
Huib Ovaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Allosteric control of Ubp6 and the proteasome via a bidirectional switch. Nature Communications, 2022, 13, 838.	12.8	15
2	Inhibiting UCH-L5: Rational Design of a Cyclic Ubiquitin-Based Peptide Inhibitor. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	2
3	Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection. Chemistry - A European Journal, 2021, 27, 2506-2512.	3.3	7
4	K27-Linked Diubiquitin Inhibits UCHL3 via an Unusual Kinetic Trap. Cell Chemical Biology, 2021, 28, 191-201.e8.	5.2	11
5	Linkage-specific ubiquitin chain formation depends on a lysine hydrocarbon ruler. Nature Chemical Biology, 2021, 17, 272-279.	8.0	26
6	Global non-covalent SUMO interaction networks reveal SUMO-dependent stabilization of the non-homologous end joining complex. Cell Reports, 2021, 34, 108691.	6.4	41
7	Ubiquitin ligation to F-box protein targets by SCF–RBR E3–E3 super-assembly. Nature, 2021, 590, 671-676.	27.8	97
8	Targeting TRIM Proteins: A Quest towards Drugging an Emerging Protein Class. ChemBioChem, 2021, 22, 2011-2031.	2.6	19
9	Exploring the Versatility of the Covalent Thiol–Alkyne Reaction with Substituted Propargyl Warheads: A Deciding Role for the Cysteine Protease. Journal of the American Chemical Society, 2021, 143, 6423-6433.	13.7	39
10	Identification and characterization of a SARS-CoV-2 specific CD8+ T cell response with immunodominant features. Nature Communications, 2021, 12, 2593.	12.8	94
11	Recognition of S100 proteins by Signal Inhibitory Receptor on Leukocytesâ€1 negatively regulates human neutrophils. European Journal of Immunology, 2021, 51, 2210-2217.	2.9	15
12	Development of Tyrphostin Analogues to Study Inhibition of the <i>Mycobacterium tuberculosis</i> Pup Proteasome System**. ChemBioChem, 2021, 22, 3082-3089.	2.6	4
13	Quantifying Positional Isomers (QPI) by Top-Down Mass Spectrometry. Molecular and Cellular Proteomics, 2021, 20, 100070.	3.8	1
14	EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene, 2021, , .	5.9	3
15	Deubiquitinase Activity Profiling Identifies UCHL1 as a Candidate Oncoprotein That Promotes TGFÎ ² -Induced Breast Cancer Metastasis. Clinical Cancer Research, 2020, 26, 1460-1473.	7.0	92
16	Ubiquitin Phosphorylation at Thr12 Modulates the DNA Damage Response. Molecular Cell, 2020, 80, 423-436.e9.	9.7	38
17	Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587, 657-662.	27.8	818
18	Mechanism and inhibition of the papainâ€like protease, PLpro, of SARS oVâ€2. EMBO Journal, 2020, 39, e106275.	7.8	330

#	Article	IF	CITATIONS
19	Small-Molecule Activity-Based Probe for Monitoring Ubiquitin C-Terminal Hydrolase L1 (UCHL1) Activity in Live Cells and Zebrafish Embryos. Journal of the American Chemical Society, 2020, 142, 16825-16841.	13.7	46
20	Synthesis of Stable NAD + Mimics as Inhibitors for the Legionella pneumophila Phosphoribosyl Ubiquitylating Enzyme SdeC. ChemBioChem, 2020, 21, 2903-2907.	2.6	6
21	Sirtuin 1 Inhibiting Thiocyanates (S1th)—A New Class of Isotype Selective Inhibitors of NAD+ Dependent Lysine Deacetylases. Frontiers in Oncology, 2020, 10, 657.	2.8	19
22	Editorial: Probing the Ubiquitin Landscape. Frontiers in Chemistry, 2020, 8, 449.	3.6	2
23	Strategy for Development of Site-Specific Ubiquitin Antibodies. Frontiers in Chemistry, 2020, 8, 111.	3.6	7
24	Inhibition of transcription leads to rewiring of locus-specific chromatin proteomes. Genome Research, 2020, 30, 635-646.	5.5	10
25	Manno- <i>epi</i> -cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. Journal of the American Chemical Society, 2020, 142, 13021-13029.	13.7	24
