List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2426503/publications.pdf Version: 2024-02-01

ΑΝΕΤΑ ΜΟΙΟΥΑ Ο

#	Article	IF	CITATIONS
1	Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 2007, 105, 940-949.	8.2	1,398
2	Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. Journal of Agricultural and Food Chemistry, 2008, 56, 6520-6530.	5.2	314
3	Effect of Convective and Vacuum–Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food and Bioprocess Technology, 2014, 7, 829-841.	4.7	303
4	Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. Journal of Agricultural and Food Chemistry, 2009, 57, 1337-1343.	5.2	281
5	Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. Journal of Functional Foods, 2015, 14, 736-746.	3.4	152
6	Polyphenolic Composition, Antioxidant Activity, and Polyphenol Oxidase (PPO) Activity of Quince (Cydonia oblonga Miller) Varieties. Journal of Agricultural and Food Chemistry, 2013, 61, 2762-2772.	5.2	143
7	The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 2016, 66, 484-489.	5.2	131
8	Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (<i>Hippophaë) Tj ETQq</i>	0 0 0 rgBT 5.2	Overlock 10
9	Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chemistry, 2013, 141, 3889-3896.	8.2	122
10	Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chemistry, 2016, 207, 170-179.	8.2	116
11	Phytochemical compounds and biological effects of Actinidia fruits. Journal of Functional Foods, 2017, 30, 194-202.	3.4	115
12	Phenolic composition, ascorbic acid content, and antioxidant capacity of Spanish jujube (Ziziphus) Tj ETQq0 0 0	rgBT_/Ove 8.2	rlock 10 Tf 50 107
13	Identification and Characterization of Low Molecular Weight Polyphenols in Berry Leaf Extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 2011, 59, 12830-12835.	5.2	102
14	Phenolic compounds, antioxidant and antidiabetic activity of different cultivars of Ficus carica L. fruits. Journal of Functional Foods, 2016, 25, 421-432.	3.4	102
15	Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry, 2016, 207, 223-232.	8.2	102

16	Evaluation of Sour Cherry (<i>Prunus cerasus</i> L.) Fruits for Their Polyphenol Content, Antioxidant Properties, and Nutritional Components. Journal of Agricultural and Food Chemistry, 2014, 62, 12332-12345.	5.2	100
17	Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. European Food Research and Technology, 2009, 228, 623-631.	3.3	97
18	Antioxidant activity of the phenolic compounds of hawthorn, pine and skullcap. Food Chemistry, 2007, 103, 853-859.	8.2	94

2

#	Article	IF	Citations
19	Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (<i>Ziziphus jujuba</i> Mill.) fruits. Journal of the Science of Food and Agriculture, 2016, 96, 2682-2691.	3.5	89
20	Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food and Bioprocess Technology, 2014, 7, 975-989.	4.7	87
21	Drying of Garlic Slices Using Convective Pre-drying and Vacuum-Microwave Finishing Drying: Kinetics, Energy Consumption, and Quality Studies. Food and Bioprocess Technology, 2014, 7, 398-408.	4.7	87
22	Antioxidant Activity and Protein–Polyphenol Interactions in a Pomegranate (<i>Punica granatum</i>) Tj ETQq() 0 0 rgBT 5.2	/Overlock 10
23	Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 2018, 48, 632-642.	3.4	86
24	Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry, 2008, 107, 1473-1484.	8.2	85
25	Effect of pectinase treatment on extraction of antioxidant phenols from pomace, for the production of puree-enriched cloudy apple juices. Food Chemistry, 2011, 127, 623-631.	8.2	77
26	Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. Journal of Functional Foods, 2016, 25, 397-407.	3.4	67
27	Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. International Journal of Molecular Sciences, 2015, 16, 14540-14553.	4.1	66
28	Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophaë rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants, 2019, 8, 618.	5.1	66
29	Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chemistry, 2020, 332, 127382.	8.2	63
30	Effect of l-ascorbic acid, sugar, pectin and freeze–thaw treatment on polyphenol content of frozen strawberries. LWT - Food Science and Technology, 2009, 42, 581-586.	5.2	62
31	Variability of Phytochemical Properties and Content of Bioactive Compounds in Lonicera caerulea L. var. <i>kamtschatica</i> Berries. Journal of Agricultural and Food Chemistry, 2013, 61, 12072-12084.	5.2	61
32	Effect of different drying techniques on physical properties, total polyphenols and antioxidant capacity of blackcurrant pomace powders. LWT - Food Science and Technology, 2017, 78, 114-121.	5.2	61
33	Phenolic composition, physicochemical properties and antioxidant activity of interspecific hybrids of grapes growing in Poland. Food Chemistry, 2017, 215, 263-273.	8.2	61

