
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242967/publications.pdf Version: 2024-02-01

DENC-CALLUL

#	Article	IF	CITATIONS
1	mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in Nascent Hexaploid Wheat. Plant Cell, 2014, 26, 1878-1900.	6.6	308
2	Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. Journal of Genetics and Genomics, 2009, 36, 539-546.	3.9	134
3	Synthetic Hexaploid Wheat: Yesterday, Today, and Tomorrow. Engineering, 2018, 4, 552-558.	6.7	104
4	Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement. Nature Biotechnology, 2022, 40, 422-431.	17.5	102
5	An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley. Nature Communications, 2019, 10, 4023.	12.8	84
6	Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130, 2191-2201.	3.6	67
7	The Resurgence of Introgression Breeding, as Exemplified in Wheat Improvement. Frontiers in Plant Science, 2020, 11, 252.	3.6	66
8	Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction, 2007, 20, 159-166.	2.2	64
9	Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant Biotechnology Journal, 2018, 16, 280-291.	8.3	62
10	Making the Bread: Insights from Newly Synthesized Allohexaploid Wheat. Molecular Plant, 2015, 8, 847-859.	8.3	59
11	Frequent occurrence of unreduced gametes in Triticum turgidum–Aegilops tauschii hybrids. Euphytica, 2010, 172, 285-294.	1.2	58
12	Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C: Life Sciences, 2004, 47, 553.	1.3	56
13	Introgression of Powdery Mildew Resistance Gene Pm56 on Rye Chromosome Arm 6RS Into Wheat. Frontiers in Plant Science, 2018, 9, 1040.	3.6	56
14	Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica, 2013, 193, 347-357.	1.2	54
15	Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics, 2018, 19, 3.	2.8	53
16	<i>Myb10â€D</i> confers <i>PHSâ€3D</i> resistance to preâ€harvest sprouting by regulating <i>NCED</i> in ABA biosynthesis pathway of wheat. New Phytologist, 2021, 230, 1940-1952.	7.3	53
17	QTL Mapping for Important Agronomic Traits in Synthetic Hexaploid Wheat Derived from Aegiliops tauschii ssp. tauschii. Journal of Integrative Agriculture, 2014, 13, 1835-1844.	3.5	48
18	Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant, 2022, 15, 504-519.	8.3	48

#	Article	IF	CITATIONS
19	Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula. Biochemical and Biophysical Research Communications, 2016, 474, 271-276.	2.1	46
20	The draft genome of a wild barley genotype reveals its enrichment in genes related to biotic and abiotic stresses compared to cultivated barley. Plant Biotechnology Journal, 2020, 18, 443-456.	8.3	45
21	Cytological identification of an <i>Aegilops variabilis</i> chromosome carrying stripe rust resistance in wheat. Breeding Science, 2016, 66, 522-529.	1.9	42
22	A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132, 2285-2294.	3.6	39
23	Allelic Variation and Transcriptional Isoforms of Wheat TaMYC1 Gene Regulating Anthocyanin Synthesis in Pericarp. Frontiers in Plant Science, 2017, 8, 1645.	3.6	35
24	Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring <i>ph1b</i> and Kaixian-luohanmai with rye. Genome, 2011, 54, 959-964.	2.0	34
25	The abundance of homoeologue transcripts is disrupted by hybridization and is partially restored by genome doubling in synthetic hexaploid wheat. BMC Genomics, 2017, 18, 149.	2.8	30
26	Wheat breeding in the hometown of Chinese Spring. Crop Journal, 2018, 6, 82-90.	5.2	29
27	Genome-Wide Association Study Reveals Novel Genomic Regions Associated With High Grain Protein Content in Wheat Lines Derived From Wild Emmer Wheat. Frontiers in Plant Science, 2019, 10, 464.	3.6	29