26	Opportunities for Small Molecules in Cancer Immunotherapy. Trends in Immunology, 2020, 41, 493-511.	6.8	82
27	Small molecules that target the ubiquitin system. Biochemical Society Transactions, 2020, 48, 479-497.	3.4	31
28	Identification and characterization of diverse OTU deubiquitinases in bacteria. EMBO Journal, 2020, 39, e105127.	7.8	46
29	Cracking the Ubiquitin Code: The Ubiquitin Toolbox. Current Issues in Molecular Biology, 2020, 37, 1-20.	2.4	43
30	Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. ELife, 2020, 9, .	6.0	23
31	Production and Thermal Exchange of Conditional Peptideâ€MHC I Multimers. Current Protocols in Immunology, 2019, 126, e85.	3.6	13
32	Development of Ubiquitinâ€Based Probe for Metalloprotease Deubiquitinases. Angewandte Chemie - International Edition, 2019, 58, 14477-14482.	13.8	17
33	Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Frontiers in Molecular Biosciences, 2019, 6, 56.	3.5	19
34	Chemical Tools and Biochemical Assays for SUMO Specific Proteases (SENPs). ACS Chemical Biology, 2019, 14, 2389-2395.	3.4	14
35	DNP‣upported Solid‣tate NMR Spectroscopy of Proteins Inside Mammalian Cells. Angewandte Chemie, 2019, 131, 13103-13107.	2.0	29
36	Rücktitelbild: DNPâ€&upported Solidâ€&tate NMR Spectroscopy of Proteins Inside Mammalian Cells (Angew.)) Tj ETQq0	0 0 ₀ rgBT /Ove

#	Article	IF	CITATIONS
37	Development of Ubiquitinâ€Based Probe for Metalloprotease Deubiquitinases. Angewandte Chemie, 2019, 131, 14619-14624.	2.0	1
38	Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. PLoS Pathogens, 2019, 15, e1008086.	4.7	19
39	Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer's Disease Neurons. Cell Stem Cell, 2019, 24, 363-375.e9.	11.1	220
40	The Alkyne Moiety as a Latent Electrophile in Irreversible Covalent Small Molecule Inhibitors of Cathepsin K. Journal of the American Chemical Society, 2019, 141, 3507-3514.	13.7	72
41	DNPâ€Supported Solidâ€State NMR Spectroscopy of Proteins Inside Mammalian Cells. Angewandte Chemie - International Edition, 2019, 58, 12969-12973.	13.8	91
42	Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Journal of the American Chemical Society, 2019, 141, 8951-8968.	13.7	213
43	Homeostasis of soluble proteins and the proteasome post nuclear envelope reformation in mitosis. Journal of Cell Science, 2019, 132, .	2.0	5
44	Profiling DUBs and Ubl-specific proteases with activity-based probes. Methods in Enzymology, 2019, 618, 357-387.	1.0	10
45	Highlighting the Proteasome: Using Fluorescence to Visualize Proteasome Activity and Distribution. Frontiers in Molecular Biosciences, 2019, 6, 14.	3.5	23
46	USP7: combining tools towards selectivity. Chemical Communications, 2019, 55, 5075-5078.	4.1	16
47	USP32 regulates late endosomal transport and recycling through deubiquitylation of Rab7. Nature Communications, 2019, 10, 1454.	12.8	58
48	Synthetic ubiquitinated proteins meet the proteasome: Distinct roles of ubiquitin in a chain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7614-7616.	7.1	0
49	Total chemical synthesis of murine ISG15 and an activity-based probe with physiological binding properties. Organic and Biomolecular Chemistry, 2019, 17, 10148-10152.	2.8	10
50	Development of a DUB-selective fluorogenic substrate. Chemical Science, 2019, 10, 10290-10296.	7.4	20
51	SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock. Cell Reports, 2019, 26, 236-249.e4.	6.4	44
52	Kinetic analysis of multistep USP7 mechanism shows critical role for target protein in activity. Nature Communications, 2019, 10, 231.	12.8	25
53	Selective PKCδInhibitor B106 Elicits Uveal Melanoma Growth Inhibitory Effects Independent of Activated PKC Isoforms. ACS Chemical Biology, 2019, 14, 132-136.	3.4	4