34	Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In vitro Bioactive Properties. Molecules, 2020, 25, 4648.	3.8	60
35	Application of ultra performance liquid chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method for the characterization of phenolic compounds of Lepidium sativum L. sprouts. European Food Research and Technology, 2013, 236, 699-706.	3.3	58

36Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers.
Antioxidants, 2019, 8, 308.5.155

#	Article	IF	CITATIONS
37	Identification and quantification of major derivatives of ellagic acid and antioxidant properties of thinning and ripe Spanish pomegranates. Journal of Functional Foods, 2015, 12, 354-364.	3.4	53
38	Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT - Food Science and Technology, 2016, 67, 214-222.	5.2	53
39	Antioxidant Activity Modulated by Polyphenol Contents in Apple and Leaves during Fruit Development and Ripening. Antioxidants, 2020, 9, 567.	5.1	53
40	Determination of Phenolic Compounds and Antioxidant Activity in Leaves from Wild Rubus L. Species. Molecules, 2015, 20, 4951-4966.	3.8	52
41	Effects of various clarification treatments on phenolic compounds and color of apple juice. European Food Research and Technology, 2007, 224, 755-762.	3.3	51
42	Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley. Food Chemistry, 2017, 226, 179-186.	8.2	50
43	Drying-induced physico-chemical changes in cranberry products. Food Chemistry, 2018, 240, 448-455.	8.2	50
44	Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chemistry, 2019, 271, 216-223.	8.2	50
45	Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chemistry, 2018, 255, 157-164.	8.2	49
46	Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits. Food and Bioprocess Technology, 2015, 8, 824-836.	4.7	48
47	Drying Kinetics and Bioactivity of Beetroot Slices Pretreated in Concentrated Chokeberry Juice and Dried with Vacuum Microwaves. Drying Technology, 2015, 33, 1644-1653.	3.1	48
48	Antioxidant property and storage stability of quince juice phenolic compounds. Food Chemistry, 2014, 152, 261-270.	8.2	47
49	The Content of Phenolic Compounds in Leaf Tissues of White (Aesculus hippocastanum L.) and Red Horse Chestnut (Aesculus carea H.) Colonized by the Horse Chestnut Leaf Miner (Cameraria ohridella) Tj ETQq1	1 03788431	l4 rgBT /Overi
50	Influence of osmotic dehydration pre-treatment and combined drying method on physico-chemical and sensory properties of pomegranate arils, cultivar Mollar de Elche. Food Chemistry, 2017, 232, 306-315.	8.2	46
51	Comparison of bioactive potential of cranberry fruit and fruit-based products versus leaves. Journal of Functional Foods, 2016, 22, 232-242.	3.4	44
52	Effect of different pre-treatment maceration techniques on the content of phenolic compounds and color of Dornfelder wines elaborated in cold climate. Food Chemistry, 2021, 339, 127888.	8.2	44
53	Principal component analysis (PCA) of physicochemical compounds' content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. European Food Research and Technology, 2019, 245, 929-938.	3.3	43
54	Effect of l-ascorbic acid addition on quality, polyphenolic compounds and antioxidant capacity of cloudy apple juices. European Food Research and Technology, 2013, 236, 777-798.	3.3	42