28	ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE, 2017, 12, e0181116.	2.5	28
29	<i>QTug.sau-3B</i> Is a Major Quantitative Trait Locus for Wheat Hexaploidization. G3: Genes, Genomes, Genetics, 2014, 4, 1943-1953.	1.8	26
30	Characterization of two HMW glutenin subunit genes from Taenitherum Nevski. Genetica, 2006, 127, 267-276.	1.1	25
31	Title is missing!. Genetic Resources and Crop Evolution, 2002, 49, 327-330.	1.6	24
32	Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat×common wheat cross. Journal of Applied Genetics, 2008, 49, 333-341.	1.9	24
33	Molecular tagging of a stripe rust resistance gene in Aegilops tauschii. Euphytica, 2011, 179, 313-318.	1.2	24
34	Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Scientific Reports, 2016, 6, 36398.	3.3	24
35	Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii. Journal of Genetics and Genomics, 2008, 35, 617-623.	3.9	23
36	Formation of unreduced gametes is impeded by homologous chromosome pairing in tetraploid Triticum turgidumÂ×ÂAegilops tauschii hybrids. Euphytica, 2010, 175, 323-329.	1.2	23

#	Article	IF	CITATIONS
37	Distant Hybridization: A Tool for Interspecific Manipulation of Chromosomes. , 2014, , 25-42.		23
38	Transcriptome Analysis of Purple Pericarps in Common Wheat (Triticum aestivum L.). PLoS ONE, 2016, 11, e0155428.	2.5	23
39	Stripe rust resistance in Aegilops tauschii and its genetic analysis. Genetic Resources and Crop Evolution, 2010, 57, 325-328.	1.6	21
40	Allelic variation and distribution of HMW glutenin subunit 1Ay in Triticum species. Genetic Resources and Crop Evolution, 2012, 59, 491-497.	1.6	21
41	Stripe Rust Resistance in <i>Aegilops tauschii</i> Germplasm. Crop Science, 2013, 53, 2014-2020.	1.8	21
42	The alternative splicing of EAM8 contributes to early flowering and short-season adaptation in a landrace barley from the Qinghai-Tibetan Plateau. Theoretical and Applied Genetics, 2017, 130, 757-766.	3.6	21
43	Synthesizing double haploid hexaploid wheat populations based on a spontaneous alloploidization process. Journal of Genetics and Genomics, 2011, 38, 89-94.	3.9	19
44	Genome-wide characterization of developmental stage- and tissue-specific transcription factors in wheat. BMC Genomics, 2015, 16, 125.	2.8	19
45	High Transferability of Homoeolog-Specific Markers between Bread Wheat and Newly Synthesized Hexaploid Wheat Lines. PLoS ONE, 2016, 11, e0162847.	2.5	19
46	Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement. International Journal of Molecular Sciences, 2018, 19, 923.	4.1	19
47	Mapping Quantitative Trait Loci for 1000-Grain Weight in a Double Haploid Population of Common Wheat. International Journal of Molecular Sciences, 2020, 21, 3960.	4.1	19
48	The crossability of <i>Triticum turgidum</i> with <i>Aegilops tauschii</i> . Cereal Research Communications, 2008, 36, 417-427.	1.6	17
49	Microsatellite Mutation Rate during Allohexaploidization of Newly Resynthesized Wheat. International Journal of Molecular Sciences, 2012, 13, 12533-12543.	4.1	17
50	Genetic map of Triticum turgidumbased on a hexaploid wheat population without genetic recombination for D genome. BMC Genetics, 2012, 13, 69.	2.7	17
51	Mapping stripe rust resistance gene YrSph derived from Tritium sphaerococcum Perc. with SSR, SRAP, and TRAP markers. Euphytica, 2012, 185, 19-26.	1.2	17
52	Genome-Wide Association Study for Grain Micronutrient Concentrations in Wheat Advanced Lines Derived From Wild Emmer. Frontiers in Plant Science, 2021, 12, 651283.	3.6	17