54	Oneâ€Step Chemical Synthesis of Native Met1â€Linked Polyâ€Ubiquitin Chains. ChemBioChem, 2019, 20, 62-65.	. 2.6	2

#	Article	IF	CITATIONS
55	Diubiquitin-Based NMR Analysis: Interactions Between Lys6-Linked diUb and UBA Domain of UBXN1. Frontiers in Chemistry, 2019, 7, 921.	3.6	3
56	Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code. Frontiers in Chemistry, 2019, 7, 931.	3.6	37
57	A General Approach Towards Triazole‣inked Adenosine Diphosphate Ribosylated Peptides and Proteins. Angewandte Chemie, 2018, 130, 1675-1678.	2.0	4
58	A family of unconventional deubiquitinases with modular chain specificity determinants. Nature Communications, 2018, 9, 799.	12.8	108
59	Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Investigational New Drugs, 2018, 36, 797-809.	2.6	6
60	Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2371-2376.	7.1	68
61	A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. Journal of Experimental Medicine, 2018, 215, 1493-1504.	8.5	33
62	Proteome-wide identification of ubiquitin interactions using UbIA-MS. Nature Protocols, 2018, 13, 530-550.	12.0	454
63	Dynamic recruitment of ubiquitin to mutant huntingtin inclusion bodies. Scientific Reports, 2018, 8, 1405.	3.3	27
64	Inhibition of the Deubiquitinase Usp14 Diminishes Direct MHC Class I Antigen Presentation. Journal of Immunology, 2018, 200, 928-936.	0.8	12
65	Microwave-assisted diastereoselective two-step three-component synthesis for rapid access to drug-like libraries of substituted 3-amino-β-lactams. Bioorganic and Medicinal Chemistry, 2018, 26, 41-49.	3.0	8
66	Probing ubiquitin and SUMO conjugation and deconjugation. Biochemical Society Transactions, 2018, 46, 423-436.	3.4	20
67	SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nature Communications, 2018, 9, 1119.	12.8	41
68	A General Approach Towards Triazole‣inked Adenosine Diphosphate Ribosylated Peptides and Proteins. Angewandte Chemie - International Edition, 2018, 57, 1659-1662.	13.8	21
69	Generation of the UFM1 Toolkit for Profiling UFM1 pecific Proteases and Ligases. Angewandte Chemie, 2018, 130, 14360-14364.	2.0	5
70	Enhanced Delivery of Synthetic Labelled Ubiquitin into Live Cells by Using Nextâ€Generation Ub–TAT Conjugates. ChemBioChem, 2018, 19, 2553-2557.	2.6	18
71	How to Target Viral and Bacterial Effector Proteins Interfering with Ubiquitin Signaling. Current Topics in Microbiology and Immunology, 2018, 420, 111-130.	1.1	0
72	Generation of the UFM1 Toolkit for Profiling UFM1â€Specific Proteases and Ligases. Angewandte Chemie - International Edition, 2018, 57, 14164-14168.	13.8	22

#	Article	IF	CITATIONS
73	A MALDI-TOF Approach to Ubiquitin Ligase Activity. Cell Chemical Biology, 2018, 25, 1053-1055.	5.2	1
74	Dot1 promotes H2B ubiquitination by a methyltransferase-independent mechanism. Nucleic Acids Research, 2018, 46, 11251-11261.	14.5	24
75	Total Chemical Synthesis of SUMO and SUMOâ€Based Probes for Profiling the Activity of SUMOâ€5pecific Proteases. Angewandte Chemie - International Edition, 2018, 57, 8958-8962.	13.8	42
76	Total Chemical Synthesis of SUMO and SUMOâ€Based Probes for Profiling the Activity of SUMOâ€5pecific Proteases. Angewandte Chemie, 2018, 130, 9096-9100.	2.0	10
77	Creating molecules that modulate immune responses. Nature Reviews Chemistry, 2018, 2, 184-193.	30.2	14
78	Native chemical ligation at methionine bioisostere norleucine allows for N-terminal chemical protein ligation. Organic and Biomolecular Chemistry, 2018, 16, 6306-6315.	2.8	3
79	Why do proteases mess up with antigen presentation by re-shuffling antigen sequences?. Current Opinion in Immunology, 2018, 52, 81-86.	5.5	37