#	Article	IF	CITATIONS
55	Effects of microwave roasting on physicochemical properties of pistachios (Pistaciavera L.). Food Science and Biotechnology, 2015, 24, 1995-2001.	2.6	42
56	UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chemistry, 2020, 309, 125766.	8.2	42
57	Antidiabetic, Anticholinesterase and Antioxidant Activity vs. Terpenoids and Phenolic Compounds in Selected New Cultivars and Hybrids of Artichoke Cynara scolymus L Molecules, 2019, 24, 1222.	3.8	41
58	Characterization and Content of Flavonol Derivatives of Allium ursinum L. Plant. Journal of Agricultural and Food Chemistry, 2013, 61, 176-184.	5.2	39
59	1-Methylcyclopropene postharvest treatment and their effect on apple quality during long-term storage time. European Food Research and Technology, 2014, 239, 603-612.	3.3	39
60	The effect of addition of chokeberry, flowering quince fruits and rhubarb juice to strawberry jams on their polyphenol content, antioxidant activity and colour. European Food Research and Technology, 2008, 227, 1043-1051.	3.3	38
61	Inhibitory Potential against Digestive Enzymes Linked to Obesity and Type 2 Diabetes and Content of Bioactive Compounds in 20 Cultivars of the Peach Fruit Grown in Poland. Plant Foods for Human Nutrition, 2018, 73, 314-320.	3.2	38
62	Effects of blackcurrant and apple mash blending on the phenolics contents, antioxidant capacity, and colour of juices. Czech Journal of Food Sciences, 2009, 27, 338-351.	1.2	36
63	Polyphenol Compounds and Biological Activity of Caper (Capparis spinosa L.) Flowers Buds. Plants, 2019, 8, 539.	3.5	36
64	Volatile and polyphenol composition, anti-oxidant, anti-diabetic and anti-aging properties, and drying kinetics as affected by convective and hybrid vacuum microwave drying of Rosmarinus officinalis L. Industrial Crops and Products, 2020, 151, 112463.	5.2	36
65	Quality Parameters and Consumer Acceptance of Jelly Candies Based on Pomegranate Juice "Mollar de Elche― Foods, 2020, 9, 516.	4.3	36
66	Bioactive compound composition of pomegranate fruits removed during thinning. Journal of Food Composition and Analysis, 2015, 37, 11-19.	3.9	35
67	Influence of Different Drying Techniques on Phenolic Compounds, Antioxidant Capacity and Colour of Ziziphus jujube Mill. Fruits. Molecules, 2019, 24, 2361.	3.8	35
68	Anti-diabetic, anti-cholinesterase, and antioxidant potential, chemical composition and sensory evaluation of novel sea buckthorn-based smoothies. Food Chemistry, 2021, 338, 128105.	8.2	35
69	Stability of phenolic compounds, antioxidant activity and colour through natural sweeteners addition during storage of sour cherry puree. Food Chemistry, 2016, 196, 925-934.	8.2	34
70	Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC–PDA–ESI-MS QTof. Food Chemistry, 2018, 239, 94-101.	8.2	34
71	Phenolic compounds and antioxidant activity of twelve grape cultivars measured by chemical and electrochemical methods. European Food Research and Technology, 2018, 244, 1933-1943.	3.3	34
72	Characterisation of the Convective Hot-Air Drying and Vacuum Microwave Drying of Cassia alata: Antioxidant Activity, Essential Oil Volatile Composition and Quality Studies. Molecules, 2019, 24, 1625.	3.8	34