53	Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Gene, 2021, 768, 145290.	2.2	16
54	Molecular Characterization of Two Silenced yâ€ŧype Genes for <i>Gluâ€B1</i> in <i>Triticum aestivum</i> ssp <i>. yunnanese</i> and ssp <i>. tibetanum</i> . Journal of Integrative Plant Biology, 2009, 51, 93-99.	8.5	15

#	Article	IF	CITATIONS
55	Mitotic Illegitimate Recombination Is a Mechanism for Novel Changes in High-Molecular-Weight Glutenin Subunits in Wheat-Rye Hybrids. PLoS ONE, 2011, 6, e23511.	2.5	14
56	Haplotype variations of gene Ppd-D1 in Aegilops tauschii and their implications on wheat origin. Genetic Resources and Crop Evolution, 2012, 59, 1027-1032.	1.6	14
57	Variation and their relationship of NAM-G1 gene and grain protein content in Triticum timopheevii Zhuk Journal of Plant Physiology, 2013, 170, 330-337.	3.5	14
58	High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 2021, 4, 1242.	4.4	14
59	Characterization of a Novel 1Ay Gene and Its Expression Protein in Triticum urartu. Agricultural Sciences in China, 2010, 9, 1543-1552.	0.6	13
60	The detection of a de novo allele of the Glu-1Dx gene in wheat–rye hybrid offspring. Theoretical and Applied Genetics, 2014, 127, 2173-2182.	3.6	13
61	Molecular characterization of high pl α-amylase and its expression QTL analysis in synthetic wheat RILs. Molecular Breeding, 2014, 34, 1075-1085.	2.1	13
62	Distribution and Nucleotide Diversity of Yr15 in Wild Emmer Populations and Chinese Wheat Germplasm. Pathogens, 2020, 9, 212.	2.8	13
63	Evaluation on Chinese Bread Wheat Landraces for Low pH and Aluminum Tolerance Using Hydroponic Screening. Agricultural Sciences in China, 2009, 8, 285-292.	0.6	12
64	Evaluation of Aegilops tauschii for Heading Date and Its Gene Location in a Re-synthesized Hexaploid Wheat. Agricultural Sciences in China, 2009, 8, 1-7.	0.6	12
65	In situ hybridization analysis indicates that 4AL–5AL–7BS translocation preceded subspecies differentiation of <i>Triticum turgidum</i> . Genome, 2013, 56, 303-305.	2.0	12
66	Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization. Crop Journal, 2015, 3, 1-9.	5.2	12
67	ldentification of qPHS.sicau-1B and qPHS.sicau-3D from synthetic wheat for pre-harvest sprouting resistance wheat improvement. Molecular Breeding, 2019, 39, 1.	2.1	12
68	Allelic Variation of High Molecular Weight Glutenin Subunits in the Hexaploid Wheat Landraces of Tibet, China. International Journal of Agricultural Research, 2007, 2, 838-843.	0.1	12
69	Identification of a High-Yield Introgression Locus in Chuanmai 42 Inherited from Synthetic Hexaploid Wheat. Acta Agronomica Sinica, 2011, 37, 255-261.	0.3	11
70	Quantitative trait locus mapping for growth duration and its timing components in wheat. Molecular Breeding, 2015, 35, 1.	2.1	11
71	Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species <i>Aegilops umbellulata</i> and <i>Aegilops uniaristata</i> . Plant Genetic Resources: Characterisation and Utilisation, 2015, 13, 186-189.	0.8	11
72	Development and characterization of <i>Triticum turgidum</i> – <i>Aegilops umbellulata</i> amphidiploids. Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 24-32.	0.8	11

#	Article	IF	CITATIONS
73	The genetic study utility of a hexaploid wheat DH population with non-recombinant A- and B-genomes. SpringerPlus, 2013, 2, 131.	1.2	10
74	Molecular characterization of two y-type high molecular weight glutenin subunit alleles 1Ay12⎠and 1Ay8⎠from cultivated einkorn wheat (Triticum monococcum ssp. monococcum). Gene, 2013, 516, 1-7.	2.2	10