80	How Chemical Synthesis of Ubiquitin Conjugates Helps To Understand Ubiquitin Signal Transduction. Bioconjugate Chemistry, 2017, 28, 805-815.	3.6	24
81	<i>Mycobacterium tuberculosis</i> Proteasome Accessory Factor A (PafA) Can Transfer Prokaryotic Ubiquitin-Like Protein (Pup) between Substrates. MBio, 2017, 8, .	4.1	21
82	Structural basis of the specificity of USP18 toward ISG15. Nature Structural and Molecular Biology, 2017, 24, 270-278.	8.2	85
83	An Interaction Landscape of Ubiquitin Signaling. Molecular Cell, 2017, 65, 941-955.e8.	9.7	109
84	Advancing our Understanding of Ubiquitination Using the Ub-Toolkit. Journal of Molecular Biology, 2017, 429, 3388-3394.	4.2	19
85	Proteasome Activation by Small Molecules. Cell Chemical Biology, 2017, 24, 725-736.e7.	5.2	113
86	Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chemical Biology, 2017, 24, 443-457.e6.	5.2	37
87	An LC–MS/MS method for quantification of the active abiraterone metabolite Δ(4)-abiraterone (D4A) in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1068-1069, 119-124.	2.3	11
88	Release of Enzymatically Active Deubiquitinating Enzymes upon Reversible Capture by Disulfide Ubiquitin Reagents. Angewandte Chemie - International Edition, 2017, 56, 12967-12970.	13.8	37
89	A Fluorescence Polarization Activity-Based Protein Profiling Assay in the Discovery of Potent, Selective Inhibitors for Human Nonlysosomal Glucosylceramidase. Journal of the American Chemical Society, 2017, 139, 14192-14197.	13.7	50
90	Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7255-E7261.	7.1	132

#	Article	IF	CITATIONS
91	Synthesis of Poly-Ubiquitin Chains Using a Bifunctional Ubiquitin Monomer. Organic Letters, 2017, 19, 6490-6493.	4.6	21
92	Profiling the Activity of Deubiquitinating Enzymes Using Chemically Synthesized Ubiquitin-Based Probes. Methods in Molecular Biology, 2017, 1491, 113-130.	0.9	4
93	Tools to investigate the ubiquitin proteasome system. Drug Discovery Today: Technologies, 2017, 26, 25-31.	4.0	65
94	Identification of a novel ATM inhibitor with cancer cell specific radiosensitization activity. Oncotarget, 2017, 8, 73925-73937.	1.8	21
95	Release of Enzymatically Active Deubiquitinating Enzymes upon Reversible Capture by Disulfide Ubiquitin Reagents. Angewandte Chemie, 2017, 129, 13147-13150.	2.0	5
96	Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. Journal of Clinical Investigation, 2017, 127, 3609-3623.	8.2	35
97	Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease. Molecular Cell, 2016, 62, 572-585.	9.7	122
98	A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes. Nature Chemical Biology, 2016, 12, 523-530.	8.0	122
99	Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing. Vaccine, 2016, 34, 5132-5140.	3.8	9
100	Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature, 2016, 538, 402-405.	27.8	129
101	Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell, 2016, 166, 1198-1214.e24.	28.9	172
102	The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Molecular Cell, 2016, 63, 261-276.	9.7	119
103	Discovery of potent inhibitors of the lyso phospholipase autotaxin. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5403-5410.	2.2	24
104	Non-hydrolyzable Diubiquitin Probes Reveal Linkage-Specific Reactivity of Deubiquitylating Enzymes Mediated by S2 Pockets. Cell Chemical Biology, 2016, 23, 472-482.	5.2	90
105	Synthetic and semi-synthetic strategies to study ubiquitin signaling. Current Opinion in Structural Biology, 2016, 38, 92-101.	5.7	34
106	Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. Journal of Biological Chemistry, 2016, 291, 4813-4825.	3.4	20