#	Article	IF	CITATIONS
73	The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. Journal of Food Composition and Analysis, 2016, 47, 69-75.	3.9	33
74	Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. European Food Research and Technology, 2019, 245, 1123-1136.	3.3	33
75	Chemical Composition, Antioxidant Capacity, and Sensory Quality of Dried Sour Cherry Fruits pre-Dehydrated in Fruit Concentrates. Food and Bioprocess Technology, 2015, 8, 2076-2095.	4.7	31
76	Antioxidant Activity, and Volatile and Phytosterol Contents of Strobilanthes crispus Dehydrated Using Conventional and Vacuum Microwave Drying Methods. Molecules, 2019, 24, 1397.	3.8	31
77	Comparison of bioactive compounds and health promoting properties of fruits and leaves of apple, pear and quince. Scientific Reports, 2021, 11, 20253.	3.3	31
78	Triterpenoids, phenolic compounds, macro- and microelements in anatomical parts of sea buckthorn (Hippophaë rhamnoides L.) berries, branches and leaves. Journal of Food Composition and Analysis, 2021, 103, 104107.	3.9	30
79	Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. Journal of Functional Foods, 2019, 56, 353-363.	3.4	29
80	The influence of physical properties of selected plant materials on the process of osmotic dehydration. LWT - Food Science and Technology, 2018, 91, 588-594.	5.2	28
81	Composition and quantification of major polyphenolic compounds, antioxidant activity and colour properties of quince and mixed quince jams. International Journal of Food Sciences and Nutrition, 2013, 64, 749-756.	2.8	27
82	Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations. International Journal of Molecular Sciences, 2017, 18, 176.	4.1	27
83	Effect of cultivar and storage temperature on identification and stability of polyphenols in strawberry cloudy juices. Journal of Food Composition and Analysis, 2016, 54, 10-19.	3.9	26
84	Anthocyanins decay in pomegranate enriched fermented milks as a function of bacterial strain and processing conditions. LWT - Food Science and Technology, 2017, 80, 193-199.	5.2	26
85	Functional relationships between phytochemicals and drying conditions during the processing of blackcurrant pomace into powders. Advanced Powder Technology, 2017, 28, 1340-1348.	4.1	26
86	Influence of different drying methods on the quality of Japanese quince fruit. LWT - Food Science and Technology, 2019, 114, 108416.	5.2	26
87	Effect of Different Yeast Strains and Temperature of Fermentation on Basic Enological Parameters, Polyphenols and Volatile Compounds of Aurore White Wine. Foods, 2019, 8, 599.	4.3	26
88	Influence Carrier Agents, Drying Methods, Storage Time on Physico-Chemical Properties and Bioactive Potential of Encapsulated Sea Buckthorn Juice Powders. Molecules, 2020, 25, 3801.	3.8	25
89	The influence of different carrier agents and drying techniques on physical and chemical characterization of Japanese quince (Chaenomeles japonica) microencapsulation powder. Food Chemistry, 2020, 323, 126830.	8.2	25
90	ABTS On-Line Antioxidant, α-Amylase, α-Glucosidase, Pancreatic Lipase, Acetyl- and Butyrylcholinesterase Inhibition Activity of Chaenomeles Fruits Determined by Polyphenols and other Chemical Compounds. Antioxidants, 2020, 9, 60.	5.1	24

#	Article	IF	CITATIONS
91	Sensory attributes and changes of physicochemical properties during storage of smoothies prepared from selected fruit. LWT - Food Science and Technology, 2016, 71, 102-109.	5.2	23
92	Bioactive compounds vs. organoleptic assessment of â€~smoothies'â€ŧype products prepared from selected fruit species. International Journal of Food Science and Technology, 2014, 49, 98-106.	2.7	22
93	The effects of enzymatic pre-treatment and type of yeast on chemical properties of white wine. LWT - Food Science and Technology, 2017, 79, 445-453.	5.2	22
94	The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution. Molecules, 2017, 22, 2246.	3.8	22
95	Functional and sensory properties of pistachio nuts as affected by cultivar. Journal of the Science of Food and Agriculture, 2019, 99, 6696-6705.	3.5	22
96	UPLC-PDA-Q/TOF-MS identification of bioactive compounds and on-line UPLC-ABTS assay in Fallopia japonica Houtt and Fallopia sachalinensis (F.Schmidt) leaves and rhizomes grown in Poland. European Food Research and Technology, 2019, 245, 691-706.	3.3	22
97	Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods, 2021, 10, 808.	4.3	22
98	Effect of apple leaves addition on physicochemical properties of cloudy beverages. Industrial Crops and Products, 2013, 44, 413-420.	5.2	21
99	Phenolic and triterpenoid composition and inhibition of α-amylase of pistachio kernels (Pistacia vera) Tj ETQq1 1	0,784314 8.2	l rgβT /Overl
100	Characterization of Phenolic Compounds and Antioxidant Activity of Solanum scabrum and Solanum burbankii Berries. Journal of Agricultural and Food Chemistry, 2014, 62, 1512-1519.	5.2	20
101	Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. Journal of Food Composition and Analysis, 2020, 93, 103608.	3.9	20
102	The Influence of Inulin on the Retention of Polyphenolic Compounds during the Drying of Blackcurrant Juice. Molecules, 2019, 24, 4167.	3.8	19
103	Postharvest changes in phenolic compounds and antioxidant capacity of apples cv. Jonagold growing in different locations in Europe. Food Chemistry, 2020, 310, 125912.	8.2	19
104	Osmotic Dehydration as a Pretreatment Modulating the Physicochemical and Biological Properties of the Japanese Quince Fruit Dried by the Convective and Vacuum-Microwave Method. Food and Bioprocess Technology, 2020, 13, 1801-1816.	4.7	19
105	Fruit tree leaves as unconventional and valuable source of chlorophyll and carotenoid compounds determined by liquid chromatography-photodiode-quadrupole/time of flight-electrospray ionization-mass spectrometry (LC-PDA-qTof-ESI-MS). Food Chemistry, 2021, 349, 129156.	8.2	19
106	The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum-Microwave Drying of Pumpkin. Journal of Food Quality, 2018, 2018, 1-11.	2.6	18
107	Drying of Phyla nodiflora Leaves: Antioxidant Activity, Volatile and Phytosterol Content, Energy Consumption, and Quality Studies. Processes, 2019, 7, 210.	2.8	18
108	Analysis of chemical compounds' content in different varieties of carrots, including qualification and quantification of sugars, organic acids, minerals, and bioactive compounds by UPLC. European Food Research and Technology, 2021, 247, 3053-3062.	3.3	18