75	A QTL located on chromosome 3D enhances the selenium concentration of wheat grain by improving phytoavailability and root structure. Plant and Soil, 2018, 425, 287-296.	3.7	10
76	Comparative transcriptome analysis of two selenium-accumulating genotypes of Aegilops tauschii Coss. in response to selenium. BMC Genetics, 2019, 20, 9.	2.7	10
77	Genetic mapping of a major QTL promoting homoeologous chromosome pairing in a wheat landrace. Theoretical and Applied Genetics, 2019, 132, 2155-2166.	3.6	10
78	A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant Biology, 2020, 20, 97.	3.6	10
79	Molecular characterization and comparative analysis of four new genes from Sec2 locus encoding 75K Î ³ -secalins of rye species. Journal of Cereal Science, 2008, 48, 111-116.	3.7	9
80	Novel and ancient HMW glutenin genes from Aegilops tauschii and their phylogenetic positions. Genetic Resources and Crop Evolution, 2012, 59, 1649-1657.	1.6	9
81	Characterization of novel HMW-GS in two diploid species of Eremopyrum. Gene, 2013, 519, 55-59.	2.2	9
82	Population Structure and Linkage Disequilibrium in Sixâ€Rowed Barley Landraces from the Qinghaiâ€Tibetan Plateau. Crop Science, 2014, 54, 2011-2022.	1.8	9
83	Amphitelic orientation of centromeres at metaphase I is an important feature for univalent-dependent meiotic nonreduction. Journal of Genetics, 2014, 93, 531-534.	0.7	9
84	Enriching novel Glu-Ax alleles and significantly strengthening gluten properties of common wheat through wide hybridization with wild emmer. Journal of Cereal Science, 2017, 76, 271-279.	3.7	9
85	Identification of a recessive gene YrZ15-1370 conferring adult plant resistance to stripe rust in wheat-Triticum boeoticum introgression line. Theoretical and Applied Genetics, 2021, 134, 2891-2900.	3.6	9
86	Cytological Evidence on Meiotic Restitution in Pentaploid F1 Hybrids between Synthetic Hexaploid Wheat and Aegilops variabilis. Caryologia, 2010, 63, 354-358.	0.3	8
87	ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides. Gene, 2013, 531, 318-325.	2.2	8
88	Characterization of a novel y-type HMW-GS with eight cysteine residues from Triticum monococcum ssp. monococcum. Gene, 2015, 573, 110-114.	2.2	8
89	Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified in Triticum spelta. Euphytica, 2017, 213, 1.	1.2	8
90	Variation in Stripe Rust Resistance and Morphological Traits in Wild Emmer Wheat Populations. Agronomy, 2019, 9, 44.	3.0	8

#	Article	IF	CITATIONS
91	Development, identification, and characterization of blue-grained wheat-Triticum boeoticum substitution lines. Journal of Applied Genetics, 2020, 61, 169-177.	1.9	8
92	Chromosome Stability of Synthetic-Natural Wheat Hybrids. Frontiers in Plant Science, 2021, 12, 654382.	3.6	8
93	TbMYC4A Is a Candidate Gene Controlling the Blue Aleurone Trait in a Wheat-Triticum boeoticum Substitution Line. Frontiers in Plant Science, 2021, 12, 762265.	3.6	8
94	Comparison of Newly Synthetic Hexaploid Wheat with Its Donors on SSR Products. Journal of Genetics and Genomics, 2007, 34, 939-946.	3.9	7
95	Characterization of <i>WAP2</i> gene in <i>Aegilops tauschii</i> and comparison with homoeologous loci in wheat. Journal of Systematics and Evolution, 2009, 47, 543-551.	3.1	7
96	TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China. Genetics and Molecular Research, 2013, 12, 5602-5616.	0.2	7
97	Characterization of y-type high-molecular-weight glutenins in tetraploid species of Leymus. Development Genes and Evolution, 2014, 224, 57-64.	0.9	7