107	Development of Diubiquitinâ€Based FRET Probes To Quantify Ubiquitin Linkage Specificity of Deubiquitinating Enzymes. ChemBioChem, 2016, 17, 816-820.	2.6	46
108	BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nature Communications, 2016, 7, 10292.	12.8	149

#	Article	IF	CITATIONS
109	Inhibition of Protein Ubiquitination by Paraquat and 1-Methyl-4-Phenylpyridinium Impairs Ubiquitin-Dependent Protein Degradation Pathways. Molecular Neurobiology, 2016, 53, 5229-5251.	4.0	32
110	Chemical Modification of Influenza CD8+ T-Cell Epitopes Enhances Their Immunogenicity Regardless of Immunodominance. PLoS ONE, 2016, 11, e0156462.	2.5	15
111	Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget, 2016, 7, 21527-21541.	1.8	32
112	Hitting the target. Nature Methods, 2015, 12, 1127-1128.	19.0	0
113	Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules. Journal of Immunology, 2015, 195, 4085-4095.	0.8	58
114	The first step of peptide selection in antigen presentation by MHC class I molecules. Proceedings of the United States of America, 2015, 112, 1505-1510.	7.1	85
115	SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochemical Journal, 2015, 468, 215-226.	3.7	60
116	An adenosine triphosphate-independent proteasome activator contributes to the virulence of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1763-72.	7.1	40
117	Peptide Splicing in the Proteasome Creates a Novel Type of Antigen with an Isopeptide Linkage. Journal of Immunology, 2015, 195, 4075-4084.	0.8	30
118	Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2. Molecular and Cellular Proteomics, 2015, 14, 2177-2193.	3.8	9
119	Mechanism of UCH-L5 Activation and Inhibition by DEUBAD Domains in RPN13 and INO80G. Molecular Cell, 2015, 57, 887-900.	9.7	99
120	Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Frontiers in Chemistry, 2014, 2, 15.	3.6	110
121	Altered Peptide Ligands Revisited: Vaccine Design through Chemically Modified HLA-A2–Restricted T Cell Epitopes. Journal of Immunology, 2014, 193, 4803-4813.	0.8	40
122	Epstein-Barr Virus Large Tegument Protein BPLF1 Contributes to Innate Immune Evasion through Interference with Toll-Like Receptor Signaling. PLoS Pathogens, 2014, 10, e1003960.	4.7	120
123	Editorial Overview: Molecular immunology: Targeting the immune system. Current Opinion in Chemical Biology, 2014, 23, v-vii.	6.1	0
124	Molecular characterization of ubiquitinâ€specific protease 18 reveals substrate specificity for interferonâ€stimulated gene 15. FEBS Journal, 2014, 281, 1918-1928.	4.7	48
125	A Native Chemical Ligation Handle that Enables the Synthesis of Advanced Activityâ€Based Probes: Diubiquitin as a Case Study. ChemBioChem, 2014, 15, 946-949.	2.6	83
126	Chemical biology of antigen presentation by MHC molecules. Current Opinion in Immunology, 2014, 26, 21-31.	5.5	28

#	Article	IF	CITATIONS
127	Catching a DUB in the act: novel ubiquitin-based active site directed probes. Current Opinion in Chemical Biology, 2014, 23, 63-70.	6.1	46
128	Integrating Chemical and Genetic Silencing Strategies To Identify Host Kinase-Phosphatase Inhibitor Networks That Control Bacterial Infection. ACS Chemical Biology, 2014, 9, 414-422.	3.4	11
129	How chemistry supports cell biology: the chemical toolbox at your service. Trends in Cell Biology, 2014, 24, 751-760.	7.9	30
130	Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies. FEBS Letters, 2014, 588, 151-159.	2.8	44
131	Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity, 2013, 39, 259-271.	14.3	248
132	OTU Deubiquitinases Reveal Mechanisms of Linkage Specificity and Enable Ubiquitin Chain Restriction Analysis. Cell, 2013, 154, 169-184.	28.9	470
