
Flurin D Eisner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/242687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emissive Chargeâ€Transfer States at Hybrid Inorganic/Organic Heterojunctions Enable Low Nonâ€Radiative Recombination and Highâ€Performance Photodetectors. Advanced Materials, 2022, 34, e2104654.	21.0	13
2	Reconciling models of interfacial state kinetics and device performance in organic solar cells: impact of the energy offsets on the power conversion efficiency. Energy and Environmental Science, 2022, 15, 1256-1270.	30.8	21
3	Near-IR Absorbing Molecular Semiconductors Incorporating Cyanated Benzothiadiazole Acceptors for High-Performance Semitransparent n-Type Organic Field-Effect Transistors. , 2022, 4, 165-174.		12
4	Relationship between molecular properties and degradation mechanisms of organic solar cells based on bis-adducts of phenyl-C ₆₁ butyric acid methyl ester. Journal of Materials Chemistry C, 2022, 10, 7875-7885.	5.5	2
5	Identifying structure–absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics. Energy and Environmental Science, 2022, 15, 2958-2973.	30.8	22
6	Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics. Nature Communications, 2021, 12, 3642.	12.8	41
7	Barrierless charge generation at non-fullerene organic heterojunctions comes at a cost. Joule, 2021, 5, 1319-1322.	24.0	10
8	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2021, 60, 19679-19684.	13.8	29
9	Influence of Backbone Curvature on the Organic Electrochemical Transistor Performance of Glycolated Donor–Acceptor Conjugated Polymers. Angewandte Chemie, 2021, 133, 19831-19836.	2.0	2
10	Color-tunable hybrid heterojunctions as semi-transparent photovoltaic windows for photoelectrochemical water splitting. Cell Reports Physical Science, 2021, 2, 100676.	5.6	3
11	Ring fusion in tetrathienylethene cored perylene diimide tetramers affords acceptors with strong and broad absorption in the near-UV to visible region. Journal of Materials Chemistry C, 2020, 8, 17237-17244.	5.5	13
12	Correlating the Phase Behavior with the Device Performance in Binary Poly-3-hexylthiophene: Nonfullerene Acceptor Blend Using Optical Probes of the Microstructure. Chemistry of Materials, 2020, 32, 8294-8305.	6.7	21
13	Colloidal Quantum Dot Photovoltaics Using Ultrathin, Solution-Processed Bilayer In ₂ O ₃ /ZnO Electron Transport Layers with Improved Stability. ACS Applied Energy Materials, 2020, 3, 5135-5141.	5.1	13
14	Overcoming the Limitations of Transient Photovoltage Measurements for Studying Recombination in Organic Solar Cells. Solar Rrl, 2020, 4, 1900581.	5.8	38
15	Crucial Role of Fluorine in Fully Alkylated Ladder-Type Carbazole-Based Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 9555-9562.	8.0	31
16	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Shortâ€Circuit Current and High Efficiency >11% in Asâ€Cast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1904956.	14.9	26
17	Highly-efficient semi-transparent organic solar cells utilising non-fullerene acceptors with optimised multilayer MoO ₃ /Ag/MoO ₃ electrodes. Materials Chemistry Frontiers, 2019, 3, 450-455.	5.9	40
18	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. Journal of the American Chemical Society, 2019, 141, 6362-6374.	13.7	307

FLURIN D EISNER

#	Article	IF	CITATIONS
19	Charge and Triplet Exciton Generation in Neat PC ₇₀ BM Films and Hybrid CuSCN:PC ₇₀ BM Solar Cells. Advanced Energy Materials, 2019, 9, 1802476.	19.5	20
20	Highâ€Efficiency Fullerene Solar Cells Enabled by a Spontaneously Formed Mesostructured CuSCNâ€Nanowire Heterointerface. Advanced Science, 2018, 5, 1700980.	11.2	19
21	An Alkylated Indacenodithieno[3,2â€ <i>b</i>]thiopheneâ€Based Nonfullerene Acceptor with High Crystallinity Exhibiting Single Junction Solar Cell Efficiencies Greater than 13% with Low Voltage Losses. Advanced Materials, 2018, 30, 1705209.	21.0	474
22	Charge Photogeneration and Recombination in Mesostructured CuSCNâ€Nanowire/PC ₇₀ BM Solar Cells. Solar Rrl, 2018, 2, 1800095.	5.8	9
23	Solutionâ€Processed In ₂ O ₃ /ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantumâ€Dot Solar Cells. Solar Rrl, 2018, 2, 1800076.	5.8	34
24	Probing and Controlling Intragrain Crystallinity for Improved Low Temperature–Processed Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1803943.	14.9	18
25	pâ€Doping of Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers for Highâ€Performance Transistors and Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802055.	14.9	50
26	Copper(I) Thiocyanate (CuSCN) Holeâ€Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thinâ€Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Advanced Functional Materials, 2017, 27, 1701818.	14.9	208
27	Density of Deep Trap States in Oriented TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2014, 118, 18207-18213.	3.1	73
28	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. , 0, , .		0
29	Relating Microstructure Behaviour to Charge Transfer States Properties and Energy Losses in Organic Bulk Heterojunction Solar Cells. , 0, , .		Ο
30	Hybridization of Local Exciton and Charge-Transfer States Reduces Nonradiative Voltage Losses in Organic Solar Cells. , 0, , .		0
31	Relating Microstructure Behaviour to Charge Transfer States Properties and Energy Losses in Organic Bulk Heterojunction Solar Cells. , 0, , .		0
32	Luminescence as a probe of energetics, microstructure and charge dynamics at molecular heterojunctions. , 0, , .		0