98	Special HMW-GSs and their genes of Triticum turgidum subsp. dicoccoides accession D141 and the potential utilization in common wheat. Genetic Resources and Crop Evolution, 2016, 63, 833-844.	1.6	7
99	Sequence divergence between spelt and common wheat. Theoretical and Applied Genetics, 2018, 131, 1125-1132.	3.6	7
100	Development and identification of new synthetic <i>T. turgidum</i> – <i>T. monococcum</i> amphiploids. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 555-563.	0.8	7
101	A synthetic wheat with 56 chromosomes derived fromTriticum turgidum andAegilops tauschii. Journal of Applied Genetics, 2008, 49, 41-44.	1.9	6
102	Empirical verification of heterogeneous DNA fragments generated from wheat genome-specific SSR primers. Canadian Journal of Plant Science, 2008, 88, 1065-1071.	0.9	6
103	Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response. Genes and Genomics, 2011, 33, 139-146.	1.4	6
104	Assessing genetic diversity and its changes of bread wheat in Qinghai Province, China, using agronomic traits and microsatellite markers. Biological Agriculture and Horticulture, 2012, 28, 120-128.	1.0	6
105	Quality of synthetic hexaploid wheat containing null alleles at Glu-A1 and Glu-B1 loci. Journal of Genetics, 2013, 92, 241-245.	0.7	6
106	Genetic diversity of avenin-like b genes in Aegilops tauschii Coss. Genetica, 2018, 146, 45-51.	1.1	6
107	Molecular cytogenetic identification of newly synthetic Triticum kiharae with high resistance to stripe rust. Genetic Resources and Crop Evolution, 2018, 65, 1725-1732.	1.6	6
108	Development and characterization of <i>Triticum turgidum</i> – <i>Aegilops comosa</i> and <i>T. turgidum</i> – <i>Ae. markgrafii</i> amphidiploids. Genome, 2020, 63, 263-273.	2.0	6

#	Article	IF	CITATIONS
109	Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture, 2021, 20, 2333-2342.	3.5	6
110	Genome-Wide Investigation and Functional Verification of the ZIP Family Transporters in Wild Emmer Wheat. International Journal of Molecular Sciences, 2022, 23, 2866.	4.1	6
111	Development and identification of four new synthetic hexaploid wheat lines with solid stems. Scientific Reports, 2022, 12, 4898.	3.3	6
112	Characterization of HMW-GS genes Dx5 ^t and Dy12 ^t from <i>Aegilops tauschii</i> accession with subunit combination Dx5 ^t + Dy12 ^t . Cereal Research Communications, 2008, 36, 477-487.	1.6	5
113	Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome, 2020, 63, 329-336.	2.0	5
114	FISH karyotype comparison between Ab- and A-genome chromosomes using oligonucleotide probes. Journal of Applied Genetics, 2020, 61, 313-322.	1.9	5
115	Development and validation of gene-specific KASP markers for YrAS2388R conferring stripe rust resistance in wheat. Euphytica, 2021, 217, 1.	1.2	5
116	Molecular characterization of four HMW glutenin genes from Heteranthelium piliferum C. E. Hubbard and Henrardia persica (Banks et Solander) Hochstetter. Genetic Resources and Crop Evolution, 2012, 59, 1309-1318.	1.6	4
117	Characterization of novel LMW glutenin subunit genes at the Glu-M3 locus from Aegilops comosa. 3 Biotech, 2018, 8, 379.	2.2	4
118	The transfer to and functional annotation of alien alleles in advanced wheat lines derived from synthetic hexaploid wheat. Plant Physiology and Biochemistry, 2018, 130, 89-93.	5.8	3
119	Enriching LMW-GS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer. 3 Biotech, 2019, 9, 355.	2.2	3
120	KASP markers to detect sub-chromosomal arm translocations between 6VS of Haynaldia villosa and 6AS of wheat. Euphytica, 2021, 217, 1.	1.2	3