133	Reactive glia show increased immunoproteasome activity in Alzheimer's disease. Brain, 2013, 136, 1415-1431.	7.6	130
134	A peptide's perspective on antigen presentation to the immune system. Nature Chemical Biology, 2013, 9, 769-775.	8.0	72
135	Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nature Communications, 2013, 4, 2656.	12.8	56
136	Scalable synthesis of Î ³ -thiolysine starting from lysine and a side by side comparison with δ-thiolysine in non-enzymatic ubiquitination. Chemical Science, 2013, 4, 4494.	7.4	41
137	Development of a Hypersensitive Periodateâ€Cleavable Amino Acid that is Methionine―and Disulfideâ€Compatible and its Application in MHC Exchange Reagents for T Cell Characterisation. ChemBioChem, 2013, 14, 123-131.	2.6	22
138	Control of Epithelial Cell Migration and Invasion by the IKKÎ ² - and CK1α-Mediated Degradation of RAPGEF2. Developmental Cell, 2013, 27, 574-585.	7.0	30
139	On Terminal Alkynes That Can React with Active-Site Cysteine Nucleophiles in Proteases. Journal of the American Chemical Society, 2013, 135, 2867-2870.	13.7	290
140	Necessity of Lysophosphatidic Acid Receptor 1 for Development of Arthritis. Arthritis and Rheumatism, 2013, 65, 2037-2047.	6.7	67
141	Target Specificity of the E3 Ligase LUBAC for Ubiquitin and NEMO Relies on Different Minimal Requirements. Journal of Biological Chemistry, 2013, 288, 31728-31737.	3.4	47
142	Improved Vaccine Design For Adoptive Immunotherapy In Hematological Malignancies Through Chemically Modified Minor Histocompatibility Antigen Epitopes. Blood, 2013, 122, 5435-5435.	1.4	0
143	Mycobacterium tuberculosis Prokaryotic Ubiquitin-like Protein-deconjugating Enzyme Is an Unusual Aspartate Amidase. Journal of Biological Chemistry, 2012, 287, 37522-37529.	3.4	20
144	Probing the Specificity and Activity Profiles of the Proteasome Inhibitors Bortezomib and Delanzomib. Molecular Pharmaceutics, 2012, 9, 1126-1135.	4.6	40

#	Article	IF	CITATIONS
145	Synthesis and Evaluation of a Selective Fluorogenic Pup Derived Assay Reagent for Dop, a Potential Drug Target in <i>Mycobacterium tuberculosis</i> . ChemBioChem, 2012, 13, 2056-2060.	2.6	14
146	Ubiquitinâ€Based Probes Prepared by Total Synthesis To Profile the Activity of Deubiquitinating Enzymes. ChemBioChem, 2012, 13, 2251-2258.	2.6	67
147	Ubiquitinâ€specific proteaseâ€like 1 (USPL1) is a SUMO isopeptidase with essential, nonâ€catalytic functions. EMBO Reports, 2012, 13, 930-938.	4.5	143
148	An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Nature Structural and Molecular Biology, 2012, 19, 62-71.	8.2	122
149	Chemical Evolution of Autotaxin Inhibitors. Chemical Reviews, 2012, 112, 2593-2603.	47.7	66
150	A General Chemical Ligation Approach Towards Isopeptideâ€Linked Ubiquitin and Ubiquitinâ€Like Assay Reagents. ChemBioChem, 2012, 13, 293-297.	2.6	86
151	Fluorescence-Based Proteasome Activity Profiling. Methods in Molecular Biology, 2012, 803, 183-204.	0.9	18
152	Synthesis of Atypical Diubiquitin Chains. Methods in Molecular Biology, 2012, 832, 597-609.	0.9	10
153	Structure-Based Design of Novel Boronic Acid-Based Inhibitors of Autotaxin. Journal of Medicinal Chemistry, 2011, 54, 4619-4626.	6.4	81
154	A Multifunctional Protease Inhibitor To Regulate Endolysosomal Function. ACS Chemical Biology, 2011, 6, 1198-1204.	3.4	19
155	A Genome-wide Multidimensional RNAi Screen Reveals Pathways Controlling MHC Class II Antigen Presentation. Cell, 2011, 145, 268-283.	28.9	151
156	Mechanism of USP7/HAUSP Activation by Its C-Terminal Ubiquitin-like Domain and Allosteric Regulation by GMP-Synthetase. Molecular Cell, 2011, 44, 147-159.	9.7	202