#	Article	IF	CITATIONS
109	Profiling of polyphenols by LC-QTOF/ESI-MS, characteristics of nutritional compounds and in vitro effect on pancreatic lipase, î±-glucosidase, î±-amylase, cholinesterase and cyclooxygenase activities of sweet (Prunus avium) and sour (P. cerasus) cherries leaves and fruits. Industrial Crops and Products, 2021, 174, 114214.	5.2	18
110	Technological aspects as the main impact on quality of quince liquors. Food Chemistry, 2015, 167, 387-395.	8.2	17
111	The effects of flash release conditions on the phenolic compounds and antioxidant activity of Pinot noir red wine. European Food Research and Technology, 2017, 243, 999-1007.	3.3	17
112	The Influence of Maltodextrin and Inulin on the Physico-Chemical Properties of Cranberry Juice Powders. ChemEngineering, 2020, 4, 12.	2.4	17
113	The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples. Drying Technology, 2021, 39, 1074-1086.	3.1	17
114	Polyphenol content and antioxidative activity in apple purées with rhubarb juice supplement. International Journal of Food Science and Technology, 2008, 43, 501-509.	2.7	16
115	Physicochemical characterisation of quince fruits for industrial use: yield, turbidity, viscosity and colour properties of juices. International Journal of Food Science and Technology, 2014, 49, 1818-1824.	2.7	16
116	Phytochemical composition of smoothies combining pomegranate juice (<i>Punica granatum</i> L) and Mediterranean minor crop purées (<i>Ficus carica</i> , <i>Cydonia oblonga</i> , and <i>Ziziphus) Tj ETQq0 (</i>	0 rg\$8.75 /Ov	erlaadk 10 Tf 5
117	Hybrid Drying of Murraya koenigii Leaves: Energy Consumption, Antioxidant Capacity, Profiling of Volatile Compounds and Quality Studies. Processes, 2020, 8, 240.	2.8	16
118	Profile of Phenolic Compounds of Prunus armeniaca L. Leaf Extract Determined by LC-ESI-QTOF-MS/MS and Their Antioxidant, Anti-Diabetic, Anti-Cholinesterase, and Anti-Inflammatory Potency. Antioxidants, 2021, 10, 1869.	5.1	16
119	Influence of cherry leaf-spot on changes in the content of phenolic compounds in sour cherry (Prunus cerasus L.) leaves. Physiological and Molecular Plant Pathology, 2014, 86, 28-34.	2.5	15
120	Degradation Kinetics of Anthocyanins in Sour Cherry Cloudy Juices at Different Storage Temperature. Processes, 2019, 7, 367.	2.8	15
121	Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants, 2020, 9, 78.	3.5	15
122	Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen. Physiological and Molecular Plant Pathology, 2015, 91, 113-119.	2.5	14
123	Quality of pomegranate pomace as affected by drying method. Journal of Food Science and Technology, 2018, 55, 1074-1082.	2.8	14
124	How a Spanish Group of Millennial Generation Perceives the Commercial Novel Smoothies?. Foods, 2020, 9, 1213.	4.3	14
125	Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules, 2020, 25, 5521.	3.8	13
126	The influence of different strains of <i>Oenococcus oeni</i> malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. Journal of Food Science, 2020, 85, 1070-1081.	3.1	13