121	Identification and Mapping of QTL for Stripe Rust Resistance in the Chinese Wheat Cultivar Shumai126. Plant Disease, 2022, 106, 1278-1285.	1.4	3
122	Comparison of the Agronomic, Cytological, Grain Protein Characteristics, as Well as Transcriptomic Profile of Two Wheat Lines Derived From Wild Emmer. Frontiers in Genetics, 2021, 12, 804481.	2.3	3
123	Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Science in China Series C: Life Sciences, 2005, 48, 424.	1.3	2
124	Isolation and characterization of a novel HMW-GSGlu-Dxallele from Tibet bread wheat landrace. Cereal Research Communications, 2008, 36, 523-531.	1.6	2
125	Novel HMW glutenin genes from Aegilops tauschii and their unique structures. Genes and Genomics, 2012, 34, 339-343.	1.4	2
126	Diversity and distribution of puroindoline-D1 genes in Aegilops tauschii. Genetic Resources and Crop Evolution, 2016, 63, 615-625.	1.6	2

#	Article	IF	CITATIONS
127	Using a wheat-rye amphihaploid population to map a rye gene responsible for dwarfness. Euphytica, 2018, 214, 1.	1.2	2
128	The karyotype of Aegilops geniculata and its use to identify both addition and substitution lines of wheat. Molecular Cytogenetics, 2019, 12, 15.	0.9	2
129	Anthocyanin composition and nutritional properties of a blue-grained wheat-Triticum boeoticum substitution line. Cereal Research Communications, 2022, 50, 501-507.	1.6	2
130	Dormancy Spreads Seed Germination over a Long Period with a Discontinuous Procession in Aegilops tauschii, the D-genome Donor Species of Bread Wheat. International Journal of Agricultural Research, 2007, 3, 77-82.	0.1	2
131	Molecular characterization and functional analysis of elite genes in wheat and its related species. Journal of Genetics, 2010, 89, 539-554.	0.7	1
132	Comparative Analysis of Six Triticum turgidum L. Subspecies for Acid and Aluminum Tolerance. Agricultural Sciences in China, 2010, 9, 642-650.	0.6	1
133	Structure and evolutionary relationships among paralogous genes within the Sec2 locus in rye. Journal of Cereal Science, 2012, 56, 282-288.	3.7	1
134	Comparative analysis of developing grain transcriptome reveals candidate genes and pathways improving GPC in wheat lines derived from wild emmer. Journal of Applied Genetics, 2021, 62, 17-25.	1.9	1
135	Isolation and Characterization of A Novel Glu-Bx HMW-GS Allele from Tibet Bread Wheat Landrace. International Journal of Agricultural Research, 2008, 4, 38-45.	0.1	1
136	Characterization of novel low-molecular-weight glutenin subunit genes from the diploid wild wheat relative <i>Aegilops umbellulata</i> . Plant Genetic Resources: Characterisation and Utilisation, 2022, 20, 1-6.	0.8	1
137	æ,—奿;äªĦŽå°éº¦æ;ç§ä¼~åŠį. Chinese Science Bulletin, 2022, , .	0.7	1
138	Molecular cytogenetic identification of a new synthetic amphiploid (<i>Triticum timococcum</i> ,) Tj ETQq0 0 0 r with that of natural <scp><i>Triticum zhukovskyi</i></scp> . Plant Breeding, 2022, 141, 558-565.	gBT /Over 1.9	lock 10 Tf 50 1
139	Molecular characterization of LMW glutenin genes from Taeniatherum Nevski. Genetic Resources and Crop Evolution, 2011, 58, 1029-1039.	1.6	0
140	The genetic structure of six-rowed naked barley landraces from the Qinghai-Tibetan Plateau is correlated with variation for ecogeographical factors. Canadian Journal of Plant Science, 0, , .	0.9	0
141	Analysis of novel high-molecular-weight prolamins from Leymus multicaulis (Kar. et Kir.) Tzvelev and L. chinensis (Trin. ex Bunge) Tzvelev. Genetica, 2018, 146, 255-264.	1.1	0
142	A new SSR marker for puroindoline genes of wheat. Research on Crops, 2015, 16, 147.	0.1	0