157	Structural basis of substrate discrimination and integrin binding by autotaxin. Nature Structural and Molecular Biology, 2011, 18, 198-204.	8.2	247
158	The Differential Modulation of USP Activity by Internal Regulatory Domains, Interactors and Eight Ubiquitin Chain Types. Chemistry and Biology, 2011, 18, 1550-1561.	6.0	184
159	A Modified Epigenetics Toolbox to Study Histone Modifications on the Nucleosome Core. ChemBioChem, 2011, 12, 308-313.	2.6	17
160	Drug discovery and assay development in the ubiquitin–proteasome system. Biochemical Society Transactions, 2010, 38, 14-20.	3.4	19
161	Development of an Activityâ€Based Probe for Autotaxin. ChemBioChem, 2010, 11, 2311-2317.	2.6	11
162	Chemical Synthesis of Ubiquitin, Ubiquitinâ€Based Probes, and Diubiquitin. Angewandte Chemie - International Edition, 2010, 49, 10149-10153.	13.8	287

#	Article	IF	CITATIONS
163	Technologies for MHC class I immunoproteomics. Journal of Proteomics, 2010, 73, 1945-1953.	2.4	14
164	Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7257-7262.	7.1	182
165	Recombination-induced tag exchange to track old and new proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 64-68.	7.1	92
166	Nonhydrolyzable Ubiquitinâ^'Isopeptide Isosteres as Deubiquitinating Enzyme Probes Journal of the American Chemical Society, 2010, 132, 8834-8835.	13.7	67
167	Discovery and Optimization of Boronic Acid Based Inhibitors of Autotaxin. Journal of Medicinal Chemistry, 2010, 53, 4958-4967.	6.4	65
168	Quantifying cross-tissue diversity in proteasome complexes by mass spectrometry. Molecular BioSystems, 2010, 6, 1450.	2.9	22
169	Intermediate filament transcription in astrocytes is repressed by proteasome inhibition. FASEB Journal, 2009, 23, 2710-2726.	0.5	36
170	Generation of Peptide MHC Class I Monomers and Multimers Through Ligand Exchange. Current Protocols in Immunology, 2009, 87, Unit 18.16.	3.6	41
171	Class I Major Histocompatibility Complexes Loaded by a Periodate Trigger. Journal of the American Chemical Society, 2009, 131, 12305-12313.	13.7	27
172	UV-Induced Ligand Exchange in MHC Class I Protein Crystals. Journal of the American Chemical Society, 2009, 131, 12298-12304.	13.7	34
173	High-Throughput T-Cell Epitope Discovery Through MHC Peptide Exchange. Methods in Molecular Biology, 2009, 524, 383-405.	0.9	52
174	Chemical Biology Approaches to Probe the Proteome. ChemBioChem, 2008, 9, 2913-2919.	2.6	12
175	Ritonavir induces endoplasmic reticulum stress and sensitizes sarcoma cells toward bortezomib-induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 1940-1948.	4.1	64
176	Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3825-3830.	7.1	150
177	Automated Online Sequential Isotope Labeling for Protein Quantitation Applied to Proteasome Tissue-specific Diversity. Molecular and Cellular Proteomics, 2008, 7, 1755-1762.	3.8	66
178	CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood, 2008, 111, 2765-2775.	1.4	239
179	Bcr-Abl Positive Cells Display Increased Proteasome Activity and Greater Sensitivity to Proteasome Inhibition. Blood, 2008, 112, 3192-3192.	1.4	0
180	DUBs and disease: activity assays for inhibitor development. Current Opinion in Drug Discovery & Development, 2008, 11, 688-96.	1.9	17

#	Article	IF	CITATIONS
181	The Deubiquitinating Enzyme UCH-L3 Regulates the Apical Membrane Recycling of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2007, 282, 37885-37893.	3.4	104
182	Disease-Associated Prion Protein Oligomers Inhibit the 26S Proteasome. Molecular Cell, 2007, 26, 175-188.	9.7	237
183	Profiling Proteasome Activity in Tissue with Fluorescent Probes. Molecular Pharmaceutics, 2007, 4, 739-748.	4.6	78