#	Article	IF	CITATIONS
127	Utilisation of soybean post-production waste in single- and double-layered films based on furcellaran to obtain packaging materials for food products prone to oxidation. Food Chemistry, 2022, 387, 132883.	8.2	13
128	Bioactive compounds and sensory attributes of sour cherry puree sweetened with natural sweeteners. International Journal of Food Science and Technology, 2015, 50, 585-591.	2.7	12
129	Chemometric contribution for deeper understanding of thermally-induced changes of polyphenolics and the formation of hydroxymethyl-L-furfural in chokeberry powders. Food Chemistry, 2021, 342, 128335.	8.2	12
130	The influence of yeast type and storage temperature on content of phenolic compounds, antioxidant activity, colour and sensory attributes of chokeberry wine. European Food Research and Technology, 2017, 243, 2199-2209.	3.3	12
131	Formulation and storage effects on pomegranate smoothie phenolic composition, antioxidant capacity and color. LWT - Food Science and Technology, 2018, 96, 322-328.	5.2	11
132	Volatile Composition and Sensory Attributes of Smoothies Based on Pomegranate Juice and Mediterranean Fruit Purées (Fig, Jujube and Quince). Foods, 2020, 9, 926.	4.3	10
133	Phytoprostanes, phytofurans, tocopherols, tocotrienols, carotenoids and free amino acids and biological potential of sea buckthorn juices. Journal of the Science of Food and Agriculture, 2022, 102, 185-197.	3.5	10
134	Effect of mixing different kinds of fruit juice with sour cherry puree on nutritional properties. Journal of Food Science and Technology, 2017, 54, 114-129.	2.8	9
135	Oxidative Stability of the Meat of Broilers Fed Diets Supplemented with Various Levels of Blackcurrant Extract (<i>Ribes nigrum</i> L.) during Different Time Period. Journal of Chemistry, 2018, 2018, 1-9.	1.9	9
136	Changes of peach juices during the shelfâ€life and their inÂvitro effect on glycolipid digestion and neurotransmitter metabolism. International Journal of Food Science and Technology, 2019, 54, 1865-1873.	2.7	9
137	Polyphenol Profile in Manzanilla Table Olives As Affected by Water Deficit during Specific Phenological Stages and Spanish-Style Processing. Journal of Agricultural and Food Chemistry, 2019, 67, 661-670.	5.2	9
138	How Do the Different Types of Carrier and Drying Techniques Affect the Changes in Physico-Chemical Properties of Powders from Chokeberry Pomace Extracts?. Foods, 2021, 10, 1864.	4.3	9
139	UPLC/ESI-Q-TOF-MS analysis of (poly)phenols, tocols and amino acids in Chaenomeles leaves versus in vitro anti-enzyme activities. Industrial Crops and Products, 2022, 181, 114829.	5.2	9
140	Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules, 2021, 26, 7593.	3.8	9
141	Changing the content of phenolic compounds as the response of blackcurrant (Ribes nigrum L.) leaves after blackcurrant leaf midge (Dasineura tetensi Rübs.) infestation. Plant Physiology and Biochemistry, 2016, 106, 149-158.	5.8	8
142	Qualitative and Quantitative Evaluation of Heat-Induced Changes in Polyphenols and Antioxidant Capacity in Prunus domestica L. By-products. Molecules, 2019, 24, 3008.	3.8	8
143	A Critical Overview of Labeling Information of Pomegranate Juiceâ€Based Drinks: Phytochemicals Content and Health Claims. Journal of Food Science, 2019, 84, 886-894.	3.1	8
144	Moderation of Inulin and Polyphenolics Contents in Three Cultivars of Helianthus tuberosus L. by Potassium Fertilization. Agronomy, 2019, 9, 884.	3.0	8

