614.	12.0	50
60	Role of IncRNAs in ovarian cancer: defining new biomarkers for therapeutic purposes. Drug Discovery Today, 2018, 23, 1635-1643.	6.4	84
61	Quantification of photonic localization properties of targeted nuclear mass density variations: Application in cancerâ€stage detection. Journal of Biophotonics, 2018, 11, e201700257.	2.3	10
62	miRNA-205 Nanoformulation Sensitizes Prostate Cancer Cells to Chemotherapy. Cancers, 2018, 10, 289.	3.7	41
63	Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica–Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer. Molecular Pharmaceutics, 2018, 15, 2698-2713.	4.6	29
64	Tannic Acid-Lung Fluid Assemblies Promote Interaction and Delivery of Drugs to Lung Cancer Cells. Pharmaceutics, 2018, 10, 111.	4.5	17
65	Tannic Acid Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Prostate Cancer. Cancers, 2018, 10, 68.	3.7	44
66	Antibody-Drug Conjugates for Cancer Therapy: Chemistry to Clinical Implications. Pharmaceuticals, 2018, 11, 32.	3.8	161
67	Optical study of chemotherapy efficiency in cancer treatment via intracellular structural disorder analysis using partial wave spectroscopy. Journal of Biophotonics, 2018, 11, e201800056.	2.3	9
68	Abstract LB-400: Tannic acid induces prostate cancer cell death via unfolded protein response (UPR) and modulation of CHOP. Cancer Research, 2018, 78, LB-400-LB-400.	0.9	1
69	Ormeloxifene Suppresses Prostate Tumor Growth and Metastatic Phenotypes via Inhibition of Oncogenic β-catenin Signaling and EMT Progression. Molecular Cancer Therapeutics, 2017, 16, 2267-2280.	4.1	43
70	Magnetic nanoformulations for prostate cancer. Drug Discovery Today, 2017, 22, 1233-1241.	6.4	19
71	Specific packaging and circulation of cytochromes P450, especially 2E1 isozyme, in human plasma exosomes and their implications in cellular communications. Biochemical and Biophysical Research Communications, 2017, 491, 675-680.	2.1	52
72	Probing mucin interaction behavior of magnetic nanoparticles. Journal of Colloid and Interface Science, 2017, 488, 258-268.	9.4	30

#	Article	IF	CITATIONS
73	miRNA nanotherapeutics for cancer. Drug Discovery Today, 2017, 22, 424-432.	6.4	240
74	Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. Journal of Gastrointestinal Surgery, 2017, 21, 94-105.	1.7	42
75	Novel elvitegravir nanoformulation approach to suppress the viral load in HIV-infected macrophages. Biochemistry and Biophysics Reports, 2017, 12, 214-219.	1.3	19
76	PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids and Surfaces B: Biointerfaces, 2016, 144, 8-20.	5.0	106
77	Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Scientific Reports, 2016, 6, 36594.	3.3	63
78	Curcumin Nanoformulation for Cervical Cancer Treatment. Scientific Reports, 2016, 6, 20051.	3.3	144
79	Slit/Robo pathway: a promising therapeutic target for cancer. Drug Discovery Today, 2015, 20, 156-164.	6.4	83
80	Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials, 2015, 46, 1-12.	11.4	145
81	Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials, 2015, 53, 731-743.	11.4	40
82	Ormeloxifene Suppresses Desmoplasia and Enhances Sensitivity of Gemcitabine in Pancreatic Cancer. Cancer Research, 2015, 75, 2292-2304.	0.9	67
83	Therapeutic Applications of Curcumin Nanoformulations. AAPS Journal, 2015, 17, 1341-1356.	4.4	262
84	The Roles of Cellular Nanomechanics in Cancer. Medicinal Research Reviews, 2015, 35, 198-223.	10.5	34
85	Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction. Journal of Personalized Nano Medicine, 2015, 1, 3-9.	0.8	8
86	Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials, 2014, 35, 8635-8648.	11.4	232
87	Nanoways to overcome docetaxel resistance in prostate cancer. Drug Resistance Updates, 2014, 17, 13-23.	14.4	80
88	MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget, 2014, 5, 7599-7609.	1.8	98
89	Novel Curcumin-Loaded Magnetic Nanoparticles for Pancreatic Cancer Treatment. Molecular Cancer Therapeutics, 2013, 12, 1471-1480.	4.1	112
90	Curcumin Nanomedicine: A Road to Cancer Therapeutics. Current Pharmaceutical Design, 2013, 19, 1994-2010.	1.9	70

#	Article	IF	CITATIONS
91	Plasma Proteins Interaction with Curcumin Nanoparticles: Implications in Cancer Therapeutics. Current Drug Metabolism, 2013, 14, 504-515.	1.2	34
92	Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. International Journal of Nanomedicine, 2012, 7, 1761.	6.7	125
93	Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discovery Today, 2012, 17, 71-80.	6.4	569
94	Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials, 2011, 32, 1890-1905.	11.4	418
95	Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. Journal of Ovarian Research, 2010, 3, 11.	3.0	170
96	Breakthrough medicines during the COVID-19 pandemic era. Future Drug Discovery, 0, , .	2.1	0