184	Active-site directed probes to report enzymatic action in the ubiquitin proteasome system. Nature Reviews Cancer, 2007, 7, 613-620.	28.4	39
185	Two Novel Ubiquitin-fold Modifier 1 (Ufm1)-specific Proteases, UfSP1 and UfSP2. Journal of Biological Chemistry, 2007, 282, 5256-5262.	3.4	135
186	Identification and characterization of Ufm1â€specific proteases, UfSP1 and UfSP2. FASEB Journal, 2007, 21, A1020.	0.5	0
187	Endosomal deubiquitinating enzyme (DUB) regulates apical recycling of epithelial Na + channels (ENaC). FASEB Journal, 2007, 21, A536.	0.5	0
188	Ubiquitin proteasome system as a pharmacological target in neurodegeneration. Expert Review of Neurotherapeutics, 2006, 6, 1337-1347.	2.8	26
189	Design and use of conditional MHC class I ligands. Nature Medicine, 2006, 12, 246-251.	30.7	304
190	Generation of peptide–MHC class I complexes through UV-mediated ligand exchange. Nature Protocols, 2006, 1, 1120-1132.	12.0	293
191	A Fluorescent Broad-Spectrum Proteasome Inhibitor for Labeling Proteasomes In Vitro and In Vivo. Chemistry and Biology, 2006, 13, 1217-1226.	6.0	168
192	Crystal Structure of the Boronic Acid-Based Proteasome Inhibitor Bortezomib in Complex with the Yeast 20S Proteasome. Structure, 2006, 14, 451-456.	3.3	431
193	Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Molecular Carcinogenesis, 2006, 45, 260-269.	2.7	103
194	Distinct Dynamic Profiles for NPI-0052-And Bortezomib-Induced Apoptosis in Multiple Myeloma Blood, 2006, 108, 3396-3396.	1.4	2
195	Activity probe for in vivo profiling of the specificity of proteasome inhibitor bortezomib. Nature Methods, 2005, 2, 357-362.	19.0	230
196	A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell, 2005, 8, 407-419.	16.8	673
197	Small-Molecule Inhibitors and Probes for Ubiquitin- and Ubiquitin-Like-Specific Proteases. ChemBioChem, 2005, 6, 287-291.	2.6	82
198	Mechanismâ€Based Proteomics Tools Based on Ubiquitin and Ubiquitinâ€Like Proteins: Synthesis of Active Siteâ€Directed Probes. Methods in Enzymology, 2005, 399, 468-478.	1.0	14

#	Article	IF	CITATIONS
199	Structure of the Ubiquitin Hydrolase UCH-L3 Complexed with a Suicide Substrate. Journal of Biological Chemistry, 2005, 280, 1512-1520.	3.4	166
200	In Vitro and In Vivo Proteasome Activity Profiles of Bortezomib and a Novel Proteasome Inhibitor NPI-0052 Blood, 2005, 106, 3363-3363.	1.4	1
201	Evaluation of the Specificity and Cytotoxicity of Three Proteasome Inhibitors Blood, 2005, 106, 3366-3366.	1.4	36
202	Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2253-2258.	7.1	191
203	Specific and Covalent Targeting of Conjugating and Deconjugating Enzymes of Ubiquitin-Like Proteins. Molecular and Cellular Biology, 2004, 24, 84-95.	2.3	184
204	Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-ÂB activation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4566-4571.	7.1	218
205	Chemistry-Based Functional Proteomics:Â Mechanism-Based Activity-Profiling Tools for Ubiquitin and Ubiquitin-like Specific Proteases. Journal of Proteome Research, 2004, 3, 268-276.	3.7	76
206	Applications for Chemical Probes of Proteolytic Activity. Current Protocols in Protein Science, 2004, 36, Unit 21.17.	2.8	6
207	Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochemical Journal, 2004, 378, 727-734.	3.7	214
208	Chemistry in Living Cells: Detection of Active Proteasomes by a Two-Step Labeling Strategy. Angewandte Chemie - International Edition, 2003, 42, 3626-3629.	13.8	158
209	Chemistry-Based Functional Proteomics Reveals Novel Members of the Deubiquitinating Enzyme Family. Chemistry and Biology, 2002, 9, 1149-1159.	6.0	533
210	Dissecting Intracellular Proteolysis Using Small Molecule Inhibitors and Molecular Probes. , 0, , 51-78.		0