#	Article	IF	CITATIONS
145	Comprehensive characterization of Chaenomeles seeds as a potential source of nutritional and biologically active compounds. Journal of Food Composition and Analysis, 2021, 102, 104065.	3.9	8
146	Physicochemical characterization and biological potential of Japanese quince polyphenol extract treated by different drying techniques. LWT - Food Science and Technology, 2021, 152, 112247.	5.2	8
147	Maintaining intestinal microflora balance in heat-stressed broilers using dietary creeping wood sorrel (Oxalis corniculata) powder and chromium (chromium picolinate). Spanish Journal of Agricultural Research, 2020, 18, e0612.	0.6	8
148	The Types of Polysaccharide Coatings and Their Mixtures as a Factor Affecting the Stability of Bioactive Compounds and Health-Promoting Properties Expressed as the Ability to Inhibit the α-Amylase and α-Glucosidase of Chokeberry Extracts in the Microencapsulation Process. Foods, 2021, 10, 1994.	4.3	7
149	MICROBIOLOGICAL HAZARDS IN MINIMALLY PROCESSED FOODS AND EFFECTIVE METHODS TO ELIMINATE THEM. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, 20, .	0.1	7
150	Effect of 1-methylcyclopropene postharvest treatment apple and storage on the cloudy juices properties. LWT - Food Science and Technology, 2014, 59, 1166-1174.	5.2	6
151	Inhibition of enzymes associated with metabolic and neurological disorder by dried pomegranate sheets as a function of pomegranate cultivar and fruit puree. Journal of the Science of Food and Agriculture, 2021, 101, 2294-2303.	3.5	6
152	Herbs drying. , 2021, , 167-200.		6
153	Fruit tree leaves as valuable new source of tocopherol and tocotrienol compounds. Journal of the Science of Food and Agriculture, 2022, 102, 1466-1474.	3.5	6
154	Hydroxycinnamic Acids and Carotenoids of Dried Loquat Fruit cv. â€~Algar' Affected by Freeze-, Convective-, Vacuum-Microwave- and Combined-Drying Methods. Molecules, 2020, 25, 3643.	3.8	5
155	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	8.2	5
156	The Effect of Rosemary (Rosmarinus officinalis) and Blackcurrant Extracts (Ribes nigrum) Supplementation on Performance Indices and Oxidative Stability of Chicken Broiler Meat. Animals, 2021, 11, 1155.	2.3	5
157	Effect of the Addition of Polysaccharide Hydrocolloids on Sensory Quality, Color Parameters, and Anthocyanin Stabilization in Cloudy Strawberry Beverages. M. Teleszko, P. Nowicka, A. WojdyÅ,o. Polish Journal of Food and Nutrition Sciences, 2019, 69, 167-178.	1.7	5
158	Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants, 2022, 11, 190.	5.1	5
159	Bioactive compounds of selected fruit juices. Natural Product Communications, 2009, 4, 671-6.	0.5	5
160	Antioxidant activities and polyphenolic identification by UPLC-MS/MS of autoclaved brewers' spent grain. LWT - Food Science and Technology, 2022, 163, 113612.	5.2	5
161	The Effect of Filtration on Physical and Chemical Properties of Osmo-Dehydrated Material. Molecules, 2020, 25, 5412.	3.8	4
162	Influence of polyphenols isolated from Scutellaria baicalensis Georgi and Crataegus oxyacantha on the oxidative stability of cholesterol in butter stored in various conditions. European Food Research and Technology, 2007, 224, 635-642.	3.3	3

#	Article	IF	CITATIONS
163	The Potential of Spent Barley as a Functional Food Ingredient: Study on the Comparison of Dietary Fiber and Bioactivity. Proceedings (mdpi), 2021, 70, 86.	0.2	3
164	Quality of new healthy smoothies based on pomegranate and minor Mediterranean fruits. Acta Horticulturae, 2019, , 283-288.	0.2	2
165	Correlation between water stress and phenolic compounds of hydroSOStainable almonds. Journal of the Science of Food and Agriculture, 2021, 101, 3065-3070.	3.5	2
166	Specific energy consumption and quality of <i>Citrus hystrix</i> leaves treated using convective and microwave vacuum methods. Journal of Food Processing and Preservation, 2022, 46, .	2.0	2
167	CONTENT OF ELLAGIC ACID AND POLYMERIZED PROANTHOCYANIDINS IN PSEUDO FRUITS OF SELECTED ROSE SPECIES. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2012, , .	0.1	1
168	ASSESSMENT OF SENSORY QUALITIES AND NUTRITIONAL VALUE OF CHOKEBERRY PUREE WITH ADDED FLAX POMACE AND DRIED LEAVES OF STEVIA. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2014, , .	0.1	1
169	WpÅ,yw dodatku wytÅ,oków rzepakowych na wÅ,aÅ›ciwoÅ›ci smaŹ⁄4onych chrupek ziemniaczanych. RoÅ›liny Oleiste - Oilseed Crops, 2013, 33, 285-294.	0.1	1
170	Corrigendum to "Oxidative Stability of the Meat of Broilers Fed Diets Supplemented with Various Levels of Blackcurrant Extract (<i>Ribes nigrum</i> L.) during Different Time Period― Journal of Chemistry, 2019, 2019, 1-2.	1